	Higher Ti	er Non-Calculator Paper	mark scheme	Paper 1 of 5 from ZigZag Ed	ducation
1.	a) b) c)	$x \le 1$ x = 3 or -3 $\frac{x}{2} + \frac{x}{3} = 2 \qquad \times 6$		A1 A1A1 M1	
		$3x + 2x = 12 \qquad 5x = 12$	x = 12/5 = 2.4	A1	
	d)	$\frac{x+1}{2} + \frac{x}{3} = 1 \qquad \qquad \times 6$		M1	
		3x+3+2x=6 $5x=3$ $x=3/5$	= 0.6	A1	7 marks
2.	a)	i) 1, 5, 9, 13, 17 , 21 ii) 2, 5, 10, 17, 26, 37 , 50	1	A1 A1	
	b)	i) $4n-3$ ii) n^2+1		A1 A1	
	c)	$100 \times 2 + 2 = 202$		Δ 1	
	d)	$\frac{100 \times 2}{2n+2} = 202$		A1	6 marks
3	a)	I = area (ii)		Δ 1	
5.	a) b)	K = length(i)		A1 A1	2 marks
4		120 - 2x2x2x2x2x5		A 1	
4.	a)	120 - 2x2x2x3x3			
	b)	0.00001234		Al	
	c)	$\frac{13.8 \times 0.022}{133} \approx \frac{10 \times 0.02}{100}$	numerator/denominator	B1 or appropriate rounding	
	~	$\frac{0.2}{100} = 0.002 \text{ accept } 0.002 -$	- 0.0028	A1	4 marks
5	2)	Construction marks correct +() 5mm	D1 A 1	
5.	a) b)	Within 3cm AB, Bisector of an	ngle B to give nearer AB than BC	B1B1	4 marks
6.	a)	1 + 3 = 4 1 + 4 = 5			
		LCM of 4 and 5 is 20		M1	
		Therefore 20 balls		A 1	
	b)	tree diagram with probe $1/5$ and	d 1/5 twice	A 1	
	0)	calculating probe at and of tree	by multiplication	D1	
		$1/4 \times 1/5 = 1/20$ and $3/4 \times 4/5 = 1/20$	12/20	A1 for either	< 1
	2.	adding probs to give 13/20		Al	6 marks
7.	$^{3}/_{7} \times x \leq$	≤100		M1	
	<i>x</i> = 233	$.333^{\rm r} = 233$ complete panels		A1	2 marks
8.	a)	Values– calculating a moving £2.00, £2.05, £2.10, £2.15, £2.	average20A1 any two correct	M1 A1 all correct	
	b)	The moving average steadily i	ncreases by £0.05 a quarter	A1	4 marks
9.	a)	1.5cm^2		A1	
	D)	$v = 1.5 \times 4 = 6 \text{ cm}^2$		Al	
	c)	scale factor = $12/4=3$		MI	
		$x = 3 \times 3 = 9$ cm		A1	
	d)	slanted length $\sqrt{10}$		A1	
		$2 \times 1.5 + 12 + 4 + 4\sqrt{10} = 19 + 4$	$4\sqrt{10}$ (a = 19, b = 4, c = 10)	A1A1	7 marks

10.	a)	bigger square has side $x+1$	B1 M1			
		change in Area – biggest – sinanest = $(r+1)^2 - r^2$	M1	Allow reverse order		
		$=x^{2}+2x+1-x^{2}=2x+1$	A1			
	b)	Let smaller square have side length $= y$				
	,	$x^2 - y^2 = 6x - 9$	M1	Allow LHS= $y^2 - x^2$		
		$\therefore y^2 = x^2 - 6x + 9$				
		$\therefore y = \sqrt{(x^2 - 6x + 9)}$	M1			
		\therefore y = x-3 (ignoring 3 -x)	A1			
		\therefore perimeter = 4 <i>x</i> -12	A1	8 marks		
11.	a)	$(1-4)^{-2} = 1/(-3)^2 = 1/9$	M1A1			
	b)	$8^{4/3}$ = 2 ⁴ or 16	A1			
	c)	$100^{-1/2} = 1/10$	A1	4 marks		
12.	Let	$x = 0.93939393^{r}$				
		100x = 93.93939393	M1			
		99x = 93	M1			
		x = 93/99 = 31/33	A1	3 marks		
13.	a)	c–b	A1			
	b)	$-\frac{1}{2}\mathbf{a}+\mathbf{b}+\frac{1}{2}(\mathbf{c}-\mathbf{b}) = -\frac{1}{2}\mathbf{a}+\frac{1}{2}\mathbf{b}+\frac{1}{2}\mathbf{c}$	M1A1	3 marks		
14.	a)	$2/6 \times 2/6 \times 2/6 = 1/27$ (multiply same fraction)	M1A1			
	b)	$4/6 \times 4/6 \times 4/6 = 8/27$	A1	3 marks		
15	a)	$x^{2} + 4x - 5 = (x + 2)^{2} - 9$	A1A1			
	b)	$(x+2)^2 - 9 = 0$	M1			
		$(x+2)^2 = 9$				
		$x+2 = \pm 3$	M1A1			
		$x = -2\pm 3 = 1$ or -5 . (answers MUST be achieved by completing the square, o.w. zero! marks)				
			A1A1	,		
	c)	Shift up 5 units.	A1			
	d)	Stretch scale factor 2 in the y direction.	<i>A1</i> A1	10 marks		

16. Using mid-points of the second table

Increase in Height in cm mid-point	Frequency	mid-point times Frequency
1	10	10
3	20	60
5	10	50
7	10	70
9	50	450
TOTAL	100	640

average estimated increase = $640/100 = 6.4$ cm	
estimate of height is 65.1 cm+ 6.4 cm = 71.5 cm	
using an estimate from the first table when the exact answer is known would be incorrec	:t!

17.	a)	i)	$\angle CAF = \angle ABC \text{ or } \angle ADC$	A1
		ii)	Prove the alternate segment theorem.	
			$\angle ABC = \angle ADC$ (angles in the same segment)	B1
			$\angle ACD = 90^{\circ} (AD \text{ diameter})$	B1
			$\angle CAF = 90^{\circ} - \angle DAC$	B1
			$\angle CAF = 90^{\circ} - (180 - 90 - \angle ADC) = \angle ADC$	
			$\angle CAF = \angle ADC$	B1

р2

B1

A1 A1

3 marks

	b)	i) $x = 180 - 103 = 77^{\circ}$ $y = 25^{\circ}$ (alternate segment theorem) ii) $AOC = 2 \times 103 = 206^{\circ}$ obtuse = $360 - 206 = 154^{\circ}$ [or $2 \times x = 154^{\circ}$ (ft!) M1A1]	A1 A1 M1A1	9 marks
18.	a)	$f = \frac{k}{d^3}$ $4 = k/2^3$ $k = 32$	M1 M1 B1	
		$f = 32/4^3$ f = 0.5N	M1 A1	
	b)	$16 = 32/d^3$ $d^3 = 2 d = {}^3\sqrt{2}$	M1 A1	7 marks
19.	a)	$x^{2} - 14x + 16 = (x - 7)^{2} - 49 + 16 = (x - 7)^{2} - 33$	A1 <i>A</i> 1	
	b)	double translation $f(x)$ translated 7 units LEFT and (translated) <i>33 units up</i> .	A1 A1A1ft	5 marks
20.	$\sqrt{3L}$	$=\frac{V}{2\pi}$	M1	
	<i>3L</i> =	$\frac{V^2}{4\pi^2}$	M1	
	L = -	$\frac{V^2}{12\pi^2}$	A1	3 marks