GCSE

Mathematics C

General Certificate of Secondary Education J517

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Mathematics C (J517)
 MARK SCHEMES FOR THE UNITS

Unit/Content Page
Marking Instructions \& Abbreviations 1
B271 Module Test M1 4
B272 Module Test M2 8
B273 Module Test M3 11
B274 Module Test M4 14
B275 Module Test M5 18
B276 Module Test M6 22
B277 Module Test M7 26
B278 Module Test M8 28
B279 Module Test M9 32
B280 Module Test M10 36
B281 Terminal Paper (Foundation Tier) 40
B282 Terminal Paper (Higher Tier) 44
Grade Thresholds 50

Marking Instructions \& Abbreviations

Marking Instructions

1 Mark strictly to the mark scheme.
2 Make no deduction for omission of units except as indicated on the mark scheme.
3 Work crossed out but not replaced should be marked.
4 M (method) marks are not lost for purely numerical errors.
A (accuracy) marks depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
W (workless) marks are independent of M (method) marks and are awarded for a correct final answer or a correct intermediate stage.

5 Subject to 4, two situations may be indicated on the mark scheme conditioning the award of A marks or independent marks:
(i) Correct answer correctly obtained
(ii) Follows correctly from a previous answer whether correct or not ("ft").

6 As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).

7 Always mark the greatest number of significant figures seen, even if this is then rounded or truncated on the answer line, unless the question asks for a specific degree of accuracy.

8 If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. If the answer is missing, but the correct answer is seen in the body allow full marks. If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would normally be given.

9 Where there is clear evidence of a misread, a penalty of 1 mark is generally appropriate. This may be achieved by awarding M marks but not an A mark, or awarding one mark less than the maximum.

10 For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work.

11 For answers scoring no marks, you must either award NR (no response) or 0 , as follows:
Award NR (no response) if:

- Nothing is written at all in the answer space
- There is any comment which does not in any way relate to the question being asked ("can't do", "don't know", etc.)
- There is any sort of mark that is not an attempt at the question (a dash, a question mark, etc.)

Award 0 if:

- There is any attempt that earns no credit. This could, for example, include the candidate copying all or some of the question, or any working that does not earn any marks, whether crossed out or not.

12 Where a follow through (ft) mark is indicated on the mark scheme for a particular part question, you must ensure that you refer back to the answer of the previous part question.

13 In cases where there is clear evidence that a calculator has been used in section A, mark the script as normal and then raise an exception (suspected malpractice).

14 Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Abbreviations

The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- Where you see oe in the mark scheme it means or equivalent.
- Where you see isw in the mark scheme it means ignore subsequent working.
- Where you see www in the mark scheme it means without wrong working.
- Where you see cao in the mark scheme it means correct answer only.
- Where you see soi in the mark scheme it means seen or implied.
- Where you see rot in the mark scheme it means rounded or truncated.
- Where you see seen in the mark scheme it means that you should award the mark if that number/expression is seen anywhere in the answer space, including on the answer line, even if it is not in the method leading to the final answer.
- Where you see figs 237, for example, this means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point e.g. 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.

B271 Module Test M1

Section A

1	(a)	67	1	
	(b)	48	1	
	(c)	35	1	
	(d)	6	1	
2	(a)	5 new, correct arrangements	2	$\mathfrak{N} I \mathcal{B}, I \mathcal{B N}, I \mathcal{N} \mathcal{B}, \mathcal{B} I \mathcal{N}, \mathcal{B N} I$ W1 three correct arrangements, (not including $\mathfrak{N}(\mathcal{B} I)$
	(b)	(i) certain cao	1	
		(ii) impossible cao	1	
		(iii) unlikely ft their results table	1	
	(c)	Column of 3 tiles correctly placed	2	Accept with or without I in them Eg I in each of lowest three squares or three lowest squares shaded or tiles clearly drawn in. OR M1 for 16 or 3 or (19 - their 16) seen
3	(a)	2 cao	1	
	(b)	(i) 10 cao	1	
		(ii) 6 cao	1	
	(c)	(i) $(1,4)$	1	
		(ii) Point plotted at (3, 4)	1	Accept within half square by eye if clearly indicated. Condone omission of C
		(iii) Triangle	1ft	Lines may not be drawn but mark "triangle" correct. Follow through their shape.

4	(a)	(i) Lines joining 3, 5, 7 and 1	1	Clear intention
		(ii) Square cao	1	
	(b)	Post 1 joined to two other posts to form isosceles $\Delta \pm 2 \mathrm{~mm}$ by eye.	2	Eg (1, 3, 5), (1, 3, 7), (1, 7, 4) etc M1 for any non-isosceles triangle formed by joining posts or any ruled isosceles (by eye) not formed using posts or any isosceles not including post 1 (eg $(3,5,8)$, and $(2,5,7)$) or any three correct posts identified or any triangle intended as isosceles and intended to include post 1 but outside 2 mm tolerance at any point
	(c)	SW	1	South west
5	(a)	2:25 or 14:25	1	Ignore references to am or pm Accept in words.
	(b)	5	2	M1 for 2:35 or 14:35 seen but not as answer to part (a) OR W1 for 15 or 25

Section A Total: 25

Section B

6	(a)	49(p) or $£ 0.49$	2	M1 for $2 \cdot 45 \div 5$ or $245 \div 5$ oe If 0 then $\mathbf{W} \mathbf{1}$ for figs 49
	(b)	2014, 2, 20, 14 or 4	1	One of these answers only
	(c)	6	1	
7	(a)	(i) 18	1	
		(ii) 25	2	W1 for 75 seen OR M1 for attempt to add $15+2+3+5$
	(b)	1600	1	
	(c)	125	1	
8	(a)	(i) 9000	1	Minke (Whale)
		(ii) $9000,7257,1954,275$, or Minke (whale), Killer (whale), Walrus, (Giant) squid	2	W1 for reverse order, numbers or names, or first and last correct
	(b)	14	2	M1 for 19 and 5 identified OR SC1 for 8725 (difference in weights)
9	(a)	2	1	Accept in words, eg 'double' and ignore \times ($\times 2$ or $2 \times$) Condone $\frac{1}{2}$
	(b)	(i) $2 \cdot 6-3 \cdot 0$ and cm , or 26-30 and mm	$\begin{gathered} 1+ \\ 1 d e p \end{gathered}$	W1 for correct length without a unit or 2.5 cm or 3.1 cm , or 25 mm or 31 mm
		(ii) No cao Lines/sides or angles or sectors/areas are different within one spinner	$\begin{gathered} \text { 1 } \\ \text { 1dep } \end{gathered}$	No must be stated to score reason mark Accept angles at the centre (or interior oe) are different sizes (or "the triangles are different sizes"). Must clearly imply within ONE spinner, not comparing relative sizes of spinners. Eg do not accept "one is bigger (than the other)"
10	(a)	14, 17, 20	1	
	(b)	(i) -5 oe	1	Accept equivalent in words
		(ii) 20	1	SC1 for 20 seen written on the tile BUT answer 5 in answer space.
11	(a)	183-185	1	
	(b)	1.83-1.85 strict ft	1ft	Must be their (a) $\div 100$
	(c)	88 cao	1	

9 (b) (ii)
Exemplar allowable statements

There are two different sized triangles	Can only be one spinner as comparison would mean four different triangles
All the pizza slices are not the same size	Implied area in one spinner
Not all sides are the same length	Even if comparing, still recognises that sides must be equal on a spinner
The sides are not the same	Does not imply second spinner
The smaller sides are all 20mm and the larger ones 29mm	Can only refer to large spinner
Some sides are bigger than other sides	"Some" gives sufficient doubt about a comparison between spinners
The lines are bigger than other lines	Implied within one spinner

Not allowed

It's just the same but bigger	Implies comparison of spinners
They are not the same size	Could imply comparison between spinners
The measurements are not the same	Measurement is not specific to length or area or angle
It is 2 times bigger which is even	Implies comparison between spinners
It has one more no [number] each side	Unclear and implied comparison between spinners

B272 Module Test M2

Section A

1	(a)	$\frac{3}{16}$	1	Accept equivalents
	(b)	Any 3 squares shaded	1	
	(c)	T F F T T T	3	W2 for 5 correct OR W1 for 3 correct
	(d)	$\begin{aligned} & (0) \cdot 3 \\ & (0) \cdot 75 \end{aligned}$	1 1	
2	(a)	1116	1	Accept any recognisable notation in all parts eg 11.16, 11:16, 1116
	(b)	1120	1	
	(c)	0954	1	
	(d)	Next train (stops at 1115 and) gets to Alberton at 1156	1	Allow any correct statement, eg: (She) missed the 1015 (which would have got there in time) or the train has gone There are no trains for those times The (next) train(s) do/does not stop (at H) The first train (to stop) is the 1115 (which gets there too late)
3	(a)	$\begin{array}{llllll}-18 & -10 & -5 & 3 & 30\end{array}$	2	W1 for one error or for correct reversed order or for negative numbers in the correct order
	(b)	21	1	condone ${ }^{-21}$
4		180	2	M1 for a correct method (attempt at 36×5) eg 150 or 30 seen together with some attempt at adding or short multiplication with a carry or multiple additions of five lots of 36 or single addition with a carry
5	(a)	(i) 28	1	
		(ii) Add 6	1	6 and correct direction
	(b)	35	1	
6		$1 \cdot 80$ www	4	M1 for attempt to select $2 \times$ adults and $2 \times$ children or $6(\cdot 00)$ and $10 \cdot 8(0)$ seen M1 for attempting to add their 'adults cost' and their 'children cost' or 16.8(0) M1 for their ' 16.8 (0)' - 15 soi

$\mathbf{7}$	(a)	$5-7$	$\mathbf{1}$	
	(b)	$3-5$	$\mathbf{1}$	

Section A Total: 25

Section B

8	(a)	35	1	
	(b)	40	1	
9	(a)	25	2	M1 for 20×5 or 100
	(b)	$£ 140$ only ringed AND 175, or two correct $€ \rightarrow £$ conversions seen (other than 175) eg $£ 90 \rightarrow € 112 \cdot 50$ and $£ 180 \rightarrow$ €225	2	W1 for 140 ringed www or two correct attempts seen eg $£ 90 \rightarrow$ $€ 112 \cdot 50$ and $£ 180 \rightarrow € 225$ Allow W2 for the correct inverse method ($\times \frac{4}{5}$ oe)
10	(a)	B	1	
	(b)	Acute	1	
	(c)	112-116	1	
11	(a)	Sphere Cylinder Cuboid	3	W1 for each
	(b)	$B \quad D$	2	W1 for each
12	(a)	They are not in order	1	Accept any correct equivalent statement
	(b)	40	1	
13	(a)	3500	1	
	(b)	6 www	2	M1 for any correct methods eg $32 \div 4.75$ seen or trial and improvement or 4.75×6 or multiple additions / subtractions or for 6.73(....) seen
14	(a)	A : arrow 2 cm along line B : arrow 6 cm along line	2	Allow $\pm 5 \mathrm{~mm}$ each way W1 for each correct answer
	(b)	5	1	Accept any correct "impossible" statement, including situations not connected with this context eg getting a 7 with a normal die
15		Correct reflection	1	
16	(a)	Correct route	1	East into High Street then south into Ken's Bakers
	(b)	Our Laptops or Laundry	1	

Section B Total: 25

B273 Module Test M3

Section A

1	(a)	7	1	Accept 7 or $7 \cdot 00$ but not $7 \cdot 0$
	(b)	10	1	
	(c)	25	1	
	(d)	10	1	
	(e)	27.5 oe	1	
	(f)	(0).49 oe	1	
	(g)	3 www	2	M1 for " 6 " or "2" seen
2	(a)	(i) $4 \cdot 9$ to $5 \cdot 1$	1	
		(ii) $1 \cdot 7$ to $1 \cdot 9$	1	
		(iii) 17 to 19 Explanation	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ft $10 \times$ their (ii) W1 for 17 to 19 as answer plus "double" the 9 in part (i) or "×10" answer to (ii) or ft awarded (ie $10 \times$ their (ii)) and " $\times 10$ " seen
	(b)	6(g)	2	Condone 6.0 or 6.00 M1 for $4 \times 1.5 \mathrm{soi}$
	(c)	Correct height of vertical Top slanted line Bottom slanted line	1 1 1	Correct length and position Correct length and position Mark intent Condone reflections
3		$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{~B} \end{aligned}$	3	W2 for 3 correct OR W1 for 2 correct

$\mathbf{4}$	(a)	$£ 96$ www	$\mathbf{3}$	Maximum M2 for the below: M1 for sight of $(£) 38$ or 2×19 M1 for sight of $(£) 48$ or $19+29$ M1 for sight of $(£) 58$ or 2×29 $\mathbf{M 1}$ for sight of $19+19+29+29$
(b)Yes oe and $(96-59)=37$, or No oe and $(74-59)=15$	$\mathbf{2}$	Decision must be seen to gain any credit M1 for yes and '96' -59 soi or for no and $74-59$ seen		

Section A Total: 25

Section B

5	(a)	(i) $5 \cdot 5$	1	
		(ii) 1996	1	
		(iii) Increased [...] oe	1	Allow 'increase/change/went/difference' of 0.8 (m) or 'changed' from 4.7 to $5 \cdot 5$
	(b)	2	1	
	(c)	4.0-6.0 Evidence of using size of people, eg mention of (height) ($1 \cdot 8$ to $2 \cdot 2$ m) or "body width", implied by 0.3 m to 0.6 m	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(d)	$3 \cdot 2$ (m)	2	M1 for sight of " 64 " or 8×8 or figs 32
	(e)	(i) $2 \cdot 85$	3	M1 for sight of 11.4 M1 for sight of "a number" $\div 4$ OR M2 can be implied by figs " 285 " OR M1 for 9.3
		(ii) $0 \cdot 12$	1	Allow 12 only if 'cm' written with answer
	(f)	(i) $4 \cdot 4$ to $4 \cdot 6$ oe	2	M1 for sight of correct measurement (8.89•2 or 88-92) or "number" $\div 2$ seen
		(ii) C	1	
6	(a)	9	1	
	(b)	4	1	
	(c)	19	1	
7	(a)	(i) $\frac{3}{16} \mathrm{oe}$	2	M1 for correct numerator or denominator
		(ii) $\frac{13}{16} \mathrm{oe}$	1	cao
	(b)	3:20	1	Accept all common time formats including words
	(c)	100 (ml) www	3	M1 for 500 or 600 seen or for 500 - 400 seen 0 for 1000 - 400 seen

Section B Total: 25

B274 Module Test M4

Section A

1		All 4 correct $\left(\begin{array}{llll}\frac{1}{4} & \frac{2}{5} & 0.1 & 0.75\end{array}\right)$	3	W2 for 3 correct OR W1 for 2 correct
2	(a)	$(-2,6)$	1	
	(b)	(i) C correctly plotted	1	SC1 for $(3,-2)$ plotted only if $(6,-2)$ given in (a)
		(ii) Right angle(d) or scalene cao	1	
	(c)	Correct reflection	1	Ft 'their' triangle
3	(a)	(i) Correct pattern	1	
		(ii) 19 Up by/adds/plus 3 each time oe	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	See exemplars
	(b)	$11 \quad 1519$	2	W1 for 2 correct
4		Danny AND correct method shown cao	2	W1 for some evidence of relevant working and attempt at answer but Danny not named OR SC1 for Danny named and method correct without evidence of working seen
5	(a)	9 cao	1	
	(b)	13 cao	1	

6	(a)	$£ 2025$ with complete correct working	4	W1 for identifying 135 M1 for a complete attempt at valid method, ft their 135 W1 for figs 675, 1350, 75, 450, 1500 seen or 405 from 3×135 as first stage of multiplying by 3 then by 5 or 4 correct boxes in grid method or one numerical error only in any method A1 for 2025 If 0 scored, SC1 for 2025 with no working
	(b)	$\frac{40}{200}$ oe (isw incorrect cancelling or conversion to a decimal)	2	$\text { w1 for } \frac{40}{n}$
7		$\begin{array}{ll} \hline 4 & 2 \\ 3 & 6 \end{array}$	3	W2 for 3 correct OR W1 for 2 correct

Section A Total: 25

Exemplar responses: 3 (a) (ii)

You have to add 3	$\mathbf{0}$
You have to add 3 each time	$\mathbf{1}$
Add 3, 13+3=16, 16+3=19 (implies each time)	$\mathbf{1}$
3	$\mathbf{0}$
Goes up in threes	$\mathbf{1}$
Goes up in 3 times table	$\mathbf{0}$
+3	$\mathbf{0}$
You miss 3 more numbers then count on	$\mathbf{0}$
You keep adding 3 dots	$\mathbf{1}$
I added 1 and 2 to it until I reached 19	$\mathbf{1}$
The vertical line add 1 dot and the bottom line adds 2 dots	$\mathbf{1}$
Going up in threes	$\mathbf{1}$
Along the bottom line you plus 2 every time and the upper line you add one every time	
Take away one from the number you use to make the other numbers smallest every time	$\mathbf{0}$
Add 3 as you go along	$\mathbf{1}$

Section B

8		$\begin{aligned} & P=a+a+2 a+3 a \text { oe, or } \\ & P=7 a \end{aligned}$	2	W1 for $a+a+2 a+3 a$ oe, or $7 a$, or $\mathrm{P}=$
9		Vertical scale does not start at zero Bars not same width etc	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	See exemplars
10	(a)	$3 \cdot 45$	2	M1 for 2.3×1.5
	(b)	(i) 4680	2	M1 for 156×30
		(ii) $£ 8 \cdot 25$	3	M1 for $4.68(\mathrm{~kg})$ or 2.34 ("bags") seen, or attempt to divide their 4680 by 1000 or by 2000 M1dep for $3 \times £ 2.75$ (ft their 3 bags)
	(c)	9	1	
	(d)	12.5-14	1	
	(e)	(i) 81	1	
		(ii) $56 \cdot 75$	3	M1 for attempt to add all weights M1 for attempt to divide their total by 12 (implied by figs 567) If $\mathbf{0}$ scored, SC2 for $654 \cdot 4$
		(iii) Valid comparison	1	See exemplars
11	(a)	55°	1	
	(b)	62°	2	M1 for 180-(90-28) oe
12	(a)	100	1	
	(b)	6	1	
13	(a)	15	1	
	(b)	Correct reason given	1	See exemplars

Section B Total: 25

Exemplar responses: Question 9

The bars are different sizes [Could imply height]	$\mathbf{0}$
Some blocks are smaller	$\mathbf{0}$
Because the blocks are different	$\mathbf{0}$
Science is fatter	$\mathbf{1}$
The results bars are different sizes	$\mathbf{0}$
The science column has 4 squares and the other two have 3 [Implies width]	$\mathbf{1}$
The blocks have different thicknesses	$\mathbf{1}$
Different widths	$\mathbf{1}$
Goes up in 10's	$\mathbf{0}$
They haven't got 10 or 20 [Implies vertical scale incomplete]	$\mathbf{1}$
It doesn't start 10	$\mathbf{0}$
It starts at 30	$\mathbf{1}$
The scale is wrong	$\mathbf{0}$
It doesn't start at 0	$\mathbf{1}$

Exemplar responses: 10 (e) (ii)

	Paul		Emma		
	Mean	Range	Mean	Range	
Emma had a higher mean	$56 \cdot 75$	81	59	74	$\mathbf{0}$
Paul has more tomatoes	$56 \cdot 75$	81	59	74	$\mathbf{0}$
Emma's tomatoes weigh more	53	81	59	74	$\mathbf{1}$
Paul's are heavier	81	$56 \cdot 75$	59	74	$\mathbf{1}$
Emma's tomatoes are less spread out	$56 \cdot 75$	81	59	74	$\mathbf{1}$
Paul's are more varied	27	81	59	74	$\mathbf{1}$
Paul's are heavier because the range is bigger	-	81	59	74	$\mathbf{0}$
Emma's are heavier because the range and mean are bigger	56.75	81	59	74	$\mathbf{0}$

Exemplar responses: 13 (b)

You decrease the number you subtract by one	$\mathbf{1}$
Its going down like 5 4 3 2	$\mathbf{1}$
Its going backwards in 1's	$\mathbf{0}$
Subtract 2	$\mathbf{1}$
You do 17 take 2	$\mathbf{1}$
$17-15=2$	$\mathbf{0}$
The number goes down by 1 less each time	$\mathbf{1}$
$-5-4-3$ [Does not state how to get 15]	$\mathbf{0}$
You are taking away 1 less each time	$\mathbf{1}$

B275 Module Test M5

Section A

1	(a)	64	1	cao
	(b)	8	1	cao
2	(a)	$1 \frac{1}{5}$	1	Final answer
	(b)	$\frac{3}{20} \text { oe }$	1	Final answer
3	(a)	(i) Dingli	1	
		(ii) 2630	1	
		(iii) 9 to 10	2	M1 for figs 45 to 5(0) seen or for 'their $4 \cdot 8$ ' $\times 2$ seen
	(b)	402000	1	cao
	(c)	200	1	cao
	(d)		2	W1 for pattern with rotation symmetry order 2 or for two shapes drawn and positioned correctly or for three congruent 'arrowhead' shapes correctly positioned but wrong size
4	(a)	$\begin{aligned} & -4-\mathbf{2}=-6 \\ & -\mathbf{2}+\mathbf{3}=1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Or reversed order
	(b)	$-4 \times-3=12$	2	W1 for ${ }^{-4, ~} \pm 3$ and ± 12 seen in correct positions in boxes or in working or for a multiplication (using given values) with at least one negative with correct answer in given boxes
5	(a)	$9 \quad 5 \quad 1$	1	Both correct
	(b)	Correct ruled line between $(0,9)$ and (4, 1)	2	W1 for 3 points correctly plotted ft (a)
	(c)	$1 \cdot 4-1 \cdot 6$	1	Or ft ($\pm 0 \cdot 1$) their ruled straight line
6	(a)	(i) Guitar	1	
		(ii) 60	2	M1 for 15×4 or for $\frac{1}{4}$ or 25% seen
	(b)	(i) Yes - mean/median higher for wind	1	See exemplars
		(ii) String - higher range	1	See exemplars

Section A Total: 25

Exemplar responses: 6 (b) (i)

Yes, the median is bigger meaning the wind players would have higher numbers [comparison]	$\mathbf{1}$
Wind, their mean and median is a lot higher than the string players [condone wind instead of yes/true, both correcf]	$\mathbf{1}$
Yes, all together there were higher figures than strings except for range but that did not matter [mentions range, but only to discount it]	$\mathbf{1}$
Yes, the wind players got a higher median and mean score than the string players, they were also more consistent as their range is lower [statement about range is clearly correct and in addition to their correct statement]	$\mathbf{1}$
Yes, the wind players can hold their breath for approximately 5 seconds longer [comparison of means implied]	$\mathbf{1}$
Yes, the median states that the person who has the longest breath is 47 [no comparison]	$\mathbf{0}$
True, wind players results turned out better [doesn't refer to table]	$\mathbf{0}$
Yes, the mean and the median are greater on the wind than the string and the range is smaller so it means there is a large amount that can hold it [mention of range will generally score 0 unless statement similar to 3 above]	$\mathbf{0}$
Yes, the average number of seconds they can hold their breath is more than the string players [need to use results from table or refer to mean/median not just average]	$\mathbf{0}$
Yes, there is more evidence to support this with the mean and the median [needs to imply higher]	$\mathbf{0}$
Yes, By looking at the mean and the median this shows that they are more consistent at holding their breath than string players [statement about consistency is wrong]	$\mathbf{0}$
Yes, the mean and the median show that wind players held their breath longer [no comparison, just repeat of breath longer from question rather than mean longer]	$\mathbf{0}$

Exemplar responses: 6 (b) (ii)

String, they have a higher range	$\mathbf{1}$
String, their range is quite high which means their scores were not very consistent. [not a clear comparison, but implied]	$\mathbf{1}$
String, more range of numbers [use of more and range implies correct]	$\mathbf{1}$
String, 31 is more than 28 [numbers imply comparison of range]	$\mathbf{1}$
String, the range is the difference and for string it is 31[number implies use of range]	$\mathbf{1}$
String, it is 3 more spread out [implies comparison of ranges]	$\mathbf{1}$
String, the range measures the distance between the largest and smallest numbers [borderline, but definition of range so scores]	$\mathbf{1}$
Strings, in the wind the mean is one less than the median and in the string the mean is two less than the median [range not used]	$\mathbf{0}$

String, their records don't drop as low as the string players [no mention of range]	$\mathbf{0}$
Wind, the range is lower making there be a wider difference [0 for wind seen]	$\mathbf{0}$
String, when playing a string you don't have to hold your breath so it means people don't try to work on it [no mention of range]	$\mathbf{0}$
String, the timings for mean, median and range are all different and they are much more spread out compared to the wind players [mention of mean/median will generally score 0]	$\mathbf{0}$
String, there is more variety in numbers [doesn't refer to table/range specifically]	$\mathbf{0}$

Section B

7	(a)	Rhombus	1	
	(b)	(i) Kite drawn	1	Accept clear intention
		(ii) 1	1	After $\mathbf{0}$ in both (i) and (ii), SC1 for rhombus drawn in (i) and answer 2 in (ii) or square drawn in (i) and answer 4 in (ii)
8	(a)	(i) $3,2,5$	1	Accept any order
		(ii) 30 cm^{3}	2	Or ft their (i) M1 for attempt at $3 \times 2 \times 5$, ft their (i)
	(b)	46	2	M1 for 20 and 10 and 16 seen www or for $2 \times 10+2 \times 5+2 \times 8$
9	(a)	75	2	Condone $£ 0 \cdot 75$ p M1 for 0.05×15 oe OR W1 for figs 75 as answer OR SC1 for figs 1575 as answer
	(b)	$\frac{2}{3}$ final answer	2	W1 for $\frac{30}{45}$ or better seen
10	(a)	5	2	M1 for $4 x=17+3$ or better
	(b)	$5 \cdot 5 \text { or } 5 \frac{1}{2} \text { or } \frac{11}{2} \text { isw }$	2	M1 for 19-8 $=2 x$ or better
11	(a)	All 22 values correct	2	W1 for 16 further values correct
	(b)	$\frac{1}{25} \text { isw or } 0.04 \text { or } 4 \%$	1	Or ft incorrect table
	(c)	$\frac{8}{25} \text { isw or } 0.32 \text { or } 32 \%$	2	Or ft incorrect table W1 for fraction with numerator 8 ft OR SC1 for $\frac{10}{25}$ oe After $\mathbf{0}$ in both (b) and (c), W1 for fractions with denominator of 25 in both (b) and (c)
12		$4 a+14$	3	M1 for $6 a+14+4 a$ or $10 a$ and 14 seen M1 for $6 a$ seen (unless part of $6 a+14+4 a$) After M0, award M1 for $3 a+7+3 a+7+2 a$ $+2 a=2 a+4 a+$? oe

Section B Total: 25

B276 Module Test M6

Section A

1	(a)	(i) a^{4}	1	
		(ii) $6 c^{2}$	1	Condone $6 \times c^{2}$
	(b)	$3 \frac{1}{2}$ or 3.5	2	M1 for $2 x=7$ oe or $[x=] \frac{7}{2}$
	(c)	$15-6 x$ as final answer	2	M1 for 15 or ${ }^{-6} \mathbf{x}$ seen
2	(a)	5:12	2	M1 for any correct simplification OR SC1 for 12 : 5 as final answer
	(b)	$0 \cdot 6$	2	M1 for attempt at $1-(0.1+0.3)$
	(c)	$42 \cdot 50$	2	M1 for $17 \div 2$ [$\times 5$] oe or for $8.5(0)$ or 17×5 or 85
3	(a)	Triangle with vertices at (2, 2), $(2,6)$ and $(5,2)$	2	M1 for triangle with two vertices correct or for three vertices correct but not joined or for enlargement with sf 2 but wrong position
	(b)	24	1	Accept 23.8 to 24.2
4	(a)	120	1	
	(b)	$2 \cdot 3$	1	Accept 2.25 to 2.35 or ft from reading off at (their $(a) \div 2$)
	(c)	When graph was steepest oe	1	W1 for mention of a specific value in the range $2 \cdot 5$ to $2 \cdot 9 \mathrm{~s}$ or 68 to 88 ml with acceptable reason $\mathbf{0}$ for mention of just values 3 and/or 90 even with otherwise acceptable reason or a range outside 2.5 to 3 s or 68 to 90 ml stated or implied

$\mathbf{5}$	(a)	(i) -4	$\mathbf{1}$	
	(b)	(ii) 36	$\mathbf{1}$	
	(c)	$\frac{9}{14}$ as final answer	$\mathbf{2}$	M1 for $35 / 100$ or $3 \cdot 5 / 10$ for attempt to divide 7 by 20 eg $0 \cdot 3(.$.$) seen$ or digits 35 with wrong dp

Section A Total: 25

Section B

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \& \(4 \cdot 42\) \& 2 \& 1 for \(4 \cdot 419[\ldots]\) seen or rot versions of this other than 4.42 \\
\hline 7 \& (a) \& 25 \& 1 \& \\
\hline \& (b) \& 100 \& 1 \& \\
\hline 8 \& (a) \& \& 2 \& M1 for correct rectangle with missing or incorrect vertical line or for rectangle with line but one measurement wrong or consistently wrong scale used \\
\hline \& (b) \& \begin{tabular}{l}
Clearly showing roof split into two or three rectangles eg relevant line(s) drawn on diagram or attempt at area of the relevant rectangles \\
Correct area of one relevant rectangle www \\
720
\end{tabular} \& M1

M1

A1 \& | Following no line(s) on diagram, allow first M1 for areas attempted, condoning one error in measurements: |
| :--- |
| 15×8 and 12×50 |
| or 15×20 and 35×12 |
| or 20×50 and 'missing' 8×35 |
| or 15×12 and 15×8 and 12×35 |
| 120 or 600 or 420 or 1000 or 280 or 180 |
| or 300 (but not from 12×25) |
| Allow W3 for 720 www |
| Alternative method: |
| Split into two trapezia or rectangles and triangles: |
| Allow first M1 for lines drawn only if attempt at calculating one of the relevant areas seen |
| Second M1 for at least one of 210 and 510 seen for trapezia (and equivalently for triangles and rectangles) |

\hline 9 \& (a) \& Ruled line of best fit passing between $(460,120)$ and $(460,123)$ and between $(520,135)$ and $(520$, 138) \& 1 \&

\hline \& (b) \& ft their line of best fit \& 1 \& | Condone un-ruled |
| :--- |
| Tolerance one full small square |

\hline 10 \& \& | $a=50$ |
| :--- |
| Angles in triangle add to 180 $b=68$ |
| Corresponding angles [are equal] | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& | Condone omission of 'add to 180 ' if angle is correct |
| :--- |
| 0 if extra spurious reasons |

\hline
\end{tabular}

11	(a)	$2 \cdot 4(3 \ldots)$ www isw wrong rounding	3	M1 for at least 3 of $0 \times 5,1 \times 4,2 \times 6$ etc soi or 73 seen AND M1 for $\div 30$ (independent of first M1) Allow A1 for final answer of 2 if M2 earned OR SC2 for 67.2
	(b)	(i) 3	1	
		(ii) 40 to 60 oe	1	
		(iii) It is between 100 and 120 oe	1	0 for just 'they cycled 110 miles'
12	(a)	21	1	
	(b)	122 to 123 www	3	M2 for $\pi \times 0.65 \times 60$ or figs $1224(\ldots)$ to 123(0...) OR M1 for $\pi \times 65$ or $\pi \times 0.65$ or figs 204(\ldots) seen Allow A1 for 120 if M2 scored OR SC1 for 244 to 246

Section B Total: 25

B277 Module Test M7

Section A

1	(a)	Positive	1	Condone positive with comment on strength
	(b)	Ruled line of best fit between $(10,20)$ to $(10,27)$ and $(60,43)$ to $(60,50)$. Reading from their straight line	1	Must be evident between reading marks of 15 and 55 ± 1 of correct ft reading
2	(a)	$\begin{array}{lllll}12 & 3 & 0 & 3 & 12\end{array}$	1	
	(b)	Axes scaled Points plotted (correct or ft) Curve through their points forming a U shape	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Consistent equal divisions. Condone 0 omitted ft their 12 and 12 Any straight line segments score 0
3		$68^{\circ} \mathrm{www}$	3	W1 for $\angle \mathrm{ABG}=62^{\circ}$ W1 for $\angle \mathrm{AGB}=50^{\circ}$ evidenced by 50° correctly on diagram or 50,62 and y total 180 in working A1 for $y=68^{\circ}$
4		30	2	M1 for 300 or 50×6 or 294 or 49×6 or 20-10 A1 for 29,30 or 29.4 www
5	(a)	Correct shaded region	2	M1 for arc of circle drawn, radius 6 cm with centre P W1 for clear intention to shade outside an arc
	(b)	87.5	1	
6	(a)	6, 9,14	2	W1 for 1 correct term in correct position or 9, $14 \ldots$
	(b)	Yes and connection between 174, 169 and 13 or square number	2	W1 for 169 or 13^{2} seen
7		12	2	M1 for $20 \div 5$ (= 4) or 8 (plain) www
8		$\begin{aligned} & 150 \\ & \text { or } 2 \times 3 \times 5^{2} \end{aligned}$	2	M1 for 2 correct multiples of 25 and 2 correct multiples of 30 listed or $25=5(x) 5$ and $30=2(x) 3(x) 5$ (may be on factor tree or repeated division or equivalent)
9		($y=\frac{x-1}{4}$ oe as final answer	2	M1 for $4 y=x-1$ oe OR W1 for $x-1 \div 4$

Section B

10	(a)	-1	3	M1 for $6 x+21=15$ M1 for $6 x=-6$ ft their first step M1 for $x=-1 \mathrm{ft}$ their second step
	(b)	$\begin{aligned} & x^{2}+5 x-3 x-15 \text { isw } \\ & \text { or } x^{2}+2 x-15 \end{aligned}$	2	M1 for 2 terms from $x^{2}+5 x-3 x$ -15 correct (may be in grid)
11		$\begin{aligned} & £ 5 \cdot 2(0) \\ & 12 \cdot 5 \% \end{aligned}$	3 3	M2 for $2 \cdot 8(0)$ or 0.65×8 OR M1 for 0.35×8 or 0.65 seen W2 for $87 \cdot 5,87,88,12,13$ OR M2 for $87.5(\%)$ or $1-0.875$, (0)•75/6 OR M1 for $5.25 / 6$ or 0.875 or (0). 75 or 75 (p)
12	(a)	7•6[...]	3	M2 for $\sqrt{58 \cdot 3}$ OR M1 for $5 \cdot 4^{2}+5.4^{2}$
	(b)	174 to $175 \cdot 2 \mathrm{www}$	3	M1 for $(5.4 \times 5.4) / 2$ or 14.58 AND M1 for their area of BCD $\times 12$
13	(a)	$\frac{25}{75}$ oe isw for wrong cancelling	1	
	(b)	10	2	M1 for $\frac{25}{75} \times 30$ A1 for 10 or ft their (a)
14	(a)	8.75 www isw	4	M1 for 2.5, 7.5, 12.5, 7.5, $22 \cdot 5$ M1 for $2.5 \times 16+7.5 \times 38+$ etc M1 for $700 \div 80 \mathrm{ft}$ their $\sum \mathrm{fm}$ A1 for 8.7 or 8.8 only after M3 OR SC3 for 6.25 from $0,5, \ldots$ or 11.25 from $5,10 \ldots$ or 8.25 from $2,7 \ldots$ or 9.25 from $3,8 \ldots$
	(b)	Middle person is in this group oe	1	

Section B Total: 25

B278 Module Test M8

Section A

1	(a)	Correct rotation with vertices at $(2,2),(5,2),(4,-1)$ and $(2,0)$	2	W1 for 180° rotation around any point or 90° (in any direction) about $(2,2)$
	(b)	Correct translation with vertices at, $(-4,2),(-1,2),(-2,-1)$ and ($-4,0$)	2 ft	ft their (a) W1 for a translation of $\binom{0}{6},\binom{6}{0},\binom{0}{-6}$ or for correct translation of shape A
	(c)	Rotation by 180° oe [Centre] (-1, 2)	1 ft	Spoiled if extras Accept $1 / 2$ turn Ignore references to shape B Allow even if shapes on grid are incorrect Independent Also ft their centre of rotation for shape C provided it is a rotation of 180° from A on the grid
2		70	3	W2 for $1 \cdot 7$ or 170(\%) or 0.7 as answer OR M1 for $8.5 / 5$ oe or $\frac{8.5-5}{5}$ oe seen
3		$4 \frac{1}{3}$ cao www	3	W2 for $\frac{52}{12}$ oe ignore cancelling OR M1 for $\frac{13}{4} \times \frac{4}{3}$ seen, or ft product of their improper fractions correctly evaluated
4	(a)	$\frac{5}{8}$ for reds and $\frac{3}{8}$ for blues on tree	2	W1 for 3 correct probabilities
	(b)	$\frac{15}{32}$ oe isw cancelling	3ft	ft their probabilities from tree diagram M2 for $2\left(\frac{3}{8} \times \frac{5}{8}\right) \mathrm{ft}$ oe OR M1 for $\frac{3}{8} \times \frac{5}{8} \mathrm{ft}$ seen

5	(a)	Should be $x^{2}+3 x$ (not spoilt by further incorrect algebra) or "there should be an $x^{2 "}$ term	1	Accept $x \times x$ is not $2 x$ Do not accept x times x alone
	(b)	$\left[x^{2}\right]-3 x+4 x[-12]$ seen isw or $x^{2}+x-12$ o.e. seen isw or explains/shows that $-3 x$ and $4 x$ are missing isw oe or that the x-terms are not present	1	Accept "the inside and outside terms have not been multiplied" or algebra correct in grid (with $-3 x$) isw
	(c)	$(x+6)(x-6)$ or states brackets $=x^{2}-6 x-6 x+36$ or better or explains that one of the signs should be positive oe or that the product of 2 negatives is not negative oe	1	Accept a negative \times a negative $=a$ positive or "the signs in the brackets should be a plus and a minus"
6	(a)	$(x-7)(x+2)$ 7 and -2 www	M2 A1	M1 for $(x \pm 7)(x \pm 2)$ or $(x+a)(x+b)$ where $a b=-14$ or $a+b$ $=-5$ W3 for correct answer with no working After M1, allow A1ft from their factors
	(b)	$\frac{p}{7}=m^{2}$ ($p=$) $7 m^{2}$ oe final answer	M1 A1	After M0 allow SC1 for correct ft step(s) to their p W2 for correct answer with no working

Section A Total: 25

Section B

7		$8 \cdot 25$ oe www	3	M1 for $4 x / 3=12-1$ or better M1ft for $4 x=3(12-1)$ M1ft from their $a x=b$, with $a \neq 1$.
8	(a)	$(0,6)$ cao	1	
	(b)	$(3,0)$ cao	1	
	(c)	$y=k-2 x$ oe final answer	1	Allow any real number (but not 6) for k (or could be algebraic)
9		6165 or $6165 \cdot 39$ or $6165 \cdot 40$	3	M2 for 4500×1.065^{5} soi oe OR W2 for answer 1665 or $1665 \cdot 39$ or 1665-40 OR M1 for 4500×1.065^{n} oe (where $n \neq 1$ or 5) or for figs 1065 seen After M0, allow SC1 for 4500×1.65^{5} or answer 55034(...) or for answer $5962 \cdot 50$ or $23962 \cdot 50$ only
10	(a)	28(-0) to 28-1www	3	M1 for $\tan (B)=\frac{11.2}{21}$ oe (if correct AB found first (23.7 to 23.9) and used must be a correct trigonometric statement) M1 for $\tan ^{-1}\left(\frac{11.2}{21}\right)$ ft their trigonometric ratio soi provided some previous trigonometry shown
	(b)	$55 \cdot 9$ to $56 \cdot 1$ www	4	M3 for $11 \cdot 2+21+\sqrt{21^{2}+11 \cdot 2^{2}}$ oe OR W3 for ($\mathrm{AB}=$) 23.7 to 23.9 seen OR M2 for $\sqrt{21^{2}+11 \cdot 2^{2}}$ or complete trigonometric method ft their (a) OR M1 for $21^{2} \pm 11 \cdot 2^{2}$ or correct trigonometric statement with AB ft their (a)

11	(a)	$140 \cdot 25$ and $210 \cdot 75$	3	Accept 140 and 211 only if more accurate value is seen, or correct method is shown W2 for either correct OR M1 for $(130+91+143+197) / 4$ or $(131+205+282+225) / 4$
	(b)	Trend/cost/price/it is increasing oe	1	Accept for 1 mark: Rising overall/each year Costs getting higher Paid more each month Spending more The following score $\mathbf{0}$ unless accompanied by a correct answer: It goes up and down They are using more gas Positive (correlation)
12	(a)	46 or 46.4 to 46.43 www	4	W3 for 0.46 to $0.4643 \ldots$. OR M2 for $\frac{1.56 \times 10^{8}}{3.36 \times 10^{8}}$ oe OR W1 for 3.36×10^{8} oe After 0 scored allow SC1 for answer 7.98% (from 1.56×10^{7} used)
	(b)	79000000 oe	1	isw conversion to standard form

Section B Total: 25

B279 Module Test M9

Section A

1	(a)	1	1	
	(b)	81	2	M1 for 3^{4} or $3 \times 3 \times 3 \times 3$ or $\frac{1}{9} \times 729$
	(c)	6	1	Accept ${ }^{-6}$
	(d)	$3(\cdot 0) \times 10^{9}$	2	M1 for 30×10^{8} or $3 \times 10^{\mathrm{k}}$
2	(a)	$\frac{2}{3}, \frac{2}{5}, \frac{3}{5}, \frac{2}{5}$ o.e.	1	
	(b)	$\frac{8}{15}$ oe www	3	M2 for $\frac{1}{3} \times \frac{2}{5}+\frac{2}{3} \times \frac{3}{5}$ oe or better or $1-\frac{1}{3} \times \frac{3}{5}-\frac{2}{3} \times \frac{2}{5}$ OR M1 for $\frac{1}{3} \times \frac{2}{5}$ or $\frac{2}{3} \times \frac{3}{5}$ or better seen
3	(a)	98 (opposite \angle 's of a) cyclic quadrilateral (add up to 180°)	1	Must mention cyclic quadrilateral (or opposite angles of quadrilateral with vertices on circumference of circle) with no incorrect reason seen
	(b)	$\angle \mathrm{BDA}=27$ Reason	1	W1 for identifying any one of: $\begin{aligned} & \angle \mathrm{ABD}=55 \\ & \angle \mathrm{EDB}=82 \\ & \angle \mathrm{BDF}=98 \text { or } \mathrm{ft} \text { their }(\mathrm{a}) \end{aligned}$ angles may be identified on diagram or implied by $\angle \mathrm{BDA}=27$ 1dep for alternate segment theorem (dependent on first W1)

4	(a)	$4 x^{2}-5 x y-6 y^{2}$	3	M2 for any 2 correct of 3 term final answer or any 3 of $4 x^{2},-8 x y, 3 x y,-6 y^{2}$ (allow in grid) OR M1 for any 2 of $4 x^{2},-8 x y, 3 x y,-6 y^{2}$
	(b)	(i) $(x+4)(x-5)$	2	M1 for $(x \pm 4)(x \pm 5)$
		(ii) $\frac{x+5}{x+4}$ final answer	2	M1 for $(x-5)(x+5)$ seen W1 for correctly cancelling $(x \pm 5)(x \pm 5)$ with their $(x \pm 4)(x \pm 5)$ and not spoilt
	(c)	$\begin{aligned} & (x-4)(2 x+1)(=0) \\ & -\frac{1}{2}, 4 \end{aligned}$	2 1	Accept $(x-4)=0$ and $(2 x+1)=0$ M1 for $(x \pm 4)(2 x \pm 1)$ seen or $2 x(x-4)+1(x-4)(=0)$ ft their factors dep on M1 earned Trial and improvement scores $\mathbf{3}$ for both correct answers, otherwise scores 0

Section A Total: 25

Section B

5	(a)	-2 cao	1	
	(b)	$y={ }^{-2 x+1}$ or ft from (a)	2	W1 for ${ }^{-} 2 x+1$ or $y=-2 x+c$ ft their (a) $(c \neq 1)$ or $y=m x+1(m \neq-2$ or their (a))
6	(a)	Correct histogram	3	W3 for all bars correct OR W2 for any 3 bars correct OR W1 for frequency densities: $1 \cdot 4,2 \cdot 8,2,4 \cdot 6$ 7.8 (at least 4 correct) soi or 2 bars correct
	(b)	A greater range/spread of times in 2007 (On average) runners ran slower in 2007	1 1	
7	(a)	$r=\sqrt[3]{\frac{3 V}{4 \pi}} \mathrm{www}$	3	W1 for correctly multiplying by 3 W1 for correctly transposing 4π W1 for correctly taking the cube root All marks independent and can be applied in any order
	(b)	571-8-572.2	2	M1 for $\frac{4 \pi \times 5 \cdot 15^{3}}{3}$ or better

8	(a)	$\begin{aligned} & \left(\mathrm{AC}^{2}=\right) 12^{2}+12^{2} \\ & (\mathrm{AP}=) \sqrt{288} \div 2 \end{aligned}$	1	Also $6^{2}+6^{2}$ or $2 A P^{2}=12^{2}$ leading to $(A P=) \sqrt{72}$ Alternative method using trigonometry W1 for $\frac{x}{12}=\sin 45$ or $\frac{x}{12}=\cos 45$ W1 for $(x=) 12 \sin 45$ or $12 \cos 45$
	(b)	66.9(...) or $67(\cdot 0 \ldots)$	3	M2 for $\tan ^{-1}\left(\frac{20}{8 \cdot 49}\right)$ or $\sin ^{-1}\left(\frac{20}{\sqrt{472(\cdot . .)}}\right)$ or $\cos ^{-1}\left(\frac{8 \cdot 49}{\sqrt{472(\cdot . .)}}\right)$ OR M1 for $\tan (=) \frac{20}{8 \cdot 49}$ or $\sin (=) \frac{20}{\sqrt{472(\cdot . .)}}$ or $\cos (=) \frac{8.49}{\sqrt{472(\cdot . .)}}$
9		$52 \cdot 2(7 \ldots)$ or $52 \cdot 2(8 \ldots)$ or $52 \cdot 3$	3	M1 for $\frac{135}{360} \times 2 \times \pi \times 12$ oe A1 for $28.2(7 \ldots)$ or $28 \cdot 2(8 \ldots)$ or $28 \cdot 3$ W1 for $24+$ their arc
10	(a)	$d=3 \cdot 2 t^{2}$	3	M2 for $6.25 k=20$ or $k=3.2$ or $d \propto 3 \cdot 2 t^{2}$ or $3.2 t^{2}$ as final answer OR M1 for $d \propto t^{2}$ or $d=k t^{2}$ or $t^{2}=k d$ oe or $20=k \times 2.5^{2}$ or $20 k=2.5^{2}$ or $20 \propto k \times 2.5^{2}$ or $20 k \propto 2.5^{2}$ or 3.2 or 0.3125
	(b)	B	1	

Section B Total: 25

B280 Module Test M10

Section A

$\mathbf{1}$		Any two correct angles with corresponding reasons from $\angle \mathrm{XBY}=\mathrm{XCD}$ alternate \angle $\angle \mathrm{BYX}=\mathrm{CDX}$ alternate \angle $\angle \mathrm{BXY}=\mathrm{CXD}$ opposite \angle	$\mathbf{2}$	Angles need to be clearly identified W1 for: 2 correct pairs given without correct reasons or 1 correct pair of angles with correct reason dep on 2 correct pairs of angles above
$\mathbf{2}$	(a)	Correct line drawn $x=-1 \cdot 4$ to $-1 \cdot 2$ and $2 \cdot 2$ to $2 \cdot 4$	$\mathbf{2}$	AAS or ASA

6		$\frac{42}{90}$ oe www (but ignore wrong cancelling after correct answer obtained)	4	W3 for $\frac{7}{10} \times \frac{3}{9}+\frac{3}{10} \times \frac{7}{9}$ oe OR W2 for $\frac{7}{10} \times \frac{3}{9}$ and $\frac{3}{10} \times \frac{7}{9}$ OR $\mathbf{W} \mathbf{1}$ for $\frac{7}{10} \times \frac{3}{9}$ or $\frac{3}{10} \times \frac{7}{9}$ or for $\frac{7}{10}, \frac{3}{9}, \frac{3}{10}, \frac{7}{9}$ seen OR SC1 for $\frac{42}{100}$ oe as answer
7	(a)	$4 b-4 a$ oe	1	
	(b)	$\overrightarrow{\mathrm{PO}}=-2 a \& \overrightarrow{\mathrm{OQ}}=2 b \text { oe }$ or $(\overrightarrow{\mathrm{PQ}}=) \overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OQ}}$ oe $(\overrightarrow{P Q}=) 2 b-2 a \text { or }-2 a+2 b$ or $2(\mathbf{b}-\mathbf{a})$ or $2(-\mathbf{a}+\mathbf{b})$	M1 A1	$\begin{aligned} & \overrightarrow{\mathrm{PA}}=2 \mathbf{a} \text { and } \overrightarrow{\mathrm{BQ}}=-2 \mathbf{b} \text { oe } \\ & \text { or } \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BQ}} \text { oe } \\ & \text { or } \overrightarrow{\mathrm{PQ}}=2 \mathbf{a}+4 \mathbf{b}-4 \mathbf{a}-2 \mathbf{b} \end{aligned}$
	(c)	Parallel $A B$ is twice as long as PQ oe	1dep 1	Dep on (a) correct or 4(a-b) oe No indication of vectors with reference to length

Section A Total: 25

Section B

8		One correct trial with $t \geq 4$ (condone t not an integer) A second trial with $t=7-8$ inclusive ie $\left(8200 \times 0.98^{7}=\right) 7118$ to 6976 2013 www	M1 M1 A1	Accept decimal populations After M0, allow SC1 for 2013 or 1997 or 8 with no trials
9		38	3	M2 for $10+9(=19)$ or $50-(8+8+15)$ OR M1 for 10 or 9 or two of 8, 8, 15 OR SC2 for 62\% OR SC1 for $\frac{9}{50}=18 \%$ or $\frac{10}{50}=20 \%$
10	(a)	$(x+6)^{2}-46$	3	M2 for $(x+6)^{2}-36(-10)$ or $x^{2}+6 x+6 x+36-36(-10)$ OR M1 for $(x+6)^{2}$ or -46 seen OR SC2 for $(x-6)^{2}-46$
	(b)	-46	1	or ft their constant term
11	(a)	Evens out seasonal changes or shows trend	1	
	(b)	294	2	M1 for $286=(265+279+306+x) / 4$ or better
12		Sector: $\frac{120}{360} \times \pi \times 7^{2}$ $51 \cdot 28-51 \cdot 32$ or (49/3) π isw Triangle $1 / 2 \times 7^{2} \sin 120$ oe 21 or $21 \cdot 2(\ldots)$ their sector - their triangle soi $30 \cdot 09(\ldots)$ or $30 \cdot 1$ or 30	M1 A1 M1 A1 M1 A1	Allow alternative equivalent methods.

13	$x^{2}+(x+3)^{2}=17$ oe $x^{2}+3 x+3 x+9$ or better $x^{2}+x^{2}+3 x+3 x+9-17(=0)$ or better	M1	M1Or equivalent working in y $(x+4)(x-1)$ oe
For expanding brackets			
Collecting their two x^{2} expressions $=0$ $x=1, \quad y=-1$ $x^{2}+x^{2}+3 x+3 x+9=17$ scores M0 unless completing the square used.			
A1	Or correct substitution in formula to get $\frac{-6 \pm 10}{4}$ or better soi		

Section B Total: 25

B281 Terminal Paper (Foundation Tier)

Section A

1	(a)	155	2	M1 for eg $3+50+100+2$ OR W1 for 145, 165 or 255
	(b)	340	1	
	(c)	204	1	
	(d)	27	2	M1 for 9 or 135 soi
	(e)	17	1	
2	(a)	3.7 to 3.9	1	Accept 4
	(b)	Horizontal line of symmetry joining $B A$ and CD	1	
3	(a)	(i) 5	1	
		(ii) $) \cdot()$ www	3	W2 for 50 - 46 (or 4) seen www OR W1 for 12, 16, 5, 7, 6 implied by 46 OR M1 for $50-(44$ or 45 or 47 or 48 or their ' $12+16+5+7+6$ ' min 3 correct) soi Alternative method: W2 for 25-23 OR M1 for 25 (faces) used
	(b)	(i) $15,17,9,7,2$	1	
		(ii) Vertical axis: consistent scale Horizontal axis labelled 5 correct bars same width ft their table	1 1 2	Condone bars labelled W1 for 3 or 4 correct bars same width ft their table
4	(a)	grams or g	1	
	(b)	2.5 m to 4.5 m the tree is (just over) double the girl's height	2	W1 for 2.5 to 4.5 W1 for m providing their height ≤ 20 or for cm providing their height ≥ 100 Allow $\mathbf{1}$ for $2 \leq h<2 \cdot 5$ or $4 \cdot 5<h \leq 5$ if justified by explanation Or treble

5	(a)	$\frac{1}{4} \mathrm{oe}$	1	
	(b)	(i) 7 more outcomes listed	2	W1 for 6 more correct outcomes listed (condone repeats or errors)
		(ii) $\frac{2}{8}$ oe	2	M1 for fraction with denominator 8 OR W1 for fraction 'including' repeats from (i) ft their (b)(i) for 2 marks if repeats ignored
6	(a)	$x+8 y$	2	M1 for x or $8 y$ seen leading to their final answer
	(b)	(i) 13	1	
		(ii) 15	1	
		(iii) $x>6$	2	M1 for $2 \mathrm{x}>12$ OR SC1 for $x=6$ or $x<6$ or 6 on answer line
7	(a)	$\begin{aligned} & \times 40 \\ & 32 \times 80 \\ & 16 \times 160 \end{aligned}$	2	W1 for either column correct
	(b)	$\begin{array}{r} 15 \\ -6^{2}=13 \\ 6^{2}-5^{2}=11 \end{array}$	1 1 1 1	If $\mathbf{0}$ scored, allow M1 for at least 3 of $\mathbf{6 4}$, 49, 36, 25 seen
8	(a)	25	1	Accept 24 to 26
	(b)	(i) $13 \quad 45 \quad 85$	1	
		(ii) At least 2 points plotted Ruled straight line through correct points	1	ft from their table; tolerance $\pm 2 \mathrm{~mm}$ Tolerance $\pm 2 \mathrm{~mm}$ Ignore $n<1$
	(c)	Spickandspan by £11	2	Accept £10-12; allow correct or ft from wrong line M1 for evidence of reading off at 8 hours
9	(a)	6]and 25 respectively	2	W1 for each
	(b)	(i) $2 \frac{3}{5}$	1	
		(ii) $6 \frac{1}{15}$ or equivalent mixed number www	3	M2 for $\frac{16}{15}$ or $\frac{91}{15}$ OR M1 for evidence of equivalent fractions attempted with same denominator and with one correct: $\frac{10}{15}$ or $\frac{6}{15}$ or $\frac{40}{15}$ or $\frac{51}{15}$ oe

Section B

$\left.\begin{array}{|l|l|l|r|l|}\hline \mathbf{1 0} & \text { (a) } & 30 \text { only } & \mathbf{1} & \\ \hline & \text { (b) } & 25 \text { only } & \mathbf{1} & \\ \hline & \text { (c) } & 5 \text { or } 10 \text { or } 20 & \mathbf{1} & \\ \hline \mathbf{1 1} & & 11 & \mathbf{2} & \begin{array}{l}\text { M1 for } 50 / 4 \cdot 25 \text { or } 11 \cdot 7 \ldots \\ \text { or } 11 \times 4 \cdot 25 \text { or } 12 \times 4.25\end{array} \\ \hline \mathbf{1 2} & \text { (a) } & \text { Q } & \mathbf{1} & \\ \hline \mathbf{1 3} & \text { (b) } & 113 \text { to } 117 & \text { (a) } & 6 \ldots \ldots 1518 \\ & \text { (b) } & 27 \\ \text { add } 3 \text { (3 times) or } 3 p-3\end{array}\right)$

19	(a)	$13 \cdot 3$	2	M1 for 3.8×3.5
	(b)	1-1(3...)	2	M1 for $\pi \times 0.6 \times 0.6$
	(c)	No: 10% of 13.3 is 1.33 and 1.13 is smaller	2	ft their (a) and (b) for 2 marks M1 for 1.33 seen or their (a) $\div 10$
20	(a)	$410 \times 60 \times 60 \times 24$ 354(24)000 oe	M1 A1	Accept implied by 35424 (000) or by 24600 and 147600 and figs 354 seen At least 3 sig figs required
	(b)	7:3	2	M1 for any correct partial simplification Allow 2 for 2.33(...) : 1 or for 1:0.42857 rot to 2dp or more
21		Circle, centre O radius 2 cm Line parallel to CD, 5 cm from it Perpendicular bisector of $A B$ Correct region shaded	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	At least relevant part of circle drawn Extending at least to position of circle/arc Region must be well defined; follow through their attempt at 2 lines and arc of circle
22		$\begin{aligned} & 7 \cdot 8^{2}=x^{2}+2 \cdot 5^{2} \\ & (x=) \sqrt{ }\left(7 \cdot 8^{2}-2 \cdot 5^{2}\right)[=\sqrt{ } 54 \cdot 59] \\ & 7 \cdot 4 \text { or } 7 \cdot 39 \end{aligned}$	M1 M1 A2	Allow for a correct Pythagoras statement; x not necessarily subject Allow M0M1 for $(x)=\sqrt{ }\left(7 \cdot 8^{2}+2 \cdot 5^{2}\right)$ soi by $\sqrt{ } 67.09$ or 8.1 or 8.2 or better A1 for other rot versions of $7 \cdot 388 \ldots$ or 7.40 Allow W4 or W3 as appropriate for acceptable answers www

Section B Total: 50

B282 Terminal Paper (Higher Tier)

Section A

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& (a) \& \(23 \cdot 6\) \& 3 \& \begin{tabular}{l}
M1 for \(212 \cdot 4 \div 9\) or \(2124 \div 90\) or for \(0.2124 \div 9\) followed by \(\times 1000\) oe \\
M1 for digits 236 \\
Allow \(\mathbf{3}\) for answer of \(23 \cdot 6\)
\end{tabular} \\
\hline \& (b) \& At least two of 3,6 and 5 seen 90 \(\mathrm{cm}^{3}\) \& 1
1
1 \& \\
\hline 2 \& (a) \& 25 \& 1 \& Accept 24 to 26 \\
\hline \& (b) \& (i) \(1345 \quad 85\) \& 1 \& \\
\hline \& \& (ii) At least 2 points plotted Ruled straight line through correct points \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\] \& \begin{tabular}{l}
ft from their table; tolerance \(\pm 2 \mathrm{~mm}\) \\
Tolerance \(\pm 2 \mathrm{~mm}\) \\
Ignore \(n<1\)
\end{tabular} \\
\hline \& (c) \& Spickandspan by £11 \& 2 \& \begin{tabular}{l}
Accept \(£ 10-12\); allow correct or ft from wrong line \\
M1 for evidence of reading off at 8 hours
\end{tabular} \\
\hline 3 \& \& \begin{tabular}{l}
57 \\
Alternate angles [are equal] \\
52 or ft 109 - their 57 \\
Angles in a triangle add to \(180^{\circ}\)
\end{tabular} \& 1
1

1

1 \& | For y obtained in more than one step, accept full equivalent explanations eg [vertically] opposite + corresponding |
| :--- |
| Condone omission of 180° if angle is correct; or condone omission of 'angles' For z obtained in more than one step, give the mark for the angles in a triangle, condoning poor or no additional explanations |

\hline 4 \& (a) \& $\frac{14}{15} \mathrm{www}$ \& 2 \& M1 for $\frac{9}{15}$ or $\frac{5}{15}$ or other evidence of common denominator used correctly eg $\frac{18}{30}$

\hline \& (b) \& \[
\frac{1}{2} w w w

\] \& 3 \& | W2 for $\frac{15}{30}$ oe unsimplified fraction OR |
| :--- |
| M1 for $\frac{5}{3} \times \frac{3}{10}$ oe |

\hline
\end{tabular}

5	(a)	3 cao	2	M1 for evidence of $\frac{y \text { difference }}{x \text { difference }}$ used or for $3 x$
	(b)	$y=3 x+2$	2	or for $y=$ their $(\mathrm{a}) \times x+2$ OR M1 for $y=3 x+c, c \neq 2$ or for $y=$ their (a) $\times x+c, c \neq 2$ or for $y=m x+2, m \neq 3$ OR W1 for $3 x+2$ or their (a) $\times x+2$ but no ' $y=$ '
6	(a)	93	1	Accept 92 to 96
	(b)	830	1	Accept 820 to 840
	(c)	450	2	Accept 430 to 470 M1 for at least one of 580 and 1030 (tolerance £10)
7	(a)	$[x=] \sqrt[3]{y-5}$	2	M1 for first complete and constructive step correct or for a cube root seen Allow M1 for answer of $3 \times \sqrt{y-5}$
	(b)	$2 a n+a$ or $a(2 n+1)$	2	M1 for $(n+1)^{2}=n^{2}+2 n+1$ soi or $(n+1)^{2}-n^{2}=[1 \times](2 n+1)$ soi
	(c)	$\begin{aligned} & y=\frac{5}{x} \\ & y=x^{3}+5 \\ & y=5^{x} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
8	(a)	12	1	
	(b)	Freq densities: $0 \cdot 3,0 \cdot 75,0 \cdot 9$, 0.7, $0 \cdot 3$ Bars all correct width Bars all correct height cao	1	Seen or plotted; condone two errors
	(c)	Valid, worthwhile comparison	1	0 if only comment about one type of tree
9	(a)	$\frac{17}{33}$	3	2 for $\frac{51}{99}$ OR M1 for 100a $=51 \cdot 5151$.. oe
	(b)	$8 \sqrt{2}$	2	M1 for $\sqrt{18}=3 \sqrt{2}$
	(c)	$3 x^{3} y^{-2}$ or $\frac{3 x^{3}}{y^{2}}$	2	M1 for two 'terms' correct
	(d)	$\frac{1}{16} \text { isw or } 0.0625$	2	M1 for $64^{\frac{1}{3}}=4$ soi or for $64^{-\frac{2}{3}}=\frac{1}{64^{\frac{2}{3}}}$ soi

Section B

10	(a)	Suitable question At least 4 response boxes Non-overlapping categories Covering all eventualities	2	1 for suitable question (condone suitable instruction) with 3 appropriate response boxes or for 4 or more with an overlap or not covering all eventualities or, if no suitable question, 1 for at least 4 response boxes with non-overlapping categories covering all eventualities
	(b)	Plan: two concentric circles Elevation : straight lines across top and bottom, with top longer than bottom Curved sides and approx. symmetrical and correct way up	1 1 1	Accept freehand sketches - mark intent 3D drawings score 0 SC2 for correct plan and elevation reversed [and similarly deduct 1 mark from poorer answers if reversed]
11	(a)	$410 \times 60 \times 60 \times 24$ 354(24)000 oe	M1	Accept implied by 35424 (000) or by 24600 and 147600 and figs 354 seen At least 3 sig figs required
	(b)	$7: 3$	2	M1 for any correct partial simplification Allow 2 for 2•33(...) : 1 or for $1: 0.42857$ rot to 2 dp or more
	(c)	Midpoints $4 \cdot 5,14 \cdot 5$ etc soi Attempt at $\sum f x$ [745] soi [or at least 3 correct values seen of $f x$: 81, 232, 294, 138]] Their $\sum f x \div$ their $\sum f[745 \div$ 50] $14 \cdot 9$	M1 M1 M1 A1	Condone 5, 15 etc Allow second and third M1s with other consistent values of x in each class or W4 for 14.9 www ; allow A1 for 15 if M3 earned OR SC3 for $15 \cdot 4$ OR SC2 for 19•9, 9.9

12	(a)	Turning through these angles is the same as a complete turn round a point	1	oe comment, eg showing pentagon divides into 3 triangles so sum of interior angles = 540° hence sum of exterior angles $=5 \times$ $180-540=360^{\circ}$
	(b)	Sum of given angles attempted [$=466^{\circ}$] Angles in pentagon add to 540° seen or used 74	M1 M1 A1	Alternative method: M1 for finding the exterior angles M1 for using 360° and known exterior angles to find exterior angle to $x\left[=106^{\circ}\right]$ Allow W3 for 74 www
13		Circle, centre O radius 2 cm Line parallel to CD, 5 cm from it Perpendicular bisector of $A B$ Correct region shaded	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	At least relevant part of circle drawn Extending at least to position of circle/arc Region must be well defined; follow through their attempt at 2 lines and arc of circle
14	(a)	$3 \cdot 8$ oe www	3	M1 for correct equation after multiplying out brackets: $5 x-15=4$ M1 for collecting number terms, ft from previous error M1 for division by x coefficient, ft OR M2 for $x-3=0.8$ oe M1 ft for adding their 3
	(b)	$(x+4)(x-2)$ $x=-4$ and 2 ft their factors	M2	M1 for other versions of $(x \pm 4)(x \pm 2)$ or for other versions of $(x \pm a)(x \pm b)$ giving two correct terms when expanded Allow W1 for -4 and 2 without factors

15	(a)	$7 \cdot 8^{2}=x^{2}+2 \cdot 5^{2}$ $[x=] \sqrt{7 \cdot 8^{2}-2 \cdot 5^{2}}[=\sqrt{54 \cdot 59}]$ $7 \cdot 4 \text { or } 7 \cdot 39$	M1 M1 A2	for a correct Pythagoras statement, x not necessarily subject allow MOM1 for $[x=] \sqrt{7 \cdot 8^{2}+2 \cdot 5^{2}}$ soi A1 for other rounded or truncated versions of $7 \cdot 388 \ldots$ to 2 dp or more or for $7 \cdot 40$ allow W4 or W3 as appropriate for acceptable answers www
	(b)	$\sin y=\frac{7 \cdot 2}{7 \cdot 8}$ Use of inverse trig function soi 67(•38...) and comment unsafe /ladder should be further up wall/ is 7.6° out oe Alternative method: $\begin{aligned} & \sin 75=\frac{h}{7 \cdot 8} \text { or } h=7.8 \times \sin 75 \\ & h=7 \cdot 5(3 \ldots) \end{aligned}$ Comment unsafe /ladder should be further up wall oe	M1 M1 A1 OR M1 M1 A1	ft from wrong trig function used Accept 67 or 67.3-67.4 with suitable comment or for $\cos z=\frac{2 \cdot 5}{7 \cdot 8}$ or for $z=71 \cdot 3$.. A1 for $y<z$ since ladder moved down wall so unsafe
16	(a)	0.95 on first set of branches and 'good' or 'no fault' o.e. throughout, consistent with probs. 0.02 and 0.98 on both pairs of second set	1 1	
	(b)	0.931 www or ft	2	M1 for their $0.95 \times$ their 0.98 allow A1 for 0.93 only if correct method seen

17		$2 x+4 y=4 \text { or } 4 x-2 y=10$ Subtraction or addition as appropriate $x=2.4 \text { and } y=-0.2 \text { o.e. }$ Alternative method: One variable substituted for in other equation Dealing with brackets and collecting terms to form 3 term equation (isw) $x=2.4 \text { and } y=-0.2 \text { oe }$	M1 M1 A1 $\frac{\text { OR }}{\text { M1 }}$ M1 A1	Condone one error Must be attempt at correct operation to eliminate variable; condone one error if M0, allow W1 for both values correct Condone one error Condone one error
18	(a)	$y=\frac{k}{x^{2}}$ oe $9=\frac{k}{2^{2}}$ oe $y=\frac{36}{x^{2}}$ or $y x^{2}=36$ oe	M1 M1 A1	M0 for $y=\frac{1}{x^{2}}$ or $y \propto \frac{k}{x^{2}}$ but allow SC1 if $k=36$ subsequently found dep on first M1 May be implied by correct k Allow A1 for $k=36$ W3 for $y=\frac{36}{x^{2}}$ or $y x^{2}=36$ oe $w w w$
	(b)	3 cao	1	
19		$\begin{aligned} & 1 / 2 \times 4.7 \times 5.6 \times \sin 110^{\circ} \text { soi } \\ & \frac{110}{360} \times \pi r^{2} \end{aligned}$ Their areas of sector and triangle equated rearrangement to make r or r^{2} subject $r=3.58 \ldots \text { or } 3.59 \text { or } 3.6$ Allow W5 for answer of $3 \cdot 58 \ldots$ or 3.59 www	M1 M1 M1 M1 A1	$\begin{aligned} & {[=12 \cdot 366 \ldots]} \\ & {\left[=0 \cdot 9599 \ldots r^{2} \text { or } 0 \cdot 3055 \ldots \times \pi r^{2}\right]} \end{aligned}$ eg $r^{2}=\frac{1}{2} \times 4 \cdot 7 \times 5 \cdot 6 \times \sin 110 \times \frac{360}{110 \pi}$ or $r^{2}=12.4 \div 0.96$ or $r^{2}=\frac{\text { their area }}{0.9599 \ldots}$ or $\frac{\text { their area }}{\pi \times 0.3055 \ldots}$ Alternative method: M1 for area of triangle [=12.366...] M2 [ie $2^{\text {nd }}$ and $3^{\text {rd }}$ M1s] for area of circle $=$ their area of triangle $\times 360 / 110$ or their area of triangle $\div 0.3055 \ldots$ [$=40.47$...] M1 for $r^{2}=$ their area of whole circle $\div \pi$ [$=12 \cdot 88$...] or $r^{2}=$ area of their triangle $\div \pi$ or $\sqrt{\text { area of their triangle } \div \pi}$ seen A1 for $r=3.58 \ldots$ or 3.59 or 3.6 MO MO for area of triangle $=\pi r^{2}$ soi

Grade Thresholds

General Certificate of Secondary Education
Mathematics C (J517)
January 2010 Examination Series

Unit Threshold Marks (Module Tests)

Unit		Maximum Mark	\mathbf{a}^{*}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{p}	\mathbf{u}
B271	Raw	50								30	15	0
	UMS	59								40	20	0
B272	Raw	50							38	24	13	0
	UMS	70							60	40	30	0
B273	Raw	50							31	16		0
	UMS	79							60	40		0
B274	Raw	50						37	21	13		0
	UMS	90						80	60	50		0
B275	Raw	50						31	16			0
	UMS	99						80	60			0
B276	Raw	50					25	12				0
	UMS	119					100	80				0
B277	Raw	50				31	16					0
	UMS	139				120	100					0
B278	Raw	50			32	16						0
	UMS	159			140	120						0
B279	Raw	50		31	16							0
	UMS	179		160	140							0
B280	Raw	50	30	15								0
	UMS	200	180	160								0

Unit Threshold Marks (Terminal Papers)

Unit		Maximum Mark	\mathbf{a}^{*}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{u}
B281	Raw	100				68	56	44	32	20	0
	UMS	279				240	200	160	120	80	0
B282	Raw	100	80	64	48	32	19	12			0
	UMS	400	360	320	280	240	200	180			0

Notes

The tables above show the raw mark thresholds and the corresponding UMS for each unit entered in this series. Raw marks in between grade thresholds are converted to UMS by a linear map.

For a description of how UMS are calculated see:
http://www.ocr.org.uk/learners/ums results.html
For a spreadsheet designed to calculate UMS for this specification, please visit the e-community at http://community.ocr.org.uk/community/maths-gcse-ga/home .

The grade shown in the first table as ' p ' indicated that a candidate has achieved at least the minimum mark necessary to access the UMS scale for the unit but insufficient raw marks to merit a grade ' g '. This avoids awarding such candidates a ' u '. Grade ' p ' can be awarded only for units B271 (Module Test M1) and B272 (Module Test M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (J517)

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks):

	A*	A	B	C	D	E	F	G	\mathbf{U}
	J517	700	620	540	460	380	300	220	140

The cumulative percentage of candidates awarded each grade was as follows:

	A *	A	B	C	D	E	F	G	U	Total No. of Cands
J517F				42.1	67.3	79.1	91.2	98.1	100	1811
J517H	14.4	29.8	52.8	81.5	95.2	98.6			100	1247
J517	$\mathbf{5 . 9}$	$\mathbf{1 2 . 1}$	$\mathbf{2 1 . 5}$	$\mathbf{5 8 . 2}$	$\mathbf{7 8 . 7}$	$\mathbf{8 7 . 1}$	$\mathbf{9 4 . 2}$	$\mathbf{9 8 . 3}$	$\mathbf{1 0 0}$	$\mathbf{3 0 5 8}$

3058 candidates were entered for aggregation this series.
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

