GCSE

Mathematics C

General Certificate of Secondary Education J517

Mark Schemes for the Units

March 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Mathematics C (J517)
 MARK SCHEMES FOR THE UNITS

Unit/Content Page
Marking Instructions \& Abbreviations 1
B272 Module Test M2 3
B273 Module Test M3 5
B274 Module Test M4 8
B275 Module Test M5 10
B276 Module Test M6 13
B277 Module Test M7 15
B278 Module Test M8 19
B279 Module Test M9 23
B280 Module Test M10 27
Grade Thresholds 29

Marking Instructions \& Abbreviations

Marking Instructions

1 Mark strictly to the mark scheme.
2 Make no deduction for omission of units except as indicated on the mark scheme.
3 Work crossed out but not replaced should be marked.
4 M (method) marks are not lost for purely numerical errors.
A (accuracy) marks depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
W (workless) marks are independent of M (method) marks and are awarded for a correct final answer or a correct intermediate stage.

5 Subject to 4, two situations may be indicated on the mark scheme conditioning the award of A marks or independent marks:
(i) Correct answer correctly obtained
(ii) Follows correctly from a previous answer whether correct or not ("ft").

6 As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).

7 Always mark the greatest number of significant figures seen, even if this is then rounded or truncated on the answer line, unless the question asks for a specific degree of accuracy.

8 If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. If the answer is missing, but the correct answer is seen in the body allow full marks. If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would normally be given.

9 Where there is clear evidence of a misread, a penalty of 1 mark is generally appropriate. This may be achieved by awarding M marks but not an A mark, or awarding one mark less than the maximum.

10 For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work.

11 For answers scoring no marks, you must either award NR (no response) or 0 , as follows:
Award NR (no response) if:

- Nothing is written at all in the answer space
- There is any comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

Award 0 if:

- There is any attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not.

12 Where a follow through (ft) mark is indicated on the mark scheme for a particular part question, you must ensure that you refer back to the answer of the previous part question.

13 In cases where there is clear evidence that a calculator has been used in section A, mark the script as normal and then raise an exception (suspected malpractice).

14 Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Abbreviations

The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- Where you see oe in the mark scheme it means or equivalent.
- Where you see isw in the mark scheme it means ignore subsequent working.
- Where you see www in the mark scheme it means without wrong working.
- Where you see cao in the mark scheme it means correct answer only.
- Where you see soi in the mark scheme it means seen or implied.
- Where you see rot in the mark scheme it means rounded or truncated.
- Where you see seen in the mark scheme it means that you should award the mark if that number/expression is seen anywhere in the answer space, including on the answer line, even if it is not in the method leading to the final answer.
- Where you see figs 237, for example, this means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point e.g. 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.

B272 Module Test M2

Section A

1	(a)	2[.0/.00/.000] or two	1	
	(b)	2.3	1	
	(c)	(£)60	2	M1 for either of 8×5 or 40 or "number" +20 seen
	(d)	(i) Bottom right phone indicated with a cross	1	
		(ii) Middle left phone circled	2	M1 for middle right phone
	(e)	(i) 2	1	
		(ii) 3	1	
	(f)	75	2	M1 for 160-85 soi
	(g)	(i) 4	1	
		(ii) F(riday)	1	Condone 13
2	(a)	$\begin{aligned} & \mathrm{A} \\ & \mathrm{R} \\ & \mathrm{~A} \\ & \mathrm{O} \end{aligned}$	2	W1 for 2 or 3 correct
	(b)	33° to 37°	1	
3	(a)	$E A C F B D$	2	W1 for 1 correct pairing CF, FB, BD
	(b)	(i) 'Two dominoes have 0.25 on' or similar	1	
		(ii) X about 1/6 along	1	$\pm 2 \mathrm{~mm}$
		(iii) Y about halfway along	1	$\pm 2 \mathrm{~mm}$
4		43 www	4	M2 for 10 seen or M1 for both 55 and 65 seen AND M1 for 10×4.3 (may be implied by list with correct number of elements)

Section A Total: 25

Section B

5	(a)	$\begin{array}{ll} \hline \checkmark & x \\ x & \checkmark \\ x & \end{array}$	2	1 for 3 or 4 correct
	(b)	C and E	2	1 for each correct or for both correct and an extra
6	(a)	(i) $22 \quad 24 \quad 26$	1	Must have all three no extras
		(ii) 24	1	
	(b)	1.55	1	
	(c)	Left Left Right Right Left	4	W3 for four correct OR W2 for three correct OR W1 for two correct
7	(a)	3 to 4	1	
	(b)	(i) Correct	1	Unambiguous indication
		(ii) $-5\left({ }^{\circ} \mathrm{C}\right)$	1	
8	(a)	19	2	M1 for $\div 4$ or $\times 25$ soi
	(b)	(i) 4 Mention of 'rounding up' oe	1	Accept 304 or 228 seen or for "4 over"
		(ii) Option 4 indicated	1	Unambiguous indication (may be indicated within the column)
	(c)	(i) 49	1	
		(ii) ' 4 goes into 60 exactly' oe	1	
	(d)	(i) 50	2	M1 for $500 \div 10$ soi
		(ii) 25 seen oe	2	M1 for 20 seen or implied or "(takes longer so) slower" isw

Section B Total: 25

B273 Module Test M3

Section A

1	(a)	135.6(0)	1	
	(b)	(0).249(0)	1	
2	(a)	8	1	
	(b)	$5 \times(4-3)$	1	
3	(a)	(i) 36	1	
		(ii) 4	1	Accept -4
	(b)	7 squares indicated	1	W1 for 7 seen in working space (but squares not shaded) OR SC1 for 7 squares shaded in more than one large square
4	(a)	(i) 07:50 oe	1	Eg 7:50 or (0)7.50 or (0)7.50 am or (0)7:50 am or (0)750 or "ten to eight (in the morning)".
		(ii) $10: 05 \mathrm{oe}$	2	W1 for (0)9:05 oe or (0)9:20 oe or (0)965 oe seen OR SC1 for (0)8:05 oe
	(b)	24	2	W1 for $96 \div 4$ seen or figs 24 or 32
5	(a)	525	2	M1 for $1000-475$ soi by 675 or 535 or figs 525
	(b)	1 to 2	1	
6	(a)	Not all lengths have doubled OR An appropriate centre of enlargement comment	1	The width(s) of the column/rows have not doubled oe There is no centre of enlargement (If rays drawn)
	(b)	Correct shape, any position	2	W1 for one line $\times 3$ with correct orientation or "correct" enlargement, incorrect scale factor If $\mathbf{0}$ scored, SC1 for top centred and height 6 squares
7	(a)	1	1	Allow "certain" oe.
	(b)	$\frac{2}{3}, 66-67 \%,(0) .66 \ldots-(0) .67$	2	W1 for 2 seen as numerator or 3 seen as denominator OR SC1 for 60% or 70% or (0). 6 or (0). 7
	(c)	(i) 6 www	3	M1 for 30 seen M1 for attempt to divide their 30 by 5
		(ii) The same (as (c)(i)) or 6	1	

Section B

8	(a)	Valid reference to Brian's height and a multiple	1	"It's only 2 to 3 times his height" or "tt's not 5 to 7 times his height" or "The dinosaur is nearly 3 times his height and Brian is not nearly 4 m tall" wo for "Brian's under 2 m tall"
	(b)	1.8	2	W1 for 0.9 or 180 or 18 seen
9	(a)	9	1	
	(b)	7	1	
	(c)	2.5 oe	1	
10	(a)	40	1	
	(b)	4	1	
11	(a)	3.75 to 4	2	M1 for (7.5 to 8) $\div 2$ oe isw (attempt at unit conversion eg $\times 100$) OR W1 for 7.5 to 8 soi by 15 to 16
	(b)	3.2	2	M1 for 1.6×2 oe soi by 2.12 isw (attempt at unit conversion eg $\times 100$)
12	(a)	70	2	M1 for $105 \div 1.5$ or figs 7
	(b)	75	2	M1 for 50×1.5 or figs 75
13	(a)	(i) B	1	
		(ii) 3	1	
	(b)		2	W1 for one symbol correctly placed with at most one further error Ignore orientation of the square on the face

14	(a)	$\begin{aligned} & \hline 9 \\ & 5 \\ & 8 \\ & 2 \\ & 6 \end{aligned}$	2	W1 for 3 correct or $9,5,8,2$, 6 seen but not in frequency column isw or sensible attempt to tally with at least one five bar gate correct
	(b)	Correct or ft their frequencies	2	W1 for 3 "correct" bars or 5 correct heights in correct sequence but not aligned with names.
	(c)	"Yes" because highest bar (oe)	1 ft	Eg "That name appeared the most" ft their chart wo for "Yes" with no reason

Section B Total: 25

B274 Module Test M4

Section A

1	(a)	$\begin{array}{llll}0.04 & 0.3264 & 0.403 & 0.43\end{array}$	2	W1 for three in the correct order or for fully correct reversed order
	(b)	20	1	
2		4704 www	3	M1 for a complete and correct method W1 for 4410 or 294 or 3200 or 1280 or 224 or 4 out of the 6 squares in the Gelosia/lattice method or 4 out of the 6 boxes in the partitioning method SCO for 4704 with no working
3	(a)	5	1	
	(b)	4	1	
	(c)	20	1	
4		$\begin{aligned} & \hline 5 \\ & 18 \\ & 30 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
5	(a)	$\frac{1}{8} \text { oe }$	1	Accept 12.5% or 0.125
	(b)	$\frac{5}{8} \text { oe }$	1	Accept 62.5% or 0.625
	(c)	$\frac{8}{8}$ or 1 oe	1	Accept 100\%
6		$\begin{array}{lll}4 & 1\end{array}$	3	W1 for each correct answer Condone 0 instead of 1
7	(a)	40	1	
	(b)	It stopped	1	Accept any correct interpretation such as "at rest", "stationary" and ignore any extra comments Do not accept "it stays the same distance"
	(c)	1008 oe	1	eg 8 past ten
8	(a)	(i) $r+p$	1	Or $p+r$
		(ii) $3 p$	1	Allow $p+p+p$ oe and condone $p 3,3 \times p$
	(b)	Correct drawing: $2^{\prime} r^{\prime}$ bricks and $1^{\prime} p{ }^{\prime}$ brick in any order	1	The ' r ' brick should be shorter than the ' p ' brick (or shaded) No gaps between bricks One line of bricks only Accept rectangles
9		Correct reflection	1	$\pm 2 \mathrm{~mm}$ by eye

Section A Total: 25

Section B

10	(a)	$(-2,5)$ marked			1	
	(b)	-2,5			1	Correct answer or ft their plotted D
11	(a)	16 is not a factor of 60			1	Accept any equivalent statement such as "only 5 (of 5 and 16) goes into 60 " or " 16 does not go into 60"
	(b)	4 and 15 or 1 and 12			2	W1 for any pair that satisfies one of the rules, except 5 and 16
12	(a)	22			1	
	(b)	Add 4			1	Condone "up in fours" (4 and direction)
	(c)	All the numbers are even or it is an odd (number)			1	Allow any correct explanation, eg it will go $62 \quad 66 \quad 70$
13	(a)	(i) 23			1	
		(ii) 6			1	
	(b)	(i) 10			3	M1 for adding up the numbers (70) M1 for dividing by 7
		(ii) (The temperatures) were lower in August			1	ft their mean for August Allow any correct interpretation, eg August has a larger spread / inconsistent / variety or July is warmer
14	(a)	Correc 25 8	$\frac{\text { wers, }}{\frac{0.47}{0.68}}$	rectly placed	4	W1 for 11.75 W1 for a correct answer to $17 \cdot 19$ - 'their 11.75 ' or 5.44 M1 for an attempt at 'their $5 \cdot 44$ ' $\div 8$ or figs 68 A1ft for 0.68 or 68p or correct follow through from 'their 5•44' rot
	(b)	12			2	M1 for 3 soi by $900 \div 300$
15		$39 \cdot 01$ or 39.0 or 39 www cm^{2}			$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for 8.3×4.7 or figs 3901 or 39 seen
16		52			2	M1 for 180 - 2×64 or 64 seen clearly marked on the diagram in the other base angle or 128 seen

Section B Total: 25

B275 Module Test M5

Section A

1	(a)	1000	1	
	(b)	-2	1	
	(c)	-20	1	
	(d)	$\frac{5}{24} \text { oe isw (cancelling) }$	2	M1 for 5 seen as numerator or 24 as denominator in final answer isw (cancelling)
2	(a)	180°	1	
	(b)	Correctly marked	1	
3	(a)	$7 p$	1	
	(b)	$14 a+2 b+3 c$	3	W2 for 2 correct terms OR W1 for 1 correct term OR SC2 for correct answer followed by 19abc OR SC1 for 2 correct terms followed by 19abc
4	(a)	600	1	
	(b)	$587 \cdot 68$	1	
	(c)	50000	1	
	(d)	(i) $30 \times 20=600$	2	W1 for 30 and 20 or 600 or 30 and 18 or 540 or 28 and 20 or 560
		(ii) Bigger: must refer to rounding up	1	Examples of candidate responses scoring 1 mark: "I rounded the numbers higher" "You're adding the price up by 1 p so it's gonna increase every time you times it" "I added the money and more people on so that would of made it a bit bigger"
5	(a)	(i) $115^{\circ}-119^{\circ}$	1	
		(ii) $31-33 \mathrm{~km}$	2	W1 for 7•8-8.2 seen. OR M1 for 7 to 9 inclusive $\times 4$
	(b)	Correct position indicated	2	W1 for bearing marked $55-59^{\circ}$ W1 for distance 6-3-6.7 cm marked
6	(a)	11 other correct combinations (condone repeat of MA only)	2	W1 for 8 other correct combinations condone errors/repeats
	(b)	$\frac{1}{12}$	1	ft their total

Section B

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& (a) \& 45 \& 1 \&

\hline \& (b) \& 9 \& 1 \&

\hline \& (c) \& 7 \& 2 \& W1 for $56=8 x$ or $\frac{56}{8}$ or 8×7

\hline 8 \& \& $$
213 \cdot 12
$$
$$
\mathrm{cm}^{3}
$$ \& 2

1 \& | M1 for $12.8 \times 4.5 \times 3.7$ |
| :--- |
| or 57.6×3.7 |
| or 16.65×12.8 |
| or 47.36×4.5 |
| or figs 2131(2) |

\hline 9 \& \& A by £ $£ 0$ www \& 4 \& | W3 for 320 seen for shop A OR |
| :--- |
| W2 for 80 |
| Or M1 for 400×0.2 oe |
| M1 for 400 - their 80 |

\hline 10 \& (a) \& (i) 25 \& 1 \&

\hline \& \& (ii) 10% or $36\left({ }^{\circ}\right.$) linked to 72 \& 1 \& | Examples of candidate responses scoring |
| :--- |
| 1 mark: |
| " 36° is 10% of pie chart and 10% of 720 is 72" |
| "It is 10% of 720 so it is 72 people" |
| "Because $36 \times 2=72$ " |
| Examples of candidate responses scoring 0 marks: |
| "As its 10\%" |
| " 36° is 10% of 360 " (not linked to 720) |
| "I can tell because its 10% of 720 " |

\hline \& \& (iii) 252 or 253 or 254 \& 3 \& | W1 for 34-36 or 124-128 |
| :--- |
| M1 for $720 \times$ their 0.35 or $2 \times$ their 126° OR |
| SC3 for 34% and 244 or 245 cars or 36% and 259 cars |

\hline \& (b) \& $0 \cdot 65$ oe \& 1 \&

\hline 11 \& \& Fully correct triangle with correct arcs \& 3 \& | Arcs must intersect |
| :--- |
| W2 for fully correct triangle without arcs OR |
| W1 for $A C$ or $B C$ correct length |

\hline 12 \& (a) \& $\begin{array}{llll}-1 & 2 & 5 & 8\end{array}$ \& 1 \&

\hline \& (b) \& | Points plotted |
| :--- |
| Ruled straight line through correct points | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] \& ft their points $\pm 2 \mathrm{~mm}$ by eye

\hline
\end{tabular}

| 13 | (a)Correctly refers to one of the bullet
 points not being a property of a
 trapezium | $\mathbf{1}$ | Examples of candidate responses scoring
 1 mark:
 "There are 2 sides that are shorter than
 the other sides" (implies 4 sides not
 equal)
 "A trapezium has only one pair of parallel
 sides"
 "Not all 4 sides are equal on a trapezium"
 "Not all 4 angles are equal"
 "All the opposite sides are not parallel"
 (borderline acceptable) |
| :--- | :--- | :--- | :--- | :--- |
| Examples of candidate responses scoring | | | |
| (b) | Square | " marks:
 "Because all 4 sides are equal"
 "A trapezium only has 1 line of symmetry"
 "All four sides are different" | |

Section B Total: 25

B276 Module Test M6

Section A

1	(a)	5 correct points plotted	2	W1 for 2 correct points plotted
	(b)	No correlation	1	Accept, eg "It's not a negative or a positive scatter diagram" or "You can't draw a line of best fit"
2	(a)	24 cao	1	
	(b)	36 cao	1	
3	(a)	$\frac{5}{16}$ final answer	2	W1 for $\frac{15}{48}$ oe seen
	(b)	Any fraction between $\frac{2}{3}$ and $\frac{3}{4}$	W2	W1 for $\frac{8}{12}$ and $\frac{9}{12}$ soi or other common denominator used OR SC1 for answer of a decimal between 0.666 and 0.75
4	(a)	6420	1	
	(b)	Points correctly plotted Ruled line through $(0,6)$ and $(3,0)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ft their (a)
	(c)	$9(\pm 0.2)$	1	Or ft their ruled straight line if second mark not given in (b)
5		78.75 www or $67 \cdot 50+11 \cdot 25$ 'Their 78•75' $+25+47 \cdot 75$ 151-5(0)	W3 M1 A1	M1 for attempt at complete method for 22.50×3.5 W1 for figs 675 or 1125 or 175 W2 for answer 151.5(0) www OR SC5 for answer 151.5(0) following correct 5 numbers seen added
6		42 alternate (angles) 80 or ft 122 - 'their 42' corresponding (angles) and 122-42 seen	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept other complete reason
7	(a)	a^{4}	1	
	(b)	3	2	M1 for 9 from b^{2} or ${ }^{-6}$ from $2 b$ soi

Section A Total: 25

Section B

8	(a)	17 cao	1	
	(b)	65 cao	1	
	(c)	6 cao	1	
	(d)	42 cao	1	
9	(a)	Angle of 116° AC drawn 6.5 cm and Δ complete	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \pm 2^{\circ} \\ & \pm 2 \mathrm{~mm} \end{aligned}$
	(b)	$30 \cdot 4-30 \cdot 8$ [after 2 in (a)] Otherwise ft 16.5 + 'length of BC' [after 0 or 1 in (a)]	2	W1 for ($B C=$) $13 \cdot 9-14.3$ seen or ft 'their measured BC^{\prime} $\pm 2 \mathrm{~mm}$ for ft measurement OR M1 for clear addition of 3 sides
10		$13 \cdot 57$	2	W1 for 13.56 or 13.6 as answer or $13 \cdot 569(23 \ldots)$ seen OR SC1 for answer of -0.34 or $13 \frac{37}{65}$
11	(a)	$2 \cdot 5 \text { or } 2 \frac{1}{2} \text { or } 2 \frac{2}{4} \text { or } \frac{5}{2}$	3	M1 for $4 p+12$ seen M1 for $4 p=22-12$ or better or $4 p=22-k$ and correct ft solution Alternatively: M1 for $p+3=\frac{22}{4}$ M1 for $p=\frac{22}{4}-3$ or better
	(b)	$r^{2}-2 r$ final answer	1	
	(c)	$5(q+2)$ final answer	1	
12	(a)	$3: 2$ or $1 \frac{1}{2}: 1$ or $1: \frac{2}{3}$	2	M1 for 24 : 16 or simpler seen OR SC1 for $2: 3$ or $1: 1 \frac{1}{2}$ or $\frac{2}{3}: 1$
	(b)	(0) 35	2	M1 for $1-(0.3+0.1+0.25)$ OR SC1 for 0.9 or 0.75 as answer
13		$\begin{aligned} & 452-452.5 \\ & \mathrm{~cm}^{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for $\mathrm{m} \times 12^{2}$
14	(a)	Correct translation	2	W1 for move 3 squares right or 2 squares up
	(b)	'Anticlockwise' or 'direction'	1	Accept "Which way"

Section B Total: 25

B277 Module Test M7

Section A

1	(a)	12	2	M1 for $18 \div 3$ or 6
	(b)	16	2	M1 for $24 \div 3$ or 8
2	(a)	6^{2}	1	
	(b)	$2^{2} \times 3 \times 5 \times 7$	2	or for $2 \times 2 \times 3 \times 5 \times 7$ M1 for at least two of $2,3,5$ and 7 seen as factors
3	(a)	Negative + moderate	1	Condone negative + strong
	(b)	Ruled line of best fit between $(24,100)$ and (29, 100) and between $(10,300)$ and $(17,300)$	1	
	(c)	ft from their line of best fit	1	Tolerance: for reading within a square accept up to either border gridline (eg for reading of about 250 accept 240 to 260 inclusive); for reading on gridline apply tolerance ± 10 inclusive (eg for reading of 260 allow 250 to 270 inclusive)
4	(a)	3.5 oe www	3	M1 for correct expansion or division [$2 x+14$ seen or $x+7=3 x]$ M1 for correctly collecting xs on one side and numbers on other, ft their expansion/ division, dep on $x s$ on both sides after first step M1 for [$x=$] b/a oe isw, ft their $a x=b(a \neq$ 1) If $\mathbf{0}$ scored, $\mathbf{S C 1}$ for 3.5 oe seen embedded in original equation: $2(3 \cdot 5+7)=6 \times 3 \cdot 5$
	(b)	$[x] \leq-3 \text { cao }$ Closed circle at -3 and line to left of -3	2	M1 for correct constructive first step, condoning < instead of \leq : eg $2 x \leq-6$ or $2 x<-6$ or $x+3 \leq 0$ OR M1 for $x=-3$ or for -3 found with other wrong inequality or -3 identified on number line OR SC1 for $x \leq b / a \mathrm{ft}$ their $a x \leq b$ with $a>0$ but $a \neq 1$ and $b \neq 0$, eg $x \leq 3$ following $2 x$ ≤ 6 Correct or ft their inequality Condone open circle
5	(a)	$0 \cdot 6$	1	Or $0.6 \dot{6}$; accept 0.6 r; condone 0.666 (or with more sixes) or ' $0 \cdot 666 \ldots$..'
	(b)	16/125	2	M1 for 128/1000 or 64/500 or 32/250

$\mathbf{6}$	(a) 210	$\mathbf{2}$	M1 for $\frac{20 \times 21}{2}$ or $\frac{20 \times(20+1)}{2}$ oe	
(b)	$2 n-1$ oe for $10,15,21 \ldots \ldots 171,190,210,(231)$ OR SC1 for answer 190 or 231			
$\mathbf{7}$		Perpendicular bisector of AB constructed with construction arcs seen	$\mathbf{2}$	Accept unsimplified M1 for $2 n$ oe seen

Section A Total: 25

Section B

8		$244 \cdot 21$ or $244 \cdot 22 \mathrm{www}$	3	M2 for $235 \cdot 5(0) \times 1.037$ or $244 \cdot 2135$ or rot to 3dp OR M1 for 235•5(0) $\times 3 \cdot 7$ [$\div 100$] oe or for digits 871 [35] or 872 M1dep for their \% increase added to 235.5(0) OR SC2 for digits 24421(35) with wrong decimal point or for $322 \cdot 63$ or $322 \cdot 64$ [from 37% increase] If M0 scored, SC1 for 244 as answer
9	(a)	0.12 and 0.13	1	
	(b)	Less than theoretical model Mention of $1 / 6$ or $0 \cdot 16$ to 0.17 or for $16 \cdot 6$ to 17[\%]	1	For a clear comparison with theoretical model Or other explicit numerical comparison If $\mathbf{0}$ earned in this part, SC1 for 'may be biased as the table doesn't show results for other numbers' / only shows results for 6 oe
10	(a)	36 (accept answer in range $35 \cdot 7$ to 36-1) www	3	M2 for $15 / 25 \times 60$ OR M1 for $15 / 25$ or 0.6 M1dep for result $\times 60$ OR M1 for 25/60 (= 0.416...rot to 2 or more dp) M1 for 15 / their 0.416...
	(b)	26 www	4	M1 for at least 3 midpoints 15, 25, 35, 45 soi M1 for (freq. \times their midpoints) seen or implied (105, 375, 210, 90 or total 780) M1 for their total $\div 30(=780 \div 30)$ or for their total \div their sum of freqs OR SC3 for answers 21 or 31 (www apart from using endpoints)
	(c)	8.5 and 9.5	2	1 each; accept either order; accept 9•499(...) or better instead of 9.5
11		$[n=] \frac{W+7}{5} \text { oe }$	2	M1 for a correct constructive first step in rearrangement or for answer of other $[n=] \frac{ \pm W \pm 7}{ \pm 5}$

12	Use of πr^{2} or $1 / 2 \pi r^{2}$ Their area of 10 cm [semi]circle - sum of their area of smaller [semi]circles Answer 65•9-66•1 or 21π W4 for correct answer in range www but NB answer can be obtained from wrong method, eg MOMOAO for $\pi \times 7 \times$ $3=65 \cdot 9$ or 21π	M1 M1 A2	With $r=10,3$ or 7 Allow 2nd M1 independently of first (may work with complete circles instead) but must have used π If incorrect, A1 for area of one circle or semicircle evaluated correctly If M2 earned, allow A1 for area of at least two circles or semicircles expressed as multiple of π in simplified form
13	\angle of $T=60$ seen or used [Interior] \angle of $\mathrm{P}=150$ Ext \angle of $\mathrm{P}=30$ $360 / 30 \text { [=12] }$ Alternative method: $360 / 12=30$ 30 identified as ext \angle of P $\begin{aligned} & 150=\text { int } \angle \text { of } \mathrm{P} \\ & 2 \times 150+60=360 \text { oe } \end{aligned}$	A1 1 1 OR 1 1 1 1	May be on diagram; or M1 for 180/3 Or ext \angle of $P=60 / 2$ or symmetry stated or shown on diagram Or 1 for [sum of int $\angle \mathrm{s}=$] $150 \times 12=1800$ and 1 for use of int \angle formula to verify $1800(\mathrm{eg}(12-2) \times 180=1800)$ or M1 for [sum of int $\angle=$] 1800 (1800 must be seen) M1 for 1800/12 (may be implied by 150 found if 1800 seen) $=150$ eg allow 1 for $360-2 \times 150=60$

Section B Total: 25

B278 Module Test M8

Section A

1		$-4,-3,-2,-1,0,1,2$	3	M2 for $-4 \leq x<2 \cdot 4$ or $-4 \leq x \leq 2$ OR M1 for $x<2.4$ or $x \geq-4$ or $-4 \leq x$ or $x \leq 2$ OR W2 for 4 or more correct values and no extras or 7 correct values and one extra OR W1 for 4 or more correct values and 1 or 2 extras
2		$2 \frac{7}{12}$ oe mixed number www	3	M2 $3-\frac{5}{12}$ or $2 \frac{16}{12}-\frac{9}{12}$ or $\frac{31}{12}$ o.e. OR M1 for conversion of both fractions to a common denominator eg $\frac{4}{12}, \frac{9}{12}$ or $\frac{52}{12}$, $\frac{21}{12}$ oe at least one correct
3	(a)	$\begin{aligned} & 6 x-7=14 \text { or } \frac{6 x}{7}=3 \\ & 6 x=21 \\ & (x=) \frac{21}{6} \text { o.e. isw } \end{aligned}$	M1 M1 M1	Correct or ft their first step. Also implies first M1 Correct or ft from their $a x=b, a \neq 1$ Ignore incorrect cancelling after a correct answer seen $(x=) \frac{21}{6}$ oe www scores all 3 marks
	(b)	$\begin{aligned} & 4 x-8 y(=x+3) \\ & 4 x-x=3+8 y \text { oe } \\ & (x=) \frac{3+8 y}{3} \text { oe; mark final answer } \end{aligned}$	M1 M1 M1	Correct or ft their first step Correct or ft their second step x must be a function of y Do not ignore further attempts to simplify final answer Accept $\frac{8}{3}$ rot to 2 dp or more Accept reversed signs throughout
4	(a)	6.2×10^{-4}	1	
	(b)	1.84×10^{3}	2	M1 for 0.24×10^{3} or 16×10^{2}

5	(a)	All three angles are equal	1	It must be clear that all three angles are equal. 'Equal angles' is insufficient but would score if accompanied by 23 or 37 given on diagram or calculated. Look for numerical evidence or the keywords, all or three. See exemplars
	(b)	14	2	M1 for $\frac{10}{15}$ or $\frac{2}{3}$ or $\frac{15}{10}$ or 1.5 seen or $\frac{x}{10}=\frac{21}{15}$
6	(a)	35	2	M1 for 54 or $52-18$, 19 or $19 \cdot 5$ or 42 (town A)
	(b)	Agree: higher median Disagree: over 25% of town A is over 60 , but less than 25% in town B	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept "average" if both quantified Accept statement referring to UQs: eg A's UQ is above $60, B$'s is less than 60 or A's $U Q$ is $64, B$'s is 54 See exemplars
7		$\begin{array}{ll} y=x-x^{2} & y=2 x+1 \\ y=x^{3}-x & y=\frac{1}{x} \end{array}$	3	W2 for three correct OR W1 for any two correct

Section A Total: 25

Exemplar responses: 5 (a)

Example responses scoring 1 mark:

All the angles are equal to each other.
The angles $A B C$ are the same. (With both triangles labelled $A B C$)
Both have identical angles in identical places.
Example responses scoring $\mathbf{0}$:
Both have the two angles 120° and their lines are within ratio and both add up to 180°.
Both of them have a 120° angle and one is an enlargement of the other.
The angles are the same making the lines parallel.
One is just an enlarged version of the other - you can see this because of the same angle.
They have the same angles $\left(120^{\circ}\right)$.
Their angles are equal.
The angles in a triangle add to $180^{\circ}(120,23,37)$. (Does not refer to equal angles. Listing them alone is not sufficient to earn the mark.)

Exemplar responses: 6 (b) first comment
Agree because ...
Example responses scoring 1 mark:
The median for town A is higher than for town B
The average for town A is 43 and for town B is 34

Example responses scoring $\mathbf{0}$:

There are more people between 43 and 62 than town B.
The mean on town A is greater than town B. (Needs to refer to the median)
The average is higher. (A statement about 'average' needs to be quantified)
Town A's medium is 43 and town B is 30 and also town A upper quartile is 64 and town B is 54 so it proves town As people are older. (Condone 'medium' for median. The mark is lost for one of two reasons; the median of B is not within given range and comment refers to another statistic.) The average in the box plot is higher. (A statement about 'average' needs to be quantified) The interquartile range is larger as well as the median. (Refers to interquartile range) The median of town A starts older and carries on further.

Exemplar responses: 6 (b) second comment

Disagree because ...
Example response scoring 1 mark:
Box plot A has the $3 / 4$ mark 62 and B's only goes up to 52 so the statement is wrong. (Accept $3 / 4$ mark for UQ and condone misread of the scale as the intent is clear.)

Example responses scoring $\mathbf{0}$:

The upper quartile is 54 and is not more than 60 . (Only refers to B)
Town A shows a greater proportion of people as it is at the higher end of the average age group, town B is a younger town on average making the amount of 60+ citizens less common. (Does not refer to $U Q$ values for the two towns)
In town A there are more people over 60 because of where the upper quartile is. (Condone more people over 60 but mark not earned since no reference to values of the UQs).
Town A has a higher upper quartile range which suggests that more people are over 60 in town
A. (Refers incorrectly to upper quartile range as well as no mention of B)

The interquartile range is between 19 and 54 but town A's interquartile range is over 60. (Refers incorrectly to interquartile range.)

Section B

8	(a)	Correct rotation giving Δ with vertices $(2,0),(2,-1),(4,-1)$	2	M1 for 180° rotation
	(b)	Correct translation $\binom{0}{4}$	1	ft their rotation
	(c)	Rotation 180° about (centre) (0,)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	strict ft of their rotation and translation MUST be a single transformation
9		$18 \cdot 5-18 \cdot 6$ Ignore further rounding	3	M2 for $\frac{91}{490}$ or 0.185 to 0.186 or 0.814 to 0.815 or 81.4 to 81.5 or $100-\frac{399}{490} \times 100$ oe seen OR M1 for 91 or $\frac{399}{490}$ seen
10		Multiplication by 2: $4 x+6 y=12$ or multiplication by 3: $12 x-3 y=-27$ $14 x=-21 \text { or } 7 y=21$ $x=-11 / 2 \text { and } y=3$	M1 M1 A1	Condone 1 error; if both equations are multiplied, condone only one error in total ft adding or subtracting appropriately to eliminate x or y from their equations Condone 1 error 3 for completely correct algebraic method Correct x, y with no algebra - W1 only
11	(a)	$\frac{2}{5}, \frac{3}{5}, \frac{2}{5}$ ое	1	
	(b)	$\frac{3}{10}$ oe correct or ft their tree provided answer > 1	2	M1ft for $\frac{3}{4} \times$ their $\frac{2}{5}$
12		2977-54 or 2978	3	$\begin{aligned} & \text { M2 for } 2500 \times 1.06^{3}, 2809 \times 1.06,2977 \\ & \text { OR } \\ & \text { M1 for } 2500 \times 1.06 \text { oe or } 2650 \end{aligned}$
13		$67 \cdot 3$	2	M1 for $(68 \cdot 5+60 \cdot 2+73 \cdot 2) \div 3$
14		46•9-47•1 www	6	M2 for $(P Q=) 60 \tan 65$ or $\frac{60}{\tan 25}$ OR M1 for $\frac{P Q}{60}=\tan 65$ or $\frac{60}{P Q}=\tan 25$ A1 for 128.6-128.7 or 129 M2 for $\tan ^{-1}\left(\frac{\text { their PQ }}{120}\right)$ OR M1 for $\tan B=\frac{\text { their } P Q}{120}$ or $\tan ^{-1}\left(\frac{120}{\text { their } P Q}\right)$

B279 Module Test M9

Section A

1	(a)	1	1	
	(b)	9	2	M1 for $(\sqrt[3]{27})^{2}$ soi or $\sqrt[3]{27}=3$ soi
2		7.5×10^{11} or 9.0×10^{11}	3	W2 for answer with figs 75 or figs 90 OR W1 for figs 3 and 25 seen or figs 3 and 30 seen or answer of $k \times 10^{11}$ where $1 \leq k<10$
3		Enlargement only [scale factor] -2 [Centre] (-2, -1)		dep on a single transformation given
4	(a)	4 bars of correct width at heights $12,9,6 \cdot 5,2 \cdot 5$	3	W2 for 3 correct bars on graph OR W1 for 2 correct on graph or 2 correct freq densities seen
	(b)	No and reasons with 80 being the upper limit but not necessarily a length of call (ignore extra/incorrect comments alongside acceptable comment)	1	Eg "The longest call time could be less than 80" "We don't know the individual times only the groups"
5	(a)	$2 x^{2}-7 x-15$ final answer	3	M2 for any 3 of $2 x^{2},-10 x, 3 x,-15$ seen or any 2 correct of simplified 3 term final answer OR M1 for any 2 correct of $2 x^{2},-10 x, 3 x,-$ 15
	(b)	$(5 x-7)(x-1)[=0]$ $\frac{7}{5}$ isw oe and 1	2 1ft	M1 for $(5 x \pm 7)(x \pm 1)[=0]$ ft their factors dep. on two brackets of linear form

6	(a)	13 www	$\mathbf{3}$	M2 for $\sqrt{(17-5)^{2}+(3--2)^{2}}$ oe or better OR M1 for $(17-5)^{2} \pm(3--2)^{2}$ oe or for attempt at Pythagoras with one of 12 or 5 correct
(b)	$y=-\frac{1}{4} x+5$ oe www, isw (attempts to simplify)	3	W2 for $y=-\frac{1}{4} x+k$ (any intercept) oe seen or $-\frac{1}{4} x+5$ seen OR for $y=m x+5$ oe (any gradient, inc 0$)$ W1 for or gradient $=-\frac{1}{4}$ soi	

Section A Total: 25

Exemplar responses: 4 (b)

No because ...

Example response scoring 1 mark:

The maximum time was between 50 and 80 minutes
The time could have been greater than 50 minutes and less than 80 minutes
No call may have taken 80 minutes
The last group is 50 to 80 - this does not mean that one of the calls could have been 80 minutes
We do not know how long each call actually took - the time could be as low as 50.01
End values may not be included
Times range from 0 to 80 but the class widths do not show every individual minute
50 to 80 means it could be any value in that range
It could have equal to 80 or less than 80 - we don't know
The longest call could have been 51 minutes
There is no individual data
We don't know the exact values
The largest time might be 79 or 78 etc

Section B

7	(a)	(i) $(x+5)(x-5)$	1	
		(ii) $\frac{x-5}{2 x+1}$ final answer www	3	M2 for $(2 x+1)(x+5)$ or correct answer seen www then spoilt OR M1 for $(2 x \pm 1)(x \pm 5)$
	(b)	$(r=) \sqrt{\frac{A}{4 \pi}}$ or $(r=) \frac{1}{2} \sqrt{\frac{A}{\pi}}$ final ans Condone numerical value for π used after correct expression seen; condone \div sign used	2	M1 for $\left[r^{2}=\right] \frac{A}{4 \pi}$ or answer $\frac{\sqrt{A}}{4 \pi} \mathrm{ww}$ or for correct ft step[s] to get r after an incorrect first step is shown Fully correct reverse flowchart scores M1
8	(a)	$2 \times \sin ^{-1}(6 / 20)$ o.e. 34.9 to 35	M3	M2 for $\sin ^{-1}$ (6/20) soi oe [if 17.45 to 17.5 obtained and final answer $=34.9$ to 35 then allow M3 to be implied] OR M1 for splitting triangle into two rightangled triangles with a trig attempt (even if incorrect) eg a trig statement using 6 and 20 If M0 scored, SC3 only for statement $2 \times$ $20 \times \sin 17.5=12$ OR SC2 only for $20 \times \sin 17.5=6$ OR SC1 only for $\sin 17.5=6 / 20$ 34.91 to 34.92 implies W4
	(b)	3034 to 3035.2 or 3030 or 966π www	4	M3 for $\frac{35}{360} \times \pi\left(100^{2}-8^{2}\right)$ oe eg 2 stages OR M1 for $\frac{35}{360}$ oe (0.097 ..) or $\div \frac{360}{35}$ soi M1 for $\pi 100^{2}$ (31410 to 31420) or $\pi 8^{2}$ (201 to 201.1) seen
9	(a)	$\frac{1}{64}$ oe isw cancelling (0.015625)	2	M1 for $\left(\frac{1}{8}\right)^{2}$ oe
	(b)	$\frac{14}{64}$ oe ($\frac{7}{32}$) isw cancelling (0.21875)	3	M2 for $2\left(\frac{1}{8} \times \frac{7}{8}\right)$ oe OR M1 for $\left(\frac{1}{8} \times \frac{7}{8}\right)$ oe seen

10	6235 or 107.5 seen their UB for area \div their LB for length $58 \text { cao }$	M1 M1 A1	Allow $6234 \cdot 9$ or better for 6235 Accept their UB in range 6230.5 to 6240 and their LB in range 107 to 107.9 Allow W3 www
11	144 www	3	M2 for $d=0.09 s^{2}$ oe or 0.09×40^{2} or $\left(\frac{40}{30}\right)^{2} \times 81$ oe OR M1 for $d=k s^{2}$ soi or 0.09 oe seen or $\left(\frac{4}{3}\right)^{2}$ oe seen

Section B Total: 25

B280 Module Test M10

Section A

1	(a)	Circle: radius 3 cm , centre (0,0)	2	M1 for a circle with wrong radius or curve through $(3,0)(0,3)(-3,0)(0,-3)$ (points not joined by ruled line)
	(b)	$\begin{aligned} & y=4-2 x \text { drawn } \\ & x=2 \cdot 7, y=-1 \cdot 4(\pm 0 \cdot 1) \end{aligned}$ $x=0 \cdot 5, y=3(\pm 0 \cdot 1)$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Straight line attempted Correct (from $y=4-2 x$) or ft their circle/curve and straight line Allow 1 for both x values
2		Four statements: 1) $A C=N L$ 'diameters same' or 'both lengths 12 cm ' $(A C=N L$ and 12 cm marked on diagram sufficient) 2) $B C=M N$ 'given' or 'both lengths 5 cm ' $(B C=M N$ and 5 cm marked on diagram sufficient) 3) $\angle \mathrm{ABC}=\angle \mathrm{LMN}=90^{\circ}$ angles in semi-circle (90° alone not sufficient) 4) [Triangles congruent] RHS	3	M2 for 3 correct statements OR M1 for 2 correct statements
3	(a)	$\begin{aligned} & \mathrm{AC}^{2}=50 \text { soi } \\ & \sqrt{ } 50=\sqrt{ } 2 \times \sqrt{ } 25=5 \sqrt{ } 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 5^{2}+5^{2} \text { or } A C=\sqrt{ } 50 \\ & \text { Or } \sqrt{ } 50=\sqrt{ } 5 \sqrt{ } 5 \sqrt{ } 2=5 \sqrt{ } 2 \\ & \text { or } \sqrt{ } 50=\sqrt{ }(25 \times 2)=5 \sqrt{ } 2 \end{aligned}$
	(b)	$\begin{aligned} & {\left[C D^{2}=\right](7 \sqrt{ } 2)^{2}-(5 \sqrt{ } 2)^{2}} \\ & =98-50[=48] \\ & C D=4 \sqrt{ } 3 \end{aligned}$	M1 M1 A1	Accept alternative form of Pythagoras' theorem statement W3 for $4 \sqrt{ } 3 \mathrm{www}$ or W2 for $\mathrm{CD}^{2}=48 \mathrm{www}$
4		$\frac{71}{333}$	3	$\begin{aligned} & \text { W2 for } \frac{213}{999} \\ & \text { OR } \end{aligned}$ $\text { M1 for } 1000 \mathrm{r}=213 \cdot 213 \ldots$
5		Correct graph	3	1 for going through (0,2) 1 for amplitude $2(\pm 0 \cdot 2)$ 1 for period 120
6	(a)	$4 x^{2}+27 x+35$ as final answer	2	M1 for 3 terms correct from $4 x^{2}+7 x+20 x+35$
	(b)	$\begin{aligned} & 4 x^{2}+27 x+35=x-5 \\ & 4 x^{2}+26 x+40=0 \\ & \text { or } 2 x^{2}+13 x+20=0 \\ & (2 x+5)(x+4)=0 \text { oe } \\ & x=-2.5,-4 \end{aligned}$	M1 M1 M1 A1	or ft their (a) or ft their (a) ft their $2 x^{2}+13 x+20=0$ Allow W4 for ${ }^{-} 2.5$ and ${ }^{-} 4$ www

Section B

7		3.8 billion www	2	M1 for $\times 1.02^{10}$ (or 3.77 or 3.78) OR W1 for digits 38
8	(a)	$\begin{aligned} & a=3 \\ & b=5 \end{aligned}$	2	M1 for $a=-3$ or $(x-3)^{2}$ seen For b, ft their $14-a^{2}$ Allow W2 for $(x-3)^{2}+5$ seen
	(b)	5	1	Or ft their 5
9		32.9... cm www	3	M2 for $\frac{27 \sin \text { their } 106}{\sin 52}$ OR M1 for $\frac{b}{\sin \text { their } 106}=\frac{27}{\sin 52}$ A1 for 32.8 to 33.2 dependent on M1 or M2 earned
10		2.39 and 0.28	3	M2 for $\frac{8 \pm \sqrt{40}}{6}$ oe OR M1 for substitution in quadratic formula OR W2 for 2.39 or 0.28
11	(a)	Tree diagram $\frac{3}{13} \quad \frac{10}{13}$ oe $\begin{array}{lllll}\frac{2}{12} & \frac{10}{12} & \frac{3}{12} & \frac{9}{12} & \\ \text { oe }\end{array}$	2	M1 for 2 correct
	(b)	$\frac{66}{156}\left(\right.$ or $\frac{33}{78}$ or $\frac{11}{26}$) oe 0.42[...]	3	M1 for NN selected with $\frac{10}{13} \times \frac{9}{12} \mathrm{ft}$ M1 for 1 - their 'NN'
12	(a)	$(67+64+70) / 3[=201 / 3]$	1	
	(b)	61 www	3	M2 for $(73+79+n) / 3=71$ oe OR M1 for 71 used (or 213 seen) or $(73+79+n) / 3$
13		5.55... or 5.56 www	4	M2 for $\frac{250}{360} \times \pi \times 16=(34.9 .$. OR M1 for $\pi \times 16$ (or 50.26...) AND M1 for their 34.9... $=\pi \mathrm{d}$ A1 for 5.5 ... to 5.6

Section B Total: 25

Grade Thresholds

General Certificate of Secondary Education
Mathematics C (J517)
March 2010 Examination Series

Unit Threshold Marks (Module Tests)

Unit		Maximum Mark	\mathbf{a}^{*}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{p}	\mathbf{u}
B272	Raw	50							37	24	15	0
	UMS	70							60	40	30	0
B273	Raw	50							27	13		0
	UMS	79							60	40		0
B274	Raw	50						37	24	14		0
	UMS	90						80	60	50		0
B275	Raw	50						30	14			0
	UMS	99						80	60			0
B276	Raw	50					31	16				0
	UMS	119					100	80				0
B277	Raw	50				24	12					0
	UMS	139				120	100					0
B278	Raw	50			29	15						0
	UMS	159			140	120						0
$\mathbf{B 2 7 9}$	Raw	50		29	14							0
	UMS	179		160	140							0
$\mathbf{B 2 8 0}$	Raw	50	31	15								0
	UMS	200	180	160								0

Notes

The tables above show the raw mark thresholds and the corresponding UMS for each unit entered in this series. Raw marks in between grade thresholds are converted to UMS by a linear map.

For a description of how UMS are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
For a spreadsheet designed to calculate UMS for this specification, please visit the e-community at http://community.ocr.org.uk/community/maths-gcse-ga/home .

The grade shown in the first table as ' p ' indicates that a candidate has achieved at least the minimum mark necessary to access the UMS scale for the unit but insufficient raw marks to merit a grade ' g '. This avoids awarding such candidates a ' u '. Grade ' p ' can be awarded only for units B271 (Module Test M1) and B272 (Module Test M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (J517)

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

