Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
HIGHER TIER TERMINAL PAPER - SECTION A

Specimen Paper 2003

Candidates answer on the question paper.
Additional materials:
Tracing paper
Geometrical instruments

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total mark available for this section is 50 .

For Examiner's use only	
Section A	
Section B	
Total	

WARNING
 You are not allowed to use a calculator in Section A of this paper.

FORMULA SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, area given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 (a) A machine produces pieces of wood.
The length of each piece of wood measures 34 mm , correct to the nearest millimetre.

Between what limits does the actual length lie?
(a) The length is between \qquad mm and \qquad mm
(b) Three of these pieces of wood are put together to make a triangle.

What is the greatest possible perimeter of the triangle?
(b) \qquad mm
(c) Another machine produces pieces of metal of length m.

Some pieces of metal are fixed together to make this rectangle.

The maximum possible perimeter of this rectangle is 52 millimetres.
The minimum possible perimeter of this rectangle is 44 millimetres.
(i) Write down one inequality in m.
(c)(i)
(ii) Between what limits does m lie?
(ii) between \qquad and
(a)
(a)
(b) Rearrange the formula $A=2 \pi r h+\pi r^{2}$ to make h the subject.
(b) $h=$ \qquad

3 The times taken by 120 students to complete a problem were recorded.
The results are shown in the table below.

Time (t minutes)	$20<t \leq 25$	$25<t \leq 30$	$30<t \leq 35$	$35<t \leq 40$	$40<t \leq 45$	$45<t \leq 50$
Frequency	2	17	35	42	17	7

(a) Draw a cumulative frequency graph for the data.

(b) Find the median time.
(b) \qquad minutes

4 This gold chain is sold in inches.

(a) One inch of the chain weighs $1 \frac{1}{2}$ ounces. Jane buys a $6 \frac{1}{2}$ inch chain.
(i) How much does it weigh?
(a)(i) \qquad ounces
(ii) She makes a necklace using this chain, a clip weighing $\frac{3}{16}$ ounce and a pendant weighing $\frac{1}{8}$ ounce.

How much does the necklace weigh altogether?
(ii) \qquad ounces
(b) Fred buys a $22 \frac{3}{4}$ inch chain and cuts it into a length for a necklace and a length for a bracelet in the ratio $9: 4$.

Calculate the length of the chain for the necklace.
(b) \qquad inches
(a) \qquad
(b) Solve the equation $x^{2}+7 x+12=0$.
(b) $x=$

6 This is a sketch of an ellipse.
It is symmetrical about both axes.

Which of the following could possibly be an expression for its area?

$$
2 \pi \sqrt{a b} \quad \pi(a+b) \quad \frac{1}{2} \pi \sqrt{a^{2}+b^{2}} \quad \pi a b \quad \pi(a b)^{2}
$$

You must explain how you made your choice.
\qquad because \qquad
\qquad
\qquad

7 A rectangle has sides of length $x+1$ and $x+2$.
The area of the rectangle is 42 .
Form an equation in x and solve it to find x.

$$
\begin{equation*}
x= \tag{4}
\end{equation*}
$$

O is the centre of the circle. AT is a tangent to the circle at A .
Show clearly that the angles marked x and y are equal.
You must give a clear reason for each statement you make.
(It is not sufficient merely to quote 'angles in the alternate segment').
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9 (a) Draw a graph of $y=2^{x}$ for values of x from -3 to 3 .

(b) Use your graph to estimate the positive solution of the equation.

$$
2^{x}-x=3
$$

correct to one decimal place.
(b)

10 (a) The mass of a radioactive element decays exponentially.

At time t the mass was 1 gram.
At time $t+1$ the mass was $0 \cdot \dot{7} \dot{5}$ gram.

Find the decay factor as a fraction in its simplest form.
(a)
(b) The surface area of a mould grows exponentially.

At time t the area was $\sqrt{6}-\sqrt{2} \mathrm{~cm}^{2}$.
At time $t+1$ the area was $\sqrt{6}+\sqrt{2} \mathrm{~cm}^{2}$.

Find the growth factor, giving your answer in its simplest form.
(b)
[2]

In the diagram $\overrightarrow{\mathrm{AO}}=\mathbf{a}$ and $\overrightarrow{\mathrm{OB}}=\mathbf{b}$.
A and B are the midpoints of OL and OM respectively.
$\overrightarrow{M C} \vec{~}$
(a) Write down $\overrightarrow{\mathrm{AB}}$ in terms of \mathbf{a} and \mathbf{b}.

$$
\begin{equation*}
\text { (a) } \overrightarrow{\mathrm{AB}}= \tag{1}
\end{equation*}
$$

(b) Show that B is the midpoint of AC .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

12 The straight line with equation $y=x+6$ meets the circle with equation $x^{2}+y^{2}=50$ at two points P and Q .

By solving two simultaneous equations, find the coordinates of P and Q .

) and (\qquad ,) [5]

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
HIGHER TIER TERMINAL PAPER - SECTION B

Specimen Paper 2003

Additional materials:
Tracing paper
Geometrical instruments
Scientific or Graphical Calculator

TIME 1 hour

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for correct working even if the answer is incorrect.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total mark available for this Section is 50 .

For Examiners' Use	
Section B	

FORMULA SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, area given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

13 (a) Calculate $100-\sqrt{5 \times 5 \cdot 12-9 \cdot 6}$.
(a)
(b) Calculate the following.

> The sum of the cube of 12.5 and
> the square of 4.5 is divided by the difference between 2.54 and the reciprocal of 2.5
(b)

14 The equation $x^{3}-2 x-1=0$ has a solution between 1 and 2 .
Use trial and improvement to find the solution correct to two decimal places.
You must show your trials.

$$
x=
$$

15 The diagram shows the end, ABCD , of a shed.
The shed is standing on horizontal ground.

Not to scale

(a) Calculate the area of ABCD .
(a) \qquad m^{2}
(b) Calculate the angle CD makes with the horizontal.
(b) \qquad

16 Mrs Bates invested some money in a savings account.
The rate of interest was fixed at 7% per annum.
Interest was added at the end of each year.
At the end of the third year there was $£ 3675 \cdot 13$ in the account.
How much did Mrs Bates invest?
£
(a) \qquad \%
(b) The table shows the populations of three countries.

Country	Population
France	6.12×10^{7}
Finland	7.24×10^{6}
U.S.A.	2.16×10^{8}

(i) Calculate the total population of the three countries.

Give your answer to a reasonable degree of accuracy.
(b)(i)
(ii) The area of France is 213000 square miles.

Calculate the average number of people per square mile in France.
(ii)

18 The diagram shows a vertical flagpole of height h metres, standing on horizontal ground.

Calculate the height, h, of the flagpole.

Not to scale

$h=$ \qquad m [5]

19 The table shows the distribution of the ages, x years, of 100 passengers on a flight from Heathrow airport.

Age $(x$ years $)$	Number of passengers
$0 \leq x<20$	14
$20 \leq x<40$	24
$40 \leq x<50$	36
$50 \leq x<60$	21
$60 \leq x<70$	5
$70 \leq x$	0

Draw a histogram to illustrate these data.

Mark and label the scale on the vertical axis.

20 Simplify $\frac{3 x^{2}-5 x-2}{3 x^{2}-12}$.

21 A driving test examiner knows from experience that, if learners have lessons with a driving school, the probability they will pass the test is $0 \cdot 6$. Otherwise the probability they will pass the test is $0 \cdot 1$. 80% of those she examines have had lessons with a driving school.
(a) Show clearly that the probability a learner driver, chosen at random, will pass the test is $0 \cdot 5$.
(b) The examiner tests three learner drivers.

Calculate the probability that exactly one of these passes the test.
(b)

22 In an experiment, it is thought that x and y are connected by a formula of the type

$$
y=\frac{a}{x^{2}}+b .
$$

Some values of x and y are given in the following table.

x	1	2	3
y	21	$7 \frac{1}{2}$	5

By drawing a suitable graph, find the values of a and b.

$$
\begin{equation*}
a= \tag{1}
\end{equation*}
$$

\qquad
$b=$

23 An American medical college keeps a record of the number of applications it receives each year.

It has a target of 350 applications per year.
This diagram shows the number of applications above or below the target.

(a) Use the diagram to complete these statements.

The next year that applications will begin increasing will be \qquad
The next year that applications will be greater than the target will be \qquad
The expected number of applications in the year 2001 is \qquad
(b) The data can be modelled as

$$
n=-p \cos (q t)
$$

where $n=$ the number of applications,
$t=$ the time in years, with 1990 as year 0,
and $\quad p$ and q are constants.
Find approximate values for p and q.

$$
\text { (b) } \begin{align*}
& p= \tag{1}\\
& q= \\
&
\end{align*}
$$

RECOGNISING ACHIEVEMENT

Oxford Cambridge and RSA Examinations
General Certificate of Secondary Education
Mathematics C (Graduated Assessment)
1966/2343(H)
HIGHER TIER TERMINAL PAPER

MARK SCHEME

Specimen Paper 2003

SECTION A

| 1 | (a) | 33.5 |
| :--- | :--- | :--- | :--- |
| | (b) | 34.5 |
| | (c)(i) | $5.5<497$ to 103.5 |
| | (ii) | 5.5 (and) 6.5 |
| | | |
| | (a) | $6 x+3-2 x+2$ |
| | (b) | $4 x+5$ |
| | | $A-\pi r^{2}=2 \pi r h$ |
| | $h=\frac{A-\pi r^{2}}{2 \pi r}$ | |

W1
W1 Accept 14.499...
W1
W1 For either or for $5.5<m<6.5$
W1 For both
[5]

M1
A1 Or W2 $4 x+5$
M1
A1 Or W2 for correct answer
[4]

3
(a) \quad Six points plotted $\pm 1 \mathrm{~mm}$ Smooth curve or line segments
P2 P1 for 4 correct
C1 Dependent on ogive
(b) $\quad 35.5$ to 36
W1 Inclusive
[4]

4
(a)(i)
$9 \frac{3}{4}$
W1
(ii) $10 \frac{1}{16}$

W1
(b) $\frac{9}{13}$ or $\frac{91}{4}$

M1 For either
$15 \frac{3}{4}$
A1 Or W2 for $15 \frac{3}{4}$
[4]

5
(a)
$\frac{2 a^{3} b}{3}$
(b) $\quad(x+3)(x+4)$
-3 and -4

W2 W1 for a correct first step
M2 M1 for $(x \pm 3)(x \pm 4)$
A1 Or W3 answer only
[5]
$6 \pi a b \quad$ M1

$$
a b=\text { length } \times \text { length }=\text { area }
$$

M1

A1 Accept reasons why other 3 not area
[2]

7

$$
\begin{aligned}
& (x+1)(x+2)=42 \\
& x^{2}+3 x-40=0 \\
& (x+8)(x-5)=0 \\
& 5
\end{aligned}
$$

M1
M1

Angle sum triangle \& angle in semicircle

9 (a) 6 correct points
W1 Or M1 for at least 4 correct points
Smooth curve
W1
(b) $\quad 2.4$ to 2.5

W2 ft (a)
M1 line $x+3$ drawn
[4]

10 (a) $75 \mathrm{~N}=99$ or $\frac{75}{99}$
M1
$\frac{25}{33}$
(b) $\frac{6+2 \sqrt{12}+2}{6-2}$
$2+\sqrt{3}$
A1 Or W2 for $2+\sqrt{3}$
[4]

11 (a)
b-a
$\overrightarrow{\mathrm{OC}}=2 \mathbf{b}-\mathbf{a}$
\rightarrow
$\mathrm{BC}=\mathbf{c}-\mathbf{b}=\mathbf{2} \mathbf{b}-\mathbf{a}-\mathbf{b}$
$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AB}}$

W1
M2
Or M1 for $\overrightarrow{\mathrm{MC}}=-\mathbf{a}$ seen/implied
M1

A1 Accept equivalent methods
[5]

12
$x^{2}+\left(x^{2}+12 x+36\right)=50$
M1
A1 Or W4 to here
M1 For factors
A1 Ft
A1
[5]

Section A total: 50

SECTION B

13
(a) 96
(b) $\quad 78.935$

W1
W1 Accept 78.9, 79
[2]
$14 \quad$ One value between 1 and 2 correctly substituted
An improved value substituted
Correct substitution of a number between
1.6 and 1.7
1.62

W1 Accept to the nearest integer or better
W1 Accept to 1 d.p. or better
W1 Accept to 1 d.p. or better
W1 Dependent on at least 2 other marks
[4]
15
(a) 0.8 seen or used W 1
$\sqrt{1.7^{2}-0.8^{2}}$ or complete trig method
1.5
$\frac{2+2.8}{2} \times 1.5$
3.6
(b) $\quad \tan =\frac{0.8}{1.5}$
0.53(...)

28(.1)

M2 M1 for $1.7^{2}-0.8^{2}$ or $\sin =\frac{0.8}{1.7}$ or $\cos =\frac{0.8}{1.7}$
A1 Or W4 for 1.5
M1
A1 Or W2 for 3.6
M1
M1
A1 Or W3 for 28(.1)

[9]

$16 \quad 3675.13 \div 1.07^{3}$
3000

M2 Or M1 for 3434.70 or 3210
A1 Dependent on at least 1 method mark [3]
$17 \quad$ (a)
$\left(1.1983 \times 10^{8}-1.15 \times 10^{8}\right) \div 1.15 \times 10^{8}$
M1
4 (.2)
(b)(i) $\quad 6.12 \times 10^{7}+7.24 \times 10^{6}+2.16 \times 10^{8}$

$$
2.8(4) \times 10^{8}
$$

A1 Or W2 for 4 (.2)
M1 Clear intention to add
A1 Or W2 answer only
(ii) $\quad 6.12 \times 10^{7} \div 213000$

287
M1
A1 Or W2 answer only
[6]

18
$\frac{12}{\sin 20}=\frac{\mathrm{BC}}{\sin 30}$ or $\frac{\mathrm{AB}}{\sin 130}$
Correct expressions for BC or AB
$\mathrm{BC}=17.5$ or $\mathbf{A B}=26.9$
$\mathrm{BD}=\mathrm{BC} \sin 50$ or $\mathrm{AB} \sin 30$
13.4(3...)

M1
M1 M2 if first M1 implied
A1 Or W3 to here
M1
A1 Or W5 answer only
[5]

Alternative scheme:
$\mathrm{BD}=\mathrm{CD} \tan 50$ or $\mathrm{AD} \tan 30$
$\mathrm{CD} \tan 50=(\mathrm{CD}+12) \tan 30$
$C D=11.27 \ldots$
$\mathrm{BD}=\mathrm{CD} \tan 50$
13.4(3...)

M1 Accept $\mathrm{CD}=\mathrm{BD} / \tan 50$ etc
M1 M2 if first M1 implied
A1 Or W3 to here
M1
A1 Or W5 answer only
[5]

19
Vertical axis scaled, min two values W1
Units: passengers(people)/year
Bar heights proportional to
$0.7,1.2,3.6,2.1,0.5$
W1
Bars in correct horizontal position W1
[4]

20

$$
\begin{aligned}
& (3 x+1)(x-2) \\
& 3\left(x^{2}-4\right) \\
& \frac{3 x+1}{3(x+2)}
\end{aligned}
$$

M2 M1 for $(3 x \pm 1)(x \pm 2)$

A1 Or W4 for correct answer

[4]

21
(a) $0.8 \times 0.6+0.2 \times 0.1$
W2 W1 for either term
(b) $\quad 3 \times 0.5 \times 0.5^{2}$
M1
0.375
A1
[4]

22
1, $\frac{1}{4}, \frac{1}{9}$
Points plotted and line drawn
M1
($a=$) 18
M1
($b=$) 3
A1 Or W2 for $(a=) 18$
A1 Or W2 for $(b=) 3$
[4]

23 (a)
(20) $02 / 3$

W1
(20) 05/6

W1
255 to 270
W1
(b) $\quad(p=) 90$ to 100
($q=$) 30

Section A total: 50

Total mark available: 100
Paper 1966 Specimen Higher Terminal

© OCR 2000
Oxford, Cambridge and RSA Examinations

