Mathematics C (Graduated Assessment)

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations

Annotation	Meaning
\checkmark	Correct
\boldsymbol{x}	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.

The $\mathbf{M}, \mathbf{A}, \mathbf{B}$ etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks
It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.
Subject-specific Marking Instructions
i. $\quad \mathbf{M}$ marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
ii. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
iii. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ' $5^{2}+7^{2 \prime}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
iv. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
v. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.
vi. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
vii. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
viii. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.
ix. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75 .
x. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
xi. Ranges of answers given in the mark scheme are always inclusive.
xii. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
xiii. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part marks and guidance	
1		6350	3	M2 for $4 \times 6020-(6980+5550+5200)$ Or M1 for 4×6020 or 24080 or $6980+5550+5200$ or 17730 or $\frac{6980+5550+5200+x}{4}=6020$	Condone 6.35 following 6350
2		One comment from each category: i. Faster times / slower times, a range of times (but not one interval), average time ii. Spread/consistency, number of students	2	B1 for each Examples: i. There are more faster times in Y11, More students took over 10 minutes in Y7, Y11 are (generally) quicker than Y7 ii. The two year groups have the same range of times	The two comments must be from different categories See list of exemplars
3	(a)	$4 \sqrt{5}$	2	M1 for $\sqrt{9} \times \sqrt{5}$ or $3 \sqrt{5}$ or $\sqrt{9 \times 5}$	
	(b)	$11-6 \sqrt{2}$	3	M1 for $9+\sqrt{2} \sqrt{2}-3 \sqrt{2}-3 \sqrt{2}$ M1 for 11 (or $9+2$) or $-6 \sqrt{2}$	Condone 3 terms correct, allow $\sqrt{2}^{2}$ $11-6 \sqrt{2}$ then $5 \sqrt{2}$ scores M2 only

Question		Answer	Marks	Part marks and guidance	
4	(a)	$\frac{10 x+5}{(x+2)(2 x-1)}$ oe single fraction	3	Mark final answer Accept $2 x^{2}+3 x-2$ as the denominator M2 for $\frac{6 x-3+4 x+8}{(x+2)(2 x-1)}$ Or M1 for $3(2 x-1)+4(x+2)$	For M2 expression can be two separate fractions with a common denominator Condone incorrect expansion of correct denominator For M1 ignore any denominators
	(b)	$\frac{x}{(x-4)}$ nfww	3	Mark final answer M1 for $x(x+3)$ M1 for $(x \pm 4)(x \pm 3)$	
5		Amplitude of 3 Passes through $(0,0)$ Period of 180°	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	from sine or cosine curve dep on positive sine curve dep on consistent period	For 3 marks curve must use complete range to 360 All marks dependent on a minimum of 1 wave
6	(a)	$b-c$	1		
	(b)	$\overrightarrow{\mathrm{AB}}=2 \overrightarrow{\mathrm{CD}} \text { oe }$	1	Condone vector $A B=2 \times$ vector $C D$ Do not accept $A B=2 C D$	
7	(a)	$\begin{aligned} & \mathrm{ON}=\mathrm{ON}: \text { common } \\ & \mathrm{OA}=\mathrm{OB}: \text { radii (of the circle) } \\ & \text { SSS } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	or $\mathrm{OA}=\mathrm{OB}$: radii of the circle $\angle \mathrm{OAN}=\angle \mathrm{OBN}: \triangle \mathrm{OAB}$ is isos SAS If $\mathbf{0}$ out of $\mathbf{3}$, award $\mathbf{S C 1}$ for two correct statements	SSS and SAS dependent on correct statements (ignore reasons)
	(b)	$\angle \mathrm{ONA}$ is a right angle	1	Ignore extra statements	

Question		Answer	Marks	Part marks and guidance	
10		$\begin{aligned} & x^{2}+(x-2)^{2}=34 \\ & x^{2}+x^{2}-4 x+4=34 \\ & 2 x^{2}-4 x-30(=0) \\ & \text { or } x^{2}-2 x-15(=0) \text { nfww } \\ & (x-5)(x+3) \text { oe } \\ & x=5 \text { and } x=-3 \\ & y=3 \text { and } y=-5 \end{aligned}$	M1 M1 A1 M1 B1 B1	$\begin{aligned} & \text { Also }(y+2)^{2}+y^{2}=34 \\ & y^{2}+4 y+4+y^{2}=34 \\ & 2 y^{2}+4 y-30=0 \quad \text { nfww } \\ & (y-3)(y+5) \end{aligned}$ or correct substitution in formula FT their factorisation $=0$ or formula for 2 values of x or 2 values of y FT their values of x using $y=x-2$ If $\mathbf{B 0}$ then SC1 for $x=5, y=3$ or for $x=-3, y=-5$	Condone one error: 2 of the 3 terms of $x^{2}-4 x+4$ or $y^{2}+4 y+4$ must be correct (Terms do not all need to be on the same side) FT from a 3-term quadratic, formula: M1 for $\frac{2 \pm \sqrt{64}}{2}$ or better, FT their equation
11	(a)	$f(x)$ translated 3 units down	1		
	(b)	$f(x)$ translated 3 units left	1		
	(c)	$y=2 f(x)$ circled	1		

Question		Answer	Marks	Part marks and guidance	
12		$\frac{11}{30} \text { oe }$	4	M3 for $\frac{3}{6} \times \frac{1}{5}+\frac{2}{6} \times \frac{3}{5}+\frac{2}{6} \times \frac{1}{5}$ or $\frac{3}{6} \times \frac{1}{5}+\frac{2}{6} \times \frac{4}{5}$ Or M2 for $\frac{3}{6} \times \frac{1}{5}$ and $\frac{2}{6} \times \frac{3}{5}$ and $\frac{2}{6} \times \frac{1}{5}$ or $\frac{3}{6} \times \frac{1}{5}$ and $\frac{2}{6} \times \frac{4}{5}$ or the sum of any two of the three products or two-way table (6 by 6) with 11 of 30 cells identified Or M1 for any one of the products seen or two-way table (6 by 6) with 11 of 36 cells identified or tree with relevant branches identified and labelled	Accept cancelled versions or decimals rot to 2dp or better throughout for all M marks SC3 for $\frac{11}{30}$ from probability that the second card is higher With replacement, $\frac{11}{36}$, scores M2 for complete method (see M3) Or M1 for partial method (see M2) And A1
13	(a)	$(x-3)^{2}-2$ or $(x-3)^{2}+{ }^{-} 2$	3	M1 for $(x-3)^{2}$ oe or $x^{2}-3 x-3 x+9$ M1 for $7-3^{2}$ or $7-9$ or ${ }^{-} 2$ or 7 - (their $a)^{2}$	
	(b)	-2	1	or FT their constant term	Dep on expression of the correct form

APPENDIX

Exemplar responses for question 2

Response	Mark awarded
More Y7s took longer than Y11s.	1
The amount of frequency density for 2-6 minutes for both graphs is the same.	0
The graph for Y11 shows that most students took 8-10 mins whereas the Y7s had 12-14 mins. This shows that Y11s were better at completing the puzzle.	1
Y 7 and 11 had the same number of students per minute completing the puzzle between 2-4 and 16-20m.	0
All students completed the puzzle between 2 and 20 minutes.	0
They both started and finished at the same time.	0
The second group took longer during the 8-10 mins but overall they used less students per minute.	0
Y7 took longer to complete the puzzle.	1
The Y11 students had a higher fd from 8-10 mins than the Y7 students.	0
The Y 7 students had a higher range of students per minute finishing the puzzle than the Y11 students.	0
It took mainly 8-10 minutes for most Y11 to complete the puzzle	0
Majority of Y7 students took a longer time of more than 10 mins to 16 mins.	0
All the students in both year groups took 2 to 20 mins to complete the puzzle, the spread of data is equal.	1
The distribution of Y 7 is bigger than Y 11 as they took longer to complete the puzzle.	1
The time it took both years were equal but Y 11 had a bigger distribution $8>10$ and Y 7 had a consistent time and $f d$ of $Y 7$ from 10 mins and onwards was higher than Y11.	1
The Y11s have more people on a lower time than Y7.	1
Both graphs have a equal distance from 2 to 20 mins.	0
The majority of Y7s took between 10-16 mins whereas Y11 students were 6-10 mins.	0
Year 7 graph is more evenly distributed	0
The majority of year 11 completed the puzzle in a shorter time to the majority of year 7	1
More year 11s finished the puzzle quicker than year 7s	1
Both year 11s and year 7s had the same range of times	1
More year 7 students completed the puzzle than year 11 students	1
On average year 7 students took longer than year 11 students	1
The frequency density on the year 11 graph between 8-10 mins is higher than year 7	0
The average of the year 7 graph is higher than the average of year 11 graph	1
Class widths are the same	0
It took more year 11 students to complete the puzzle in 8-10 minutes than it did year 7 students	0
On average year 7s took longer than year 11s	1

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

