Mathematics C (Graduated Assessment)

General Certificate of Secondary Education
Unit B280: Module M10 (Sections A\&B)

Mark Scheme for March 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail:
publications@ocr.org.uk

GCSE Mathematics C (Graduated Assessment) - J517
 Units B272 to B280

1. Mark strictly to the mark scheme.
2. Make no deduction for omission of units except as indicated on the mark scheme (although if this leads to a later error this will of course be penalised).
3. Work crossed out but not replaced should be marked.
4. $\quad \mathbf{M}$ (method) marks are not lost for purely numerical errors.

A (accuracy) marks depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
W (workless) marks are independent of M (method) marks and are awarded for a correct final answer or a correct intermediate stage.
5. Subject to 4, two situations may be indicated on the mark scheme conditioning the award of A marks or independent marks:
i. Correct answer correctly obtained (no symbol)
ii. Follows correctly from a previous answer whether correct or not ("FT" on mark scheme and on the annotations tool).
6. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
7. Always mark the greatest number of significant figures seen, even if this is then rounded or truncated on the answer line, unless the question asks for a specific degree of accuracy.
8. i. Allow full marks if the correct answer is seen in the body and the answer given in the answer space is a clear transcription error, unless the mark scheme says 'mark final answer' or 'cao'.
ii. Allow full marks if the answer is missing but the correct answer is seen in the body.
iii. Accuracy marks for an answer are lost if the correct answer is seen in the working but a completely different answer is seen in the answer space. Method marks would normally be given.
9. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{W} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{W} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.
10. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work.
11. For answers scoring no marks, you must either award NR (no response) or 0 , as follows:

Award NR if:

- Nothing is written at all in the answer space
- There is a comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

Award 0 if:

- There is any attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not.

12. Where a follow through (FT) mark is indicated on the mark scheme for a particular part question, you must ensure that you refer back to the answer of the previous part question.
13. In cases where there is clear evidence that a calculator has been used in section A, mark the script as normal then raise an exception.
14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Abbreviations

The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- Where you see oe in the mark scheme it means or equivalent.
- Where you see cao in the mark scheme it means correct answer only.
- Where you see soi in the mark scheme it means seen or implied.
- Where you see www in the mark scheme it means without wrong working.
- Where you see rot in the mark scheme it means rounded or truncated.
- Where you see seen in the mark scheme it means that you should award the mark if that number/expression is seen anywhere in the answer space, including on the answer line, even if it is not in the method leading to the final answer.
- Where you see figs 237, for example, this means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point e.g. 237000, 2.37, 2•370, $0 \cdot 00237$ would be acceptable but 23070 or 2374 would not.

Section A

1		$\frac{x-4}{3(x+2)} \text { or } \frac{x-4}{3 x+6}$ as final answer www	3	M1 for $(x-4)(x-2)$ seen M1 for $3(x+2)(x-2)$ or $(3 x+6)(x-2)$ or $(x+2)(3 x-6)$ seen	allow Ms even if expressions 'spoilt' by subsequent wrong 'cancelling' or 'solving' etc
2	(a)	$6 \sqrt{5}$ www	2	allow 2 for $6 \times \sqrt{5}$ 1 for $3 \sqrt{20}$ or $2 \sqrt{45}$ or $\sqrt{36 \times 5}$ or $\sqrt{36} \times \sqrt{5}$ or $\sqrt{2} \times \sqrt{2} \times \sqrt{3} \times \sqrt{3} \times \sqrt{5}$ seen	0 for eg $\sqrt{9 \times 20}$ - not sufficient since still two steps to go
	(b)	$11+5 \sqrt{3} w w w$	2	M1 for at least 3 terms correct of $14-2 \sqrt{ } 3+7 \sqrt{ } 3-3$ oe	middle two terms may be combined for M1; ie $5 \sqrt{ } 3$ counts as two terms
3		$2 x^{2}-5 x-1=2 x-4$	M1	or attempt at eliminating y by subtraction	or M1 for eliminating x, condoning one error (which may be repeated if it applies to more than one term) $y=2\left(\frac{y+4}{2}\right)^{2}-5\left(\frac{y+4}{2}\right)-1$
		$2 x^{2}-7 x+3[=0]$	M1	for attempt to rearrange to zero (condone one error); implies previous M1	allow M1 M1 for $y=2 x^{2}-7 x+3$
		$(2 x-1)(x-3)$	M2	for correct factorising or use of quadratic formula or completing square (FT their eqn); M1 if one error)	eg M2 for $\frac{7 \pm \sqrt{25}}{4}$ or FT; M1 for subst their eqn in formula with up to one error FT (as in q8) eg M1 for factors which would give two terms of quadratic correct or for sign error
		$\begin{aligned} & x=1 / 2, y=-3 \\ & x=3, y=2 \end{aligned}$	W1 W1	or W1 for both x values and W1 for both y values; marking to benefit of candidate	
				for full 6 marks the working must be totally correct	if more than one attempt, mark the best

Section A Total: 25

Section B

7	(a)	'since the 1% was not a \% of the same amount each month' oe	1	or $0.99^{12}=0.886 \ldots \Rightarrow 11.4$ or $11.36 . . \%$ [decrease] (or less than 12\%) or calculation of both $300(000) \times 0.99^{12}$ and $300(000) \times 0.88$	0 for just 'it is less than 12' with no reasoning condone 'the \% is compounded' oe
		(b) 265915 to 265920 or 265900 or 266000 www	3	M2 for 300 (000) $\times 0.99^{12}$ or for digits 265915 to 265920 with wrong dp Or M1 for 297 (000) and 294 (030) and digits 291089 to 291090 seen SC2 for 268600 to 268605 or for 263250 to 263260 SC1 for $300(000) \times 0.99^{11}$ or for $300(000) \times 0.99^{13}$	
8		$\frac{-7 \pm \sqrt{7^{2}-4 \times 3 \times-4}}{2 \times 3} \text { o.e. }$ $0.47 \text { or }-2.81$	M1 A2	condone one error or $\left(x+\frac{7}{6}\right)^{2}=\frac{4}{3}+\left(\frac{7}{6}\right)^{2}$ o.e., condoning two errors A1 for one solution or for both to 1 or more dp (for other methods eg trace and zoom on graphics calculator or trial and improvement allow W1 for one soln, W3 for both	allow eg a substituted wrongly twice as one error; allow short division line as one error; allow one error in quoted formula A1 for $0.4748 \ldots$ and $-2 \cdot 808 \ldots$ rounded to 1 dp or to 3 or more dp; or A1 for -0.47 and 2.81
9	(a)	8	1		
	(b)	34	1		

(c) 'average weights about the same' oe
correct supporting evidence:

London Irish have greater range/ have more varied weights oe [eg weights of LW are more consistent]
correct supporting evidence:
eg accept 'they have a player weighing less than 80 kg and two weighing over 130 kg and all London Wasps are between 80 and 125 kg '

For ranges: allow LI 55-60 and LW 45 (or less with comment) or mention of LI: lower end 75 to 80, upper end 135 (or less with comment)
LW: lower end 80 , upper end 125 (or eg mention of may be more than 80 and less than 125)

M1
allow 'median of LI [slightly] less' if consistent with their correct medians

A1 median LW = 102-103 (by interpolation) median LI = 101-103

M1
allow 'similar' only if IQR used correctly

A1 For IQRs:
By interpolation, LW LQ = 91-92
$U Q=113-114$
LI LQ = $89-90$
$U Q=112-113$
$I Q R=22-24$
allow refs to histogram and cf graph oe instead of LW and LI
allow eg LW player is second smallest in 100-110 group; condone estimate of mean of LW = 102(•4...) found and compared with median of LI
if modal classes used, numerical evidence is required:
allow 'LW heavier' only if comparison of modal classes: LW 110-120, LI 100-110 (accept 100-105 or 105-110);
allow 'LI heavier' if comparison of modal classes: LW 85-90 and LI 100-110

M0 for comparison of modal class and
mean/median
must be statement about lower end of range as well as top end eg A1 for 'both start at 80 but LI has players over 125 and LW hasn't'

NB if no evidence seen in statements, scroll down to look for evidence by graphs, for both average and range

SC1 for correct ranges for both teams with no comparison

10		$\begin{aligned} & 5 \cdot 1^{2}+3.7^{2}-2 \times 5 \cdot 1 \times 3.7 \times \cos 108 \\ & 51 \cdot 2 \text { to } 51 \cdot 4 \text { or } \sqrt{ }(51 \cdot 2 \text { to } 51 \cdot 4) \\ & {[A C=] 7.155 \text { to } 7.17 \text { or } 7.2} \\ & \text { extra distance }=1.6 \text { or } 1.63 \text { or } 1.64 \end{aligned}$	M1 A1 A1 A1	condone one error implies previous M1 may be implied by correct final answer allow W3 for correct value for AC www or W4 for correct value for extra distance www	eg M1 if correct except for sign error or a letter appearing for the angle instead of 108
11	(a)	$\overrightarrow{\mathrm{OB}}=\mathbf{a}+\mathbf{c}$ or $\overrightarrow{\mathrm{OP}}=\frac{2}{3}(\mathbf{a}+\mathbf{c})$ oe $-\mathbf{a}+\frac{2}{3}(\mathbf{a}+\mathbf{c})$ or $\mathbf{c}-\frac{1}{3}(\mathbf{a}+\mathbf{c})$ or $-\mathbf{a}+\frac{2}{3} \overrightarrow{O B}$ or $\mathbf{c}-\frac{1}{3} \overrightarrow{O B}$ oe	1	or $\overrightarrow{\mathrm{BO}}=-\mathbf{a}-\mathbf{c}$ or $\overrightarrow{\mathrm{BP}}=-\frac{1}{3} \mathbf{a}-\frac{1}{3} \mathbf{c}$ oe second mark does not imply first without more evidence If 0 , allow SC1 for $\frac{2}{3} \mathbf{c}-\frac{1}{3}$ a route shown clearly on diagram	condone lack of vector notation accept longer equivalent routes allow 2 for using this route with better justification eg $A F: F B=O P: P B=2: 1$ etc where F is on $A B$
	(b)	c $-\frac{1}{2} \mathbf{a}$ or $-\mathbf{a}+\mathbf{c}+\frac{1}{2} \mathbf{a}$ oe isw	1		
	(c)	comment that $\overrightarrow{\mathrm{AQ}}=k \overrightarrow{\mathrm{AP}}$	1	dep on $\overrightarrow{\mathrm{AQ}}$ correct	$\text { eg } \overrightarrow{\mathrm{AQ}}=\frac{3}{2} \overrightarrow{\mathrm{AP}} \text { or } \overrightarrow{\mathrm{AP}}=\frac{2}{3} \overrightarrow{\mathrm{AQ}}$

12
One branch method:
$P\left(p^{\prime}, p^{\prime}\right)=\frac{17}{25} \times \frac{16}{24}$ oe ($=\frac{34}{75}$ oe) $P($ at least one $p)=1-P\left(p^{\prime}, p^{\prime}\right)$

$$
\frac{328}{600} \text { or } \frac{41}{75} \text { oe }
$$

or three branch method:
M1 M1 for $P(p, p)=\frac{8}{25} \times \frac{7}{24}$ oe $\left(=\frac{7}{75}\right.$ oe)
M2 and M1 for $P\left(p, p^{\prime}\right)=\frac{8}{25} \times \frac{17}{24}$ oe ($=\frac{17}{75}$ oe) or
for $P\left(p^{\prime}, p\right)=\frac{17}{25} \times \frac{8}{24}$ etc
and M1 for $P($ a least one $p)=P(p, p)+P\left(p^{\prime}, p\right)+$ P(p,p') FT their probs

A1 allow W4 for $\frac{41}{75}$ oe www
If replacement. SC2 for $1-\left(\frac{17}{25}\right)^{2}=\frac{336}{625}$ or
$\left(\frac{8}{25}\right)^{2}+\frac{136}{625}+\frac{136}{625}=\frac{336}{625}$ oe, and similarly for the 5 -branch method

Section B Total: 25

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

