1. 200 plant seeds were divided into 2 groups. Group A and group B.

Group A were grown in field A. Group B were grown in field B.
The box and whisker plot of the heights of the plants is shown below.

a) Comment on one statistical feature that is the same between the two groups.

The plants are sold. The plants achieve a selling price dependent on how tall they are.
The taller plants get more money. The plants sell for $£ 3$ per cm in height.
The farmer can only sell the plants from one of the fields.
b) Which plants, from field A or B, do you think the farmer should sell? Justify your answer.
c) Estimate the $3^{\text {rd }}$ quartile for group B.
2. The shape shown is a regular octagon of side 5 cm . Find length AE to 3 significant figures.

4 marks
3. Simplify the expressions
a) $2 x^{5} \times 3 x^{6}$
b) $\frac{y^{6}}{y^{2}}$
c) $\quad\left(y^{7}\right)^{5}$

4 marks
5. Describe the correlation, if any, in each of the scatter diagrams below. A line of correlation is shown on diagram i).
i)

ii)

iii)

4 marks
6. a) Calculate angle BOC, labelled \boldsymbol{x}.
b) i) Write down angle ABO , justifying your answer.
ii) Calculate angle BAC.

A students says that ABDC is a cyclic quadrilateral.
c) Are they correct? Justify your answer.

D is now moved around the circumference, but remains to the left
 of BC, until OBDC forms a kite. Points O, B and C do not change.
d) i) Which angles in the shape OBDC remain unchanged as D is moved into position?
ii) Given D's new position calculate angle OBD, justifying your answer.
7. The diagram below shows the position of three radar stations, X, Y and Z. Copy the points.

You do not need to construct an accurate copy of the points.
a) A helicopter moves among the radar towers, such that it is equidistant from $X Y$ and $Z Y$. Using a ruler and compasses only, construct the locus of the helicopter.
b) At midnight, the helicopter is equidistant from X and Y.

On your diagram, use a ruler and compasses only to find the position of the helicopter, by construction - do not measure length.

4 marks

7 marks
8. Estimate the equation of the graph of the straight line shown.

9. a) Copy and complete the table of values for $\mathrm{y}=x^{2}-2 x-1$

x	-2	-1	0	1	2	3
y				-2		

b) Using your table of values, draw a graph of $\mathrm{y}=\mathrm{x}^{2}-2 x-1$.
c) Use your graph to estimate the solutions to the equation $0=x^{2}-2 x-1 \quad 8$ marks
10. Make w the subject of the following formulae
a) $\quad \mathrm{s}=\mathrm{w}(\mathrm{r}-14)$
b) $\quad \mathrm{p}=\mathrm{qw}^{3}$

5 marks
11. A scientist investigating the population of whales off the coast of Norway has estimated the population to be decreasing at a rate of 2.3% per year.
a) Given that the population in 2002 was exactly 3450 whales, calculate the expected population size in 2022, correct to four significant figures.
b) Still taking the population in 2002 to be exactly 3450 whales, and assuming the decreasing rate of 2.3% per year is accurate to 1 decimal place, calculate the greatest lower bound for the population in 2022, correct to four significant figures.
12. A straight line, $f(x)$ is perpendicular to another line, $y=4-3 x . f(x)$ intersects the x axis at 18 .
a) Find the equation of $f(x)$ in the form $y=m x+c$
b) $\quad \mathrm{f}(x)$ is mapped to a new function by a transformation. The transformation is either-
i) translation by 2 units to the right along the x-axis to give $\mathrm{f}(x-2)$ or
ii) scaling by a factor of 2 in y direction to give $2 f(x)$.

State whether the new function after the transformation is still perpendicular to $4-3 x$. Justify your answers to part b).
13. a) The expression $x^{2}+18 x+a$ can be written in the form $(x+b)^{2}$.

Find a and b.
b) Solve the equation $x^{2}+18 x+81=102$ without using the quadratic formula, and give your answers exactly.
14. The curve $y=x^{2}+2$ passes through the points $A(1,3), B(2,7)$ and C as shown.
a) Calculate the gradient of the straight line $A B$.
b) The x-coordinate of C is 1.4 . Calculate the gradient of the straight line AC.
c) By selecting another point on the curve, calculate a better estimate for the gradient of the tangent at A .
15. a) Factorise $x^{2}-16$

b) Simplify fully $\frac{x^{2}-16}{3 x^{2}-14 x+8}$

3 marks
16. The ages of people who completed a small marathon were recorded by an event organiser, as shown below.

Age (a)	Number of People
$10 \leq a<20$	18
$20 \leq a<25$	38
$25 \leq a<30$	41
$30 \leq a<40$	34
$40 \leq a<60$	26
Total	157

a) To construct a histogram to represent this data we would calculate the frequency densities.

Extend the table and calculate the frequency densities. Do not draw the histogram.
b) Estimate the mean age of the competitors to 1 decimal place.
c) Two people are randomly selected after the race for a survey.

Calculate the probability that both of them were aged between 30 and 40 .
6 marks
17. $\mathrm{OX}=12 \mathrm{~cm}, \mathrm{OY}=9 \mathrm{~cm}$ as shown.

Chord length RS $=24 \mathrm{~cm}$.
a) Calculate the radius of the circle
b) Calculate the length of the chord PQ

18. A regular 3D object is contained within a sphere, radius 8 cm .

The 3D shape is made up of 8 congruent equilateral triangles of side x.
Each of the vertices of the object just touches the sphere.
a) Calculate the length of x
b) Calculate the volume of the 3D shape inside the sphere.

19. $\overrightarrow{O C}=2 / 5 \overrightarrow{\mathrm{OB}}$,
a) Express in terms of \mathbf{a} and/or \mathbf{b}, where $\mathbf{a}=\overrightarrow{\mathrm{OA}}, \mathbf{b}=\overrightarrow{\mathrm{OB}}$
i) $\quad \overrightarrow{C B}$
ii) $\quad \overrightarrow{\mathrm{BA}}$

D is the point on BA such that $\mathrm{BD}: \mathrm{DA}=3: 2$
b) express in terms of \mathbf{a} and/or $\mathbf{b}-$

i) $\quad \overrightarrow{\mathrm{BD}}$
ii) $\quad \overrightarrow{C D}$
c) What can you conclude about $C D$ and $O A$?

5 marks
20. This is a sketch of the quadratic curve with equation $y=f(x)$. $\mathrm{f}(x)=-(x-1)^{2}+6$
M is the maximum point on the curve, with coordinates $(1,6)$

State the coordinates of the maximum point for the curves given below.
a) $\quad y=f(x)+3$
b) $\quad y=f(-x)$
c) $y=f(x-6)$
d) $y=f(2 x)$

