1. a) $x \leq 1$

A1
A1A1
b) $x=3$ or -3
c) $\frac{x}{2}+\frac{x}{3}=2 \quad \times 6$
$3 x+2 x=12 \quad 5 x=12 \quad x=12 / 5=2.4$
d) $\begin{array}{rlc}\frac{x+1}{2}+\frac{x}{3}=1 & \times 6 \\ 3 x+3+2 x=6 & 5 x=3 x=3 / 5=0.6\end{array}$
a) i) $\quad 1,5,9,13,17,21$
ii) $2,5,10,17,26,37,50$
b) i) $4 n-3$
ii) $\quad \mathrm{n}^{2}+1$
c) $100 \times 2+2=202$
d) $\quad 2 \mathbf{n}+2$
3. a) $\quad \mathbf{J}=\operatorname{area}$ (ii)
b) $\quad \mathrm{K}=$ length (i)
4. a) $120=2 \times 2 \times 2 \times 3 \times 5$
b) 0.00001234
c) $\frac{13.8 \times 0.022}{133} \approx \frac{10 \times 0.02}{100} \quad$ numerator/denominator
$\approx \frac{0.2}{100}=0.002$ accept $0.002-0.0028$
5. a) Construction marks, correct $\pm 0.5 \mathrm{~mm}$

B1A1
b) Within 3 cm AB , Bisector of angle B to give nearer $A B$ than $B C B 1 B 1$ 4 marks
6. a) $1+3=4$
$1+4=5$
L.C.M. of 4 and 5 is 20

M1
Therefore 20 balls
A1
b) tree diagram with probs $1 / 5$ and $4 / 5$ twice
calculating probs at end of tree by multiplication
A1
$1 / 4 \times 1 / 5=1 / 20$ and $3 / 4 \times 4 / 5=12 / 20$
adding probs to give $13 / 20$
B1
A1 for either
A1
M1
A1 2 marks

$$
\begin{aligned}
& { }_{7} \times x \leq 100 \\
& x=233.333^{\mathrm{r}}=233 \text { complete panels }
\end{aligned}
$$

M1
$£ 2.00, £ 2.05, £ 2.10, £ 2.15, £ 2.20$
A1 any two correct
b) The moving average steadily increases by $£ 0.05$ a quarter

A1
4 marks
9. a) $1.5 \mathrm{~cm}^{2}$

A1
b) $\quad V=1.5 \times 4=6 \mathrm{~cm}^{3}$

A1
c) \quad scale factor $=12 / 4=3$ M1
$x=3 \times 3=9 \mathrm{~cm}$
A1
d) slanted length $\sqrt{ } 10$

A1

A1A1

6 marks

A1 all correct
$2 \times 1.5+12+4+4 \sqrt{ } 10=19+4 \sqrt{ } 10 \quad(a=19, b=4, c=10)$
10. a) bigger square has side $x+1$

B1
change in Area $=$ biggest - smallest

$$
\begin{aligned}
& =(x+1)^{2}-x^{2} \\
& =x^{2}+2 x+1-x^{2}=2 x+1
\end{aligned}
$$

b) Let smaller square have side length $=y$
$x^{2}-y^{2}=6 x-9$
M1 Allow LHS $=y^{2}-x^{2}$
$\therefore y^{2}=x^{2}-6 x+9$
$\therefore y=\sqrt{ }\left(x^{2}-6 x+9\right)$
M1
$\therefore y=x-3 \quad$ (ignoring $3-x$)
\therefore perimeter $=4 x-12$
A1
A1
8 marks
11.
a) $\quad(1-4)^{-2} \quad=1 /(-3)^{2}=1 / 9$
b) $\quad 8^{4 / 3}=2^{4}$ or 16
c) $100^{-1 / 2}=1 / 10$

M1A1
A1
A1 4 marks
12. Let $x=0.93939393^{\text {r }}$
$100 x=93.93939393 \quad$ M1
$99 x=93 \quad$ M1
$x=93 / 99=31 / 33$
A1
3 marks
13. a) c-b
b) $\quad-1 / 2 \mathbf{a}+\mathbf{b}+1 / 2(\mathbf{c}-\mathbf{b})=-1 / 2 \mathbf{a}+1 / 2 \mathbf{b}+1 / 2 \mathbf{c}$

A1

M1A1
3 marks
14. a) $2 / 6 \times 2 / 6 \times 2 / 6=1 / 27$ (multiply same fraction)
b) $\quad 4 / 6 \times 4 / 6 \times 4 / 6=8 / 27$

M1A1

A1
3 marks
15. a) $x^{2}+4 x-5=(x+2)^{2}-9$.

A1A1
b) $\quad(x+2)^{2}-9=0$

M1
$(x+2)^{2}=9$
$x+2= \pm 3$
M1A1
$x=-2 \pm 3=1$ or -5 . (answers MUST be achieved by completing the square, o.w. zero! marks)
c) Shift up 5 units.
d) Stretch scale factor 2 in the y direction.

A1A1
A1
A1A1 $\quad 10$ marks
16. Using mid-points of the second table

B1

Increase in Height in cm mid-point	Frequency	mid-point times Frequency
1	10	10
3	20	60
5	10	50
7	10	70
9	50	450
TOTAL	100	640

average estimated increase $=640 / 100=6.4 \mathrm{~cm} \quad$ A1
estimate of height is $\mathbf{6 5 . 1} \mathrm{cm}+6.4 \mathrm{~cm}=71.5 \mathrm{~cm} \quad$ A1
3 marks
using an estimate from the first table when the exact answer is known would be incorrect!
17.
a) i) $\quad \angle \mathrm{CAF}=\angle \mathrm{ABC}$ or $\angle \mathrm{ADC}$
A1
ii) Prove the alternate segment theorem.
$\begin{array}{ll}\angle \mathrm{ABC}=\angle \mathrm{ADC}(\text { angles in the same segment }) & \mathrm{B} 1 \\ \angle \mathrm{ACD}=90^{\circ}(\mathrm{AD} \text { diameter }) & \mathrm{B} 1\end{array}$
$\angle \mathrm{CAF}=90^{\circ}-\angle \mathrm{DAC} \quad \mathrm{B} 1$
$\angle \mathrm{CAF}=90^{\circ}-(180-90-\angle \mathrm{ADC})=\angle \mathrm{ADC}$
$\angle \mathrm{CAF}=\angle \mathrm{ADC}$
B1
b)
$x=180-103=77^{\circ}$
A1
$\mathbf{y}=25^{\circ}$ (alternate segment theorem)
ii) $\quad \mathrm{AOC}=2 \times 103=206^{\circ}$ obtuse $=360-206=154^{\circ}$ [or $2 \times \boldsymbol{x}=154^{\circ}(\mathrm{ft}!)$ M1A1]
18. a) $f=\frac{k}{d^{3}}$

$$
\begin{array}{ll}
4=k / 2^{3} & \text { M1 } \\
k=32 & \text { B1 } \\
f=32 / 4^{3} & \text { M1 } \\
f=0.5 \mathrm{~N} & \text { A1 }
\end{array}
$$

b) $\quad 16=32 / d^{3}$
$d^{3}=2 \quad d=\sqrt[3]{ } 2$
M1
A1

7 marks
19.
a) $x^{2}-14 x+16=(x-7)^{2}-49+16=(x-7)^{2}-33$
b) double translation
$\mathrm{f}(x)$ translated 7 units LEFT and (translated) 33 units up.
20. $\sqrt{3 L}=\frac{V}{2 \pi}$
$3 L=\frac{V^{2}}{4 \pi^{2}}$
A1A1
A1
A1A1ft
5 marks
$L=\frac{V^{2}}{12 \pi^{2}}$
A1
3 marks

