1. $19 / 100$
2. (a) x^{10}
(b) $2 x^{4}$
(c) x^{15}
3.

(a) rotation of $180^{\circ} \quad$ (clockwise or anti-clockwise) about ($1 / 2,2$)
(b) translation of 4 units in the x direction
(c) reflection in the line $x=1 / 2$
4. (a) right angled triangle angle at circumference from a diameter
(b) isosceles triangle tangents from a point are equal in length
(c) angle $\mathrm{DAC}=x^{\circ}$
angle $\mathrm{BAC}=(90-x)^{\circ}$
5. (a) $\frac{2}{2+3} \times £ 100$
£40
(b) $£ 100-£ 39.75=£ 60.25$
$\mathrm{b}=(60.25 \div 39.75) \times 241$
b=241
6. area of triangular face $=1 / 2 \times 8 \times 2=8 \mathrm{~cm}^{2}$
slant height $=\sqrt{2^{2}+4^{2}}=\sqrt{ } 20 \mathrm{~cm}$
surface area $=2 \times 8+2 \times 1.5 \times \sqrt{ } 20+1.5 \times 8$
$41.4 \mathrm{~cm}^{2}$
7.
(a) $\quad \mathrm{m}-3=3 \mathrm{j}$
$\mathrm{j}=1 / 3(\mathrm{~m}-3)$
(b) $\frac{3 V}{\pi}=\mathrm{r}^{3}$
$\mathrm{r}=\sqrt[3]{\frac{3 V}{\pi}}$
(c) $\quad \mathrm{pw}-\mathrm{w}=1$
$\mathrm{w}(\mathrm{p}-1)=1$
$\mathrm{w}=1 /(\mathrm{p}-1)$
8. (a) all points correctly plotted
(b) straight line drawn
accurate line drawn in appropriate position
(c) positive correlation (moderate)
(d) method lines seen on graph

60-68
(a) $\quad(x+2)(x+3)$
$(x+2)(x+3)=0, x=-2$ or $x=-3$
9.
(b) (i) $2 x+3=3 x-3$

$$
x=6
$$

(ii) $x=\frac{12}{14}=\frac{6}{7}$

A1
A1 A1

M1A1
A1

A1
1 mark

A1
A1
A1

A1
A1
A1
A1
A1
A1
A1
A1
A1
M1
A1
6 marks

M1
A1
M1
M1
A1
5 marks

4 marks

M1
A1
M1

A1
M1
M1
A1
7 marks

B1

B1
B1
A1
M1
A1
(c) $2+3 x<17 x$
$2<14 x \quad$ M1
$x>1 / 7 \quad$ A1
8 marks
10
(a)

x	-2	-1	0	1	2	3
$\mathrm{y}=x^{2}-2 x-2$	6	$\mathbf{1}$	-2	-3	-2	1

(b) points correctly plotted

A1
A1
smooth curve drawn through points
A1
(c) $x=-0.75 \pm 0.05$, or between 2.75 ± 0.05

A1A1ft
5 marks
(numerical is $-0.73,2.73$).
11. a)

x	-3	-2	-1	0	1	2	3
$y=2 x^{2}+4 x-8$	-2	$\mathbf{- 8}$	$\mathbf{- 1 0}$	-8	$\mathbf{- 2}$	$\mathbf{8}$	22

A1A1
b) Suitable and correct axis for value

Correct graph plotted
Joined by smooth curve
A1
A1
A1
c) reading off values which intersect with x-axis, $x=1.2$
by symmetry $x=-3.2$ (or rounding to same)
A1
Alft
[also accept $x=$ less than 1.3 but rounding to 1.3 or $x=$ more than -3.3 and rounding to $-3.3 \mathrm{AlA1}$]
d) Line $y=-4$ drawn on;

M1
$x=0.7$ or $x=-2.7$ (or rounding to same)
A1ft A1ft
10 marks
[also accept $x=$ less than 0.8 and rounding to 0.8 or $x=$ more than -2.8 and rounding to -2.8 A 1 A 1]
12. Least upper bound $=(200 \div 8.5) \times(50 \div 4.5)$

$$
=23 \times 11
$$

$$
=253
$$

The alternative tessellation gives $220(44 \times 5)$
Greatest lower bound $=(200 \div 9.5) \times(50 \div 5.5)$

$$
\begin{aligned}
& =21 \times 9 \\
& =189
\end{aligned}
$$

A1

The alternative tessellation gives 180 (36×5).
B1 for calculating any correct pair of tessellation answers 253/220, 189/180

4 marks
13. a) $\frac{120}{x}+\frac{120}{x+10}$ (hours)

B1 for either expression seen +A 1
b) $5=\frac{120}{x}+\frac{120}{x+10}$

A1 ft
c) $5=\frac{240 x+1200}{(x)(x+10)}$
$5 x^{2}+50 x=240 x+1200$
$5 x^{2}-190 x-1200=0$
$x^{2}-38 x-240=0$ as required
d) $x=\frac{-(-38) \pm \sqrt{(-38)^{2}-(4 \times 1 \times-240)}}{2 \times 1}$
$x=\frac{38 \pm \sqrt{2404}}{2}$
$x=43.515 \ldots=43.5 \mathrm{~km} / \mathrm{h}$ (discard negative root)
A1
\therefore return speed $=x+10=53.5 \mathrm{~km} / \mathrm{h}$ to 3 sf as required $\quad \mathrm{A} 1 \mathrm{ft}$
9 marks
14.
a) $\quad 30=k \times 60^{2}$
M1
$k=8^{1} / 3 \times 10^{-3}=1 / 120$
$t=\frac{s^{2}}{120}$ A1
b) $t=\frac{45^{2}}{120}$

M1
$t=16.875=17$ to the nearest whole number as required
A1
5 marks
15.
a) $\mathrm{PD}^{2}=\mathrm{PL}^{2}+\mathrm{LD}^{2}-2 \times \mathrm{PL} \times \mathrm{LD} \times \cos 127$
M1
$\mathrm{PD}^{2}=6.9^{2}+14^{2}-2 \times 6.9 \times 14 \times \cos 127$
$\mathrm{PD}=18.9705 \ldots \mathrm{~km}$ accept any number rounding to 19.0 km A
b) $\quad \frac{\sin 127}{18.97 \ldots}=\frac{\sin L P D}{14}$
$\sin L P D=14 \times \frac{\sin 127}{18.97 \ldots}=0.5893827 \ldots$
$\sin L P D=14 \times \frac{\sin 127}{18.97 \ldots}=0.5893827 \ldots \quad \mathrm{M}$
LPD $=36.113216 \ldots$, Bearing $=180-L P D=180-36.11 \ldots=143.9^{\circ}$ to 1 d.p. as required A1 5 marks
16. a) $\mathrm{DAB}=x^{\circ}$

ADC $=180-x^{\circ}$ (parallel lines, C -angle)
$\mathrm{DCB}=180-x^{\circ}($ cyclic quadrilateral $)$
$\mathrm{EDC}=\mathrm{ECD}=x^{\circ}$ (angles on straight line)
\therefore triangle EDC isosceles
b) $\quad \mathrm{PAB}=133-x$ (angles on a straight lines)
$\mathrm{ACB}=(133-x)^{\circ}$ (alternate segment)
M1 - with explanation
M1- with explanation
A1 - correct proof.
M1A1
5 marks
17.
$\begin{array}{ll}\text { a) } & \overrightarrow{\mathrm{ST}}=\mathbf{c}-\mathbf{a} \\ \text { b) } & \overrightarrow{\mathrm{PU}}=\mathbf{a}+\mathbf{c}\end{array}$
A1
A1
c) $\quad 1 / 2(\mathbf{a}-\mathbf{c}+\mathbf{b})$
d) $\quad 1 / 2(\mathbf{a}+\mathbf{b})$

A1
A1
A1
a) i) $\quad \mathrm{P}=(1 / 10)^{4}=0.0001$
ii) $\quad \mathrm{P}=10\left({ }^{1} / 10\right)^{4}=0.001$
b) $\quad \mathrm{P}=10\left({ }^{1} / 10\right)^{\mathrm{n}} \quad \mathbf{O R}(1 / 10)^{\mathrm{n}-1}$ or equivalent

M1A1
A1
4 marks
19. a) New heights are 12, 4 respectively

Plotting correct height polygons with correct widths
(20 -> $30=12$ units, $30->454$ units)
A1 for either
A1A1
b) missing numbers in table are 48,56 .
$170-(16+48+56+24+12)=14$

A1

4 marks

