	Higher Tier Calculator Paper		mark scheme	Paper 1 of 5 from	Paper 1 of 5 from ZigZag Education	
1.	19/10	00		A1	1 mark	
2.	(a) (b) (c)	x^{10} 2 x^4 x^{15}		A1 A1 A1	3 marks	
3.	(a)	rotation of 180° (clock about ($\frac{1}{2}$, 2)	wise or anti-clockwise)	A1 A1		
	(b)	translation of 4 units in the <i>x</i> direction		A1 A1		
	(c)	reflection in the line $x = \frac{1}{2}$		A1	5 marks	
4.	(a)	right angled triangle angle at circumference from a	diameter	A1 A1		
	(b) (c)	isosceles triangle tangents from a point are equa angle DAC = x°	l in length	A1 A1 M1		
		angle BAC = $(90 - x)^\circ$		A1	6 marks	
5.	(a)	$\frac{2}{2+3}$ × £100		M1		
	(b)	$\pounds 40$ $\pounds 100 - \pounds 39.75 = \pounds 60.25$		A1 M1		
		$b = (60.25 \div 39.75) \times 241$ b = 241		M1 A1	5 marks	
6.		of triangular face = $\frac{1}{2} \times 8 \times 2 = 8$	M1			
		height = $\sqrt{2^2 + 4^2} = \sqrt{20}$ cm ce area = $2 \times 8 + 2 \times 1.5 \times \sqrt{20} + $	1.5 × 8	M1 M1		
	41.4c	em ²		A1	4 marks	
7.	(a)	m - 3 = 3j $j = \frac{1}{3} (m - 3)$		M1 A1		
	(b)	$\frac{3V}{\pi} = r^3$		M1		
		$r = \sqrt[3]{\frac{3V}{\pi}}$		A1		
	(c)	pw - w = 1 w(p - 1) = 1		M1 M1		
		w = 1/(p-1)		A1	7 marks	
8.	(a) (b)	all points correctly plotted straight line drawn accurate line drawn in appropr	iate position	B1 B1 B1		
	(c) (d)	positive correlation (moderate	-	A1 M1		
	(d)	method lines seen on graph 60 – 68		A1	6 marks	
9.	(a)	(x+2)(x+3) (x+2)(x+3) = 0, x = -2 or x =	= -3	A1 A1 A1		
	(b)	(i) $2x + 3 = 3x - 3$ x = 6		M1A1		
		(ii) $x = \frac{12}{14} = \frac{6}{7}$		A1		

(c)
$$2 + 3x < 17x$$

 $2 < |4x|$ MI
 $x > \frac{y}{y}$ AI 8 marks
10 (a)

$$\frac{1}{y = x^2 - 2x - 2} \frac{1}{6} \frac{1}{1 - 2} \frac{1}{-3} \frac{2}{-3} \frac{3}{1}$$
I all values correct AI
(b) points correctly plotted AI
smooth curve drawn through points AI
 $x = -0.75\pm 0.05$ x between 2.75\pm 0.05 AIA1ft 5 marks
(numerical is $-0.73, 2.73$).
11. a)
 $\frac{y - 2x^2 + 4x - 8}{1 - 2} \frac{-3}{-2} \frac{1}{-3} \frac{1}{-3} \frac{1}{-3} \frac{1}{-2} \frac{1}{-2} \frac{3}{-2} \frac{3}{-2}$ AIA1
b) Suitable and correct axis for value AI
Correct graph plotted AI
Joined by smooth curve
 $x = -3.2$ (or rounding to -3.3 $x = 1.2$ AI
b) Suitable and correct axis for value AI
Correct graph plotted AI
Joined by smooth curve AI
(c) reading off values which intersect with *x*-axis, $x = 1.2$ AI
b) Suitable and correct axis for value AI
Correct graph plotted AI
Joined by smooth curve AI
(c) reading off values which intersect with *x*-axis, $x = 1.2$ AI
b) Suitable and correct axis for value AI
(c) reading off values which intersect with *x*-axis, $x = 1.2$ AI
(c) reading off values which intersect with *x*-axis, $x = 1.2$ AI
(c) $x = -2.7$ (or rounding to $x = -3.2$ and rounding to -3.3 AIA1]
(d) Line $y = -4$ drawn on: MI
 $x = 0.7$ or $x = -2.7$ (or rounding to same) AIft AI ft 10 marks
[ato accept $x = 1$ less than 0.8 and rounding to 0.8 or $x =$ more than -2.8 and rounding to -2.8 AIAI]
(12. Least upper bound $= (200 + 8.5) \times (50 + 4.5)$
 $= 2.53$ AI
The alternative tessellation gives 220 (44x5)
Greatest lower bound $= (200 + 9.5) \times (50 - 5.5)$
 $= 21 \times 9$ AI
The alternative tessellation gives 220 (44x5)
Greatest lower bound $= (200 + 9.5) \times (50 - 5.5)$
 $= 1.89$ AI
The alternative tessellation gives 180 (36x5).
BI for either expression seen $+A1$
b) $5 = \frac{120}{x} + \frac{120}{x + 100}$ AI ft
c) $5 = \frac{20.40x + 1.200}{(x/(x + 10))}$ AI ft
c) $5 = \frac{20.40x + 1.200}{(x/(x + 10))}$ AI ft
d) $x = (-3.81 \pm \sqrt{-3.81} - (-3.81 \pm$

a)
$$30 = k \times 60^2$$
 M1
 $k = 8^{1/3} \times 10^{-3} = 1/120$ M1

$$t = \frac{s^2}{120}$$
 A1

b)
$$t = \frac{45^2}{120}$$
 M1
 $t = 16.875 = 17$ to the nearest whole number as required A1

5 marks

15.

14.

a)
$$PD^{2} = PL^{2} + LD^{2} - 2 \times PL \times LD \times \cos 127$$
M1
PD² = 6.9² + 14² - 2 × 6.9 × 14 × cos 127
PD = 18.9705...km accept any number rounding to 19.0km A1

b)
$$\frac{\sin 127}{18.97...} = \frac{\sin LPD}{14}$$
 M1

$$sin LPD = 14 \times \frac{sin 127}{18.97...} = 0.5893827...$$
 M1

LPD =
$$36.113216...$$
, Bearing = $180 - LPD = 180 - 36.11... = 143.9^{\circ}$ to 1d.p. as required A1 5 marks

16.	a)	$DAB = x^{\circ}$			
		ADC = $180 - x^{\circ}$ (parallel lines, C-angle)	M1 - with explanation	n	
		$DCB = 180 - x^{\circ}$ (cyclic quadrilateral)	M1- with explanation		
		$EDC = ECD = x^{\circ}$ (angles on straight line)	-		
		∴ triangle EDC isosceles	A1 - correct proof.		
	b)	PAB = 133 - x (angles on a straight lines)	Ĩ		
	,	$ACB = (133-x)^{\circ}$ (alternate segment)	M1A1	5 marks	
17.	a)	$\overrightarrow{ST} = \mathbf{c} - \mathbf{a}$	A1		
171	b)	$PU = \mathbf{a} + \mathbf{c}$	Al		
	c)	$\frac{1}{2}(a-c+b)$	A1		
	d)	$\frac{1}{2}(a+b)$	A1	4 marks	
1.0					
18.	a)	i) $P = (1/10)^4 = 0.0001$	A1		
	• \	ii) $P = 10(1/10)^4 = 0.001$	M1A1		
	b)	$P = 10(^{1}/_{10})^{n}$ OR $(^{1}/_{10})^{n-1}$ or equivalent	A1	4 marks	
19.	a)	New heights are 12, 4 respectively Plotting correct height polygons with correct widths	A1 for either		
		(20 -> 30 = 12 units, 30 -> 45 4 units)	A1A1		
	b)	missing numbers in table are 48, 56.			
	,	$170 - (16 + 48 + 56 + 24 + 12)^{2} = 14$	A1	4 marks	