RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION
B280/B

MATHEMATICS C

MODULE M10 - SECTION B

SPECIMEN

Candidates answer on the question paper.
Time: 30 mins
Additional Materials:
Tracing paper (optional)

Candidate
Name

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this section is 25 .
- Section B starts with Question 8.
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.

For Examiner's Use
Section B

	This document consists of 9 printed pages and 3 blank pages.		
SP (SLM) T12103	© OCR 2007	OCR is an exempt Charity	[Turn over

Volume of prism $=$ (area of cross-section) x length

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $\frac{4}{3} \pi r^{3}$

Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

3

8 In 1990 the population of animals in a colony was 640.
The population, P, t years after 1990 is given by the equation $P=640 \times 0.9^{t}$.
(a) By what percentage is the population changing each year?
(a)
(b) Work out an estimate of the population in 2015.
(b)

9 Two coastguard stations, P and Q , are 32 kilometres apart. Q is due south of P.
A boat, B, is on a bearing of 145° from P and 040° from Q .

Not to scale

Calculate the distance QB.

10 (a) (i) Draw the graphs of $x^{2}+y^{2}=4$ and $y=2 x+1$.

(ii) The graphs intersect at two points.

Write down the coordinates of these two points.
Give your answers correct to 1 decimal place.
(a)(ii) (\qquad , \qquad)
\qquad , \qquad [2]

10 (b) Solve, algebraically, these simultaneous equations. Give your answers correct to 2 decimal places.

$$
\begin{aligned}
x^{2}+y^{2} & =4 \\
y & =2 x+1
\end{aligned}
$$

(b) $x=$ \qquad $y=$ \qquad
$x=$ \qquad $y=$ \qquad

6

11 The histogram below shows the distribution of ages of people in Southampton in 2001.

The table shows the distribution of ages of people in Bournemouth in 2001.

Ages (t years)	Number of people (to the nearest hundred)
$0 \leq t<16$	27200
$16 \leq t<20$	7600
$20 \leq t<30$	24700
$30 \leq t<60$	61800
$60 \leq t<75$	23100
$75 \leq t<100$	18800

11 (a) On the grid below, complete the histogram to show the distribution of ages of people in Bournemouth in 2001.

(b) Tom wants to know which of the two places has the larger population.

Explain how he can tell from the histograms without doing any calculations.

(c) Make one comparison between the distribution of ages in Southampton and Bournemouth.

\qquad

12 This metal rubbish bin is the frustum of a hollow cone. It is open at the top and closed at the bottom.

Calculate the total surface area of the outside of the bin.

cm^{2}	$[4]$
$\mathbf{4}$	

Section B Total [25]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

BLANK PAGE

BLANK PAGE

BLANK PAGE

Oxford Cambridge and RSA Examinations General Certificate of Secondary Education MATHEMATICS C B280/B

MODULE M10 - SECTION B
Specimen Mark Scheme
The maximum mark for this paper is 25 .

\begin{tabular}{|c|c|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
a) \\
b)
\end{tabular} \& \[
\begin{aligned}
\& 10 \% \text { or }-10 \% \\
\& 45 \text { to } 46
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
2 \\
3
\end{tabular} \& M1 \& \(0.9^{25}\) \\
\hline 9 \& \& 19.0.... km \& \[
3
\]
\[
3
\] \& \begin{tabular}{l}
M1 \\
M2 \\
A1
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{QB} / \sin 35=32 / \sin 105 \\
\& (=33.1 \ldots) \text { or } \\
\& \mathrm{QB}=3 \sin 35 / \sin 105 \\
\& 18.6 \text { to } 19.0 \ldots
\end{aligned}
\] \\
\hline 10 \& a)

b) \& | i) circle radius 2 , centre $(0,0)$ |
| :--- |
| $y=2 x+1$ drawn |
| ii) $(0.5,1.9)$ |
| (-1.3, -1.5) |
| Sub $y=2 x+1$ in $x^{2}+y^{2}=4$ $x^{2}+4 x^{2}+4 x+1=4$ |
| $\frac{-4 \pm \sqrt{76}}{10}$; allow $\sqrt{16+60}$ or $\frac{-4 \pm \sqrt{4^{2}-4 \times 5 \times 3}}{2 \times 5}$ |
| (0.47, 1.94) |
| (-1.27, -1.54) | \& \[

$$
\begin{array}{r}
2 \\
1 \\
1 \\
1 \\
1 \\
\\
\text { M1 } \\
\text { M1 } \\
\text { M2 } \\
\\
\text { M1 } \\
\text { W1 } \\
\text { W1 } \\
11
\end{array}
$$

\] \& M1 \& | circle wrong radius or freehand circle |
| :--- |
| f.t. (i) dependent on M1 |
| [f.t. their quadratic for M1 but not $\mathrm{M} 2]$ |
| or W1 for $0.47 \ldots$ and $-1.27 \ldots$ |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& \begin{tabular}{l}
a) \\
b) \\
c)
\end{tabular} \& \begin{tabular}{l}
Histogram bars correct \\
Histogram with the larger area \\
e.g. More young people in Southampton or more older people in \(B\)
\end{tabular} \& 2

1

1
4 \& W1 \& 2 correct bars or 2 frequency densities
(2060/1540/752)

\hline 12 \& \& 3003 (....) or 956 π \& 4

4 \& \begin{tabular}{l}
W3

M1

M1

M1

A1

 \&

2748 to 2749 or 875π

$\pi \times 9 \times 45$ or 1272 ...

$\pi \times 16 \times 80$ or 4021 ...

$\pi \times 9^{2}$ or 254 ...

3003. (...) or 956π

[SC1 for $\pi \times 18 \times 45$ and $\pi \times 32 \times$ 80 or

SC2 if $\pi \times 18^{2}$ also seen]
\end{tabular}

\hline
\end{tabular}

Assessment Objectives Grid

Question	AO2	AO3	AO4	Total
8	3			3
9		3		3
10	11			11
11			4	4
12		4		4
Totals	14	7	4	25

