GCSE

Mathematics C (Graduated Assessment)

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
\checkmark	Correct
x	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks.
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-specific Marking Instructions

i. M marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
ii. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
iii. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ${ }^{\prime} 5^{2}+7^{2}$ '). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
iv. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
v. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- \quad seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.
vi. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
vii. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
viii. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.

Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
ix. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
x. Ranges of answers given in the mark scheme are always inclusive.
xi. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
xii. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1	(a)	$6 \frac{17}{21}$	3	M2 for $6+\frac{3}{21}+\frac{14}{21}$ or $\frac{66}{21}+\frac{77}{21}$ or $\frac{143}{21}$ or $\frac{17}{21}$ Or M1 for $\frac{3}{21}$ or $\frac{14}{21}$ or $\frac{66}{21}$ or $\frac{77}{21}$	
1	(b)	$\frac{6}{7}$	3	M1 for $\frac{22}{7} \times \frac{3}{11}$ oe and M1 for multiplying numerators and denominators of their fractions following attempt at converting mixed numbers to top-heavy fractions and inverting second fraction (only) or M1 for $\frac{66}{21} \div \frac{77}{21}$ without further correct progress	Unsimplified answers e.g. $\frac{66}{77}$ oe imply M2
2	(a)	-3 oe	3	M1 for $10 x+5=6 x-7$ or $2 x+1=1 \cdot 2 x-1 \cdot 4$ M1 for $4 x=-12$ oe or $0 \cdot 8 x=-2 \cdot 4$; FT their first step M1 for $x=\frac{b}{a}$ correct FT their $a x=b$ for $a \neq 1, b \neq 0$. Accept simplified improper fractions isw (not $\frac{-3}{1}$)	Check answer nfww

Question		Answer	Marks	Part marks and guidance	
2	(b)	$(x+4)(x+2)$ $[x=]^{-} 4 \text { or }^{-} 2$	M2 A1	M1 for factors giving two terms correct or for other versions of $(x \pm 4)(x \pm 2)$ or B1 correct solutions following M0 or B1 for solutions FT their $(x \pm \mathrm{a})(x \pm \mathrm{b})$	eg M1 for $(x+8)(x+1)$ Inner brackets essential Both solns required
3	(a)	$0 \cdot 4$ on first journey branch $0 \cdot 4.0 \cdot 6$ and $0 \cdot 4$ on second journey branches	1 1		Allow \% or fractional equivs
	(b)	$0 \cdot 16$ oe	2	M1 for 0.4×0.4 or FT their P(Tim, Tim) Marks may be earned at ends of branch	Allow \% or fractional equivs but allow only M1 for ans of $\frac{1 \cdot 6}{10}$ or other 'mixtures'
4	(a)	Triangle drawn with vertices at $(3,1)(4 \cdot 5,1)$ and $(3,4)$	3	B2 for two vertices correct or B1 for enlargement s.f. 1-5 drawn in wrong place or B1 for enlargement centre $(0,1)$ but wrong scale factor or SC2 for enlargement s.f. 1.5 from $(1,0)$	Tolerance a generous 2 mm - mark intent; (condone unruled lines) Not ${ }^{-1} 1.5$

Question		Answer	Marks	Part marks and guidance	
4	(b)	Translation (of shape, not mirror lines) of $\binom{-8}{0}$ or '8 to the left'	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \end{aligned}$	B1 for 'shift' or 'slide' B1 for '8' and B1 for 'left' If $\mathbf{0}, \mathbf{M} \mathbf{1}$ for correct reflection of their object in $x=3$ and M1 for correct reflection of their image in $x=-1$	Not move eg (${ }^{-} a, 0$) $a \neq 4$ implies 'left', $(8,0)$ implies ' 8 '. $(-8,0)$ scores B1 Even if just a line, condone unlabelled, bod of which is object, eg M2 if intermediate missing
5		$1 \cdot 7(2) \times 10^{5}$	2	M1 for final answer of $17(\cdot 2) \times 10^{4}$ or 172000 oe (e.g. 172×10^{3}) or 170000 oe or $1 \cdot 7(2) \times 10^{n}, n \neq 5$, or $a \times 10^{5}, a \neq 1 \cdot 7(2)$	
6	(a)	$x>2$	2	M1 for $5 x>10$ or for 2 found with equation or wrong inequality or for $x>\frac{2}{1}$	For 2 marks condone >2 or 2 on ans line if $x>2$ seen in body Condone $x \geq 2$ SC1 for $x>\frac{10}{3}$ or $3.33 \ldots$ following $3 x>10$

Question		Answer		Marks	Part marks and guidance	
6	(b)	$4 x+6 y=12$ or $15 x-6 y=102$ or $19 x=114$ or $x=6, y=-2$	$\begin{aligned} & 10 x+15 y=30 \\ & 10 x-4 y=68 \\ & 19 y=-38 \end{aligned}$	M1 M1 M1 A1	1st eqn mult by 2 or 5 2nd eqn mult by 3 or 2 (dep equal coeffts) Allow one error in each step for M marks dep on at least one previous M1 SC1 for correct answer and no supporting working.	Allow other multiples, even fractional. eg $5 x+7.5 y=15$ scores M2 Mark their best attempt Allow alt methods: e.g. M1 for making subject, M1 for subst and M1 dep for simplifying equation to x or $y=\ldots$. (allow one error at each stage)
7	(a)	C or $\frac{1}{2}(c+b) a$		1		
7	(b)	A or $\pi a b^{2}$		1		
8		1.5 oe		2	M1 for evidence of $\frac{y \text { difference }}{x \text { difference }}$ used implied by $1.5 x$, possibly seen in equation	eg $\frac{4}{2}$ seen if $4 \& 2$ clear from diagram
9	(a)	5716 to 5717 or 5720		3	M2 for 4800×1.06^{3} or M1 for at least one of 5088 and 5393 to 5494 or 1.06^{3}	Ans of 5664 implies M1 (for 5088) Ans of 6059 to 6060 implies M2 (4 years not 3) SC1 for 4800×1.6^{3} seen
9	(b)	4528 to 4529 or 4530		3	M2 for $4800 \div 1.06$ oe or M1 for division by 1.06 oe	For M1 or M2 condone use of their mult factor (mf) from (a) provided $1<m f<2$

Question			Answer	Marks	Part marks and guidance	
10	(a)		Min at $1 \cdot 0$ to 1.02 , max at 2.0 indicated LQ 1.3 to 1.32 , UQ 1.68 to 1.70 Median 1.49 to 1.51 within completed box	1 1 1	Vertical lines	Condone unruled
10	(b)	(i)	Yes, median (for K) is higher (than median for CT)	1	Accept Yes and quoted values: K 1.52 to 1.54 , CT 1.49 to 1.51 or FT condone average $=1.5$ etc (but not mean / mode)	See exemplars. In both (i) and (ii) ignore extra comments / figures unless contradictory / clearly incorrect
10	(b)	(ii)	Yes, IQR (for K) greater (than IQR for CT) or Yes, K range greater than CT range or No / can't say as ranges (about) the same	1	Accept Yes and quoted values: K IQR $=0.49$ to 0.53 , CT IQR $=0.36$ to 0.40 K range $=1.05, C T$ range $=1$	eg Yes, $0.51>0.37$ scores 1 Accept "box is longer" Accept "spread" throughout Accept "box plot is longer" Accept "box plots (about) the same"

APPENDIX

Exemplar responses for Q. $10 \mathrm{~b}(\mathrm{i})$

Response	Mark
N - the median is lower in CT than K	$\mathbf{0}$
Y - they had the bigger range	$\mathbf{0}$
Y - the median height is higher	$\mathbf{1}$
Y - Highest in K > highest in CT, $2.2>2$	$\mathbf{0}$
Y - IQR in K > IQR in CT	$\mathbf{0}$
Y - K avg is 1.52, CT avg is 1.5	$\mathbf{1}$
Y - CT is $1.5, \mathrm{~K}$ is 1.52 (no mention of median or average)	$\mathbf{1}$
Y - spread of box plot in wider	$\mathbf{0}$
N - the median is higher	$\mathbf{0}$ should be Y
Y - the overall average is higher	$\mathbf{0}$ no values

Exemplar responses for Q. 10b(ii)

Response	Mark
Y - they were higher tides	$\mathbf{0}$
Y - there is a bigger diff in the heights of waves	$\mathbf{1}$ accept for range $\mathbf{1}$ accept for spread - ignore higher
Y - in K they had higher tides where in CT they were less scattered	$\mathbf{0}$
Y - in K each quartile is a diff length showing variety, in C they are equal	$\mathbf{1}$ ignore wrong context
Y - there is a bigger range in the size of the waves	$\mathbf{0}$
N - CT is more equal when K has a bigger UQ	$\mathbf{1}$
Y - K had a larger width	$\mathbf{1}$ bod
Y - has a higher U / L quartile range	$\mathbf{1}$
N - both have a range of 1	$\mathbf{0}$
Y - the UQ is far away from the median	$\mathbf{1}$
Y - K ranged from 1.18 to 2.2 CT from 1 to 2	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
PARTCFTHE
CAMBRDGE ASSESSMENT
GMOMP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

