RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION
B278/A

MATHEMATICS C

MODULE M8 - SECTION A

SPECIMEN

Candidates answer on the question paper.
Additional Materials:
Geometrical instruments
Tracing paper (optional)

Candidate
Name

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this section is 25 .

WARNING You are not allowed to use a calculator in this paper.

For Examiner's Use
Section A

This document consists of 8 printed pages.

Volume of prism $=($ area of cross-section $) \mathrm{x}$ length

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $\frac{4}{3} \pi r^{3}$

Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 (a) Simplify, giving your answer as a power of 10.
(i) $10^{5} \times 10^{4}$
(a)(i)
(ii) $10^{8} \div 10^{2}$
(ii)
(b) Write 3.45×10^{4} as an ordinary number.
(b)

2 Calculate.
$3 \frac{2}{3}+1 \frac{1}{4}$

3 (a) Multiply out and simplify.

$$
(x+4)(x-7)
$$

(a)
(b) Factorise.

$$
4 a b-2 a c
$$

(b)
(c) Rearrange this formula to make x the subject.

$$
4(x-y)=3 y+2
$$

(c)

4 For each of the sketch graphs below, choose the correct equation from this list.

$$
y=2-x^{3} \quad y=\frac{-2}{x} \quad y=2+x^{3} \quad y=\frac{2}{x}
$$

(a)

(b)

5 In these expressions a and b are lengths.

$$
\pi a^{2} b \quad 2 \pi a+\pi b \quad \pi a^{2} \quad 2 \pi a b \quad a^{3}+\pi a b
$$

Which one of these expressions could represent a volume?

Explain how you decide.
because
\qquad
\qquad

6 The scores in a science test are summarised in the table below.

Minimum mark	19
Range	60
Median	60
Lower quartile	42
Interquartile range	28

(a) Use this information to draw a box plot.

(b) Complete this statement.
......... \% of students scored below 42.

7 Sports activities are held after school.
Zaneekia attends these classes on Monday and Wednesday.
She can choose one of badminton, dance or netball on each day.

The probability she chooses badminton is 0.5 .
The probability she chooses dance is 0.4 .

Assume Zaneekia's choices are independent.

(a) Complete the tree diagram below.

(b) What is the probability that Zaneekia will choose the same sports activity on both days?
(b)

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Oxford Cambridge and RSA Examinations General Certificate of Secondary Education

MATHEMATICS C
MODULE M8 - SECTION A
Specimen Mark Scheme
The maximum mark for this paper is 25 .

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
a) \\
b)
\end{tabular} \& \begin{tabular}{l}
i) \(10^{9}\) \\
ii) \(10^{6}\)
\[
34500
\]
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 3
\end{aligned}
\] \& \& \\
\hline 2 \& \& 4 11/12 \& \[
\begin{aligned}
\& 2 \\
\& 2
\end{aligned}
\] \& M1 \& 8/12 or 3/12 \\
\hline 3 \& \begin{tabular}{l}
a) \\
b) \\
c)
\end{tabular} \& \[
\begin{aligned}
\& x^{2}-3 x-28 \\
\& 2 a(2 b-c) \\
\& (x)=(7 y+2) / 4 \text { or } \\
\& \frac{4 y+3 y+2}{4} \text { or } \\
\& (3 y+2) / 4+y
\end{aligned}
\] \& \begin{tabular}{l}
2 \\
2 \\
3 \\
7
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
M1
\end{tabular} \& \begin{tabular}{l}
\(x^{2}+4 x-7 x-28\) two terms correct \(a(4 b-2 c)\) or \(2(2 a b-a c)\) or \(2 a(2 b+c)\) \\
\(4 x-4 y=3 y+2\) or and \(\mathrm{ft} 4 x=4 y+3 y+2\) or
\[
x-y=(3 y+2) / 4
\]
\end{tabular} \\
\hline 4

5 \& | a) |
| :--- |
| b) | \& \[

$$
\begin{aligned}
& y=2+x^{3} \\
& y=\frac{2}{x}
\end{aligned}
$$
\]

$$
\begin{aligned}
& \pi a^{2} b \\
& L^{2} \times L, L \times L \times L(\operatorname{dep})
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 2 \\
& 1 \\
& 1 \\
& 2
\end{aligned}
$$
\] \& \&

\hline 6 \& | a) |
| :--- |
| b) | \& | min at 19 and max at 79 |
| :--- |
| LQ at 42 and UQ at 70 |
| complete diagram with median at 60 25% | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 |
| 4 | \& | M1 |
| :--- |
| M1 |
| M1 |
| M1 | \& If no diagram SC1 for max and UQ listed

\hline
\end{tabular}

Section A Total 25

Question	AO2	AO3	AO4	Total
$\mathbf{1}$	3	0	0	$\mathbf{3}$
$\mathbf{2}$	2	0	0	$\mathbf{2}$
$\mathbf{3}$	7	0	0	$\mathbf{7}$
$\mathbf{4}$	2	0	0	$\mathbf{2}$
$\mathbf{5}$	0	2	0	$\mathbf{2}$
$\mathbf{6}$	0	0	4	$\mathbf{4}$
$\mathbf{7}$	0	0	5	$\mathbf{5}$
Totals	$\mathbf{1 4}$	$\mathbf{2}$	$\mathbf{9}$	$\mathbf{2 5}$

