GCSE

Mathematics C

General Certificate of Secondary Education J517

Mark Schemes for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Mathematics C (J517)
 MARK SCHEMES FOR THE UNITS

Unit/Content Page
List of abbreviations 1
B271 Module Test M1 2
B272 Module Test M2 5
B273 Module Test M3 7
B274 Module Test M4 10
B275 Module Test M5 12
B276 Module Test M6 14
B277 Module Test M7 17
B278 Module Test M8 21
B279 Module Test M9 23
B280 Module Test M10 28
B281 Terminal Paper (Foundation Tier) 32
B282 Terminal Paper (Higher Tier) 37
Grade Thresholds 44

List of abbreviations

The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- Where you see cao in the mark scheme it means correct answer only.
- Where you see figs 237, for example, this means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point, eg 237000, 2•37, 2•370, and 0.00237 would be acceptable, but 23070 or 2374 would not.
- Where you see ft in the mark scheme it means follow through.
- Where you see isw in the mark scheme it means ignore subsequent working (after correct answer obtained).
- Where you see oe in the mark scheme it means or equivalent.
- Where you see rot in the mark scheme it means rounded or truncated.
- Where you see seen in the mark scheme it means that the mark is earned if that number or expression is seen anywhere in the answer space, including on the answer line, even if it is not in the method leading to the final answer.
- Where you see soi in the mark scheme it means seen or implied.
- Where you see www in the mark scheme it means without wrong working.

B271 Module Test M1

Section A

1	(a)	(i) Voronja	1	Accept Georgia or 2080
		(ii) one thousand (and) six hundred (and) two	1	Accept sixteen hundred and two
		(iii) 1730	1	
	(b)	90	2	M1 for $65+25$ soi
2	(a)	7	2	M1 for " 14 " or " \div 2" soi
	(b)	3 www	3	M2 for 18 - 15 seen OR M1 for " $6+6+3+3$ " or equivalent or better seen
	(c)	Clitheroe North West	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	SC1 for Settle, Skipton and Clitheroe Accept NW
	(d)	140	1	or $140 \cdot 0$
	(e)	11:55, or five to 12 , or equivalent	2	Accept all commonly used time formats M1 for sight of 11:05 or equivalent or $x x: 55$ or "five to x "
3	(a)	(i) 14	1	
		(ii) 17	1	
	(b)	- *	1	Condone three dots and three bars in any configuration
4	(a)	Pentagon	1	
	(b)	18 to 22 (cm)	2	M1 for $5 \times$ soi oe
	(c)	23 to $27\left(\mathrm{~cm}^{2}\right)$	2	M1 for 2 outside correct range (either way), or for clear attempt to count squares as evidenced by numbers/dots/ticks in squares
5	(a)	21	1	
	(b)	4	1	

Section A Total: 25

Section B

14		$16 \cdot 81$ www	3	M2 for digits 1681 seen OR M1 for digits 288 seen OR M1 for digits 1199 seen OR SC1 for digits 168 seen

Section B Total: 25

B272 Module Test M2

Section A

1	(a)	(i) 1.55 cao	2	M1 $3 \cdot 10$ or figs 155 or $\div 4$ oe SC1 4.65 seen
		(ii) 4.65 correct or ft (i)	2	M1 6.20 - their 1.55 soi, or figs 465
	(b)	23.40 cao	4	W2 117 seen OR M1 attempt at $234 \div 2$ (implied by figs 117 or 112) AND M1 their $117 \div 5$ soi Alternative method: W2 46 . 80 OR M1 attempt at $234 \div 5$ (implied by figs 468) AND M1 their $46.80 \div 2$
2	(a)	Elvis Presley $22 \cdot 1 \quad 8$ Jan 1945	1	All correct
	(b)	George Harrison Ray Charles Kurt Cobain	3	Must be in this order w1 each SC2 for 3.7,5.3 and $26 \cdot 3$ in order
	(c)	42 cao	2	M1 $27 \quad 364042587173$
	(d)	(i) $16 \cdot 3 \mathrm{cao}$	2	M1 attempt at $12 \cdot 6+3 \cdot 7$, or figs 163
		(ii) $8 \cdot 9$ cao	2	M1 attempt at $12 \cdot 6-3 \cdot 7$, or figs 89 If 0 scored in (i) and (ii), then SC1 figs 37 and 126 seen
3	(a)	London Cardiff 6	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	Accept ${ }^{-10}$ Accept ${ }^{-17}$ W1 (${ }^{-}$)8 and ($\left.{ }^{(}\right) 14$ seen, or ${ }^{-6}$
	(b)	Clockwise	1	
	(c)	108	2	M1 18×6 soi, or figs 48 or 60 seen

Section A Total: 25

Section B

4	(a)	Pyramid	1	
	(b)	Cone Cylinder	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Must be in this order
5	(a)	(i) Octagon	1	
		(ii) Two correct sections	1	Condone any symmetrical pattern even if more than two sections shaded; must contain at least 2 not shaded
	(b)	$x \times \sqrt{ } \times$	1	Accept any non-ambiguous indication
6	(a)	$\begin{aligned} & x \\ & \sqrt{x} \\ & x \\ & x \end{aligned}$	1	Any non-ambiguous indication
	(b)	27 because take away 5 oe	1+1	Accept 27 after sequence (and 22 in answer) and -5 (direction and quantity needed)
	(c)	Coherent pattern and correct explanation	1	Four consecutive terms should fit the stated pattern.
7	(a)	$\frac{12}{16} \text { oe isw }$	1	$\frac{3}{4}, \frac{6}{8}$, "three quarters" oe fraction
	(b)	$\begin{aligned} & 3 \\ & \text { " } 3 \text { out of } 10 \text { " or " } 3 \text { tenths" } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept 3 squares shaded
	(c)	Any shape containing eight 1 cm squares clearly and accurately shown	2	W1 freehand lines, poor shading, dots, ticks used OR SC1 pattern of 8 squares drawn beside the grid that are not 1 cm squares
	(d)	6	2	W1 4×3, or 12 , or $\div 2$, or 2×3, or 4×1.5
8		$\begin{aligned} & \hline \text { A } \\ & \text { E } \\ & \text { B } \\ & \hline \end{aligned}$	4	Must be in this order w1 each
9	(a)	Black	1	Condone " 5 "
	(b)	$\begin{array}{r} \text { (i) } \mathrm{B} \\ \mathrm{~A} \end{array}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept 0 or impossible
		(ii) Arrow roughly halfway between A and B	1	By eye

Section B Total: 25

B273 Module Test M3

Section A

1	(a)	$4 \cdot 5$ oe	1	
	(b)	27.5 oe	1	
	(c)	$2 \cdot 4$	1	
	(d)	8	1	
	(e)	3	2	M1 for 15 or 5 seen www
2	(a)	(i) 40	1	
		(ii) 11	1	
		(iii) Correct bar	1	
	(b)	1.60	1	Not $1 \cdot 6$
	(c)	268	1	
	(d)	(i) 1335 or 135 or 135 pm	1	
		(ii) 25	1	
3	(a)	Correct enlargement	2	W1 left block 6×2 or base 2×4 OR SC1 correct size, incorrect orientation
	(b)	Height should be 9 Needs [more] depth/thickness/width	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
4		104 www	4	W3 130-26 (=), or $40+40+24(=)$, or 80 +24 (=) OR W2 26 or 80 and 24 seen, or 40,40 and 24 seen Alternative method: W1 130 or 40 or 24 seen, or 10 and 6 seen AND M2 attempt to find 80% of 130 ; can be done in parts, eg 80% of 50,50 and 30 OR M1 attempt to find 20\% of 130; can be done in parts AND M1 attempt to subtract their 20\% from their 130 , or attempt to add their 40,40 and 24

$\mathbf{5}$	(a)	37 to 39	$\mathbf{1}$	
	(b)	(i) 34 to 35	$\mathbf{1}$	
		(ii) 111 to 117	$\mathbf{1}$	ft their (a) $\times 3$
		Find value of $£ 30$ and double it oe	$\mathbf{1}$	Any equivalent method (eg $£ 40+£ 20)$

Section A Total: 25

Section B

6	(a)	289	1	
	(b)	27	1	
7	(a)	$\frac{1}{11} \text { or } 0.09 \text { or } 9 \%$	1	
	(b)	$\frac{2}{11} \text { or } 0 \cdot 18 \text { or } 18 \%$	1	
8	(a)	(i) A	1	
		(ii) C	1	
	(b)	Correct cuboid	2	In any orientation or sense W1 1 correct face
9	(a)	15	1	
	(b)	8	1	
	(c)	9	1	
10		35 www	2	M1 for $42 \div 6$ or 7 , or 42×5 or 210 seen
11	(a)	65	1	
	(b)	$32 \cdot 8 \mathrm{www}$	3	M1 attempt to add all 10 numbers soi by 328 M1 attempt to divide their total by 10 OR SC2 $290 \cdot 2$
	(c)	13.8-14.2	1	
	(d)	4.85(0)	1	
12	(a)	33	2	M1 for 18×1.5 or 27 seen
	(b)	26	2	M1 for 3×7 or 21 seen
	(c)	No because $1100(\mathrm{ml})$ is more than 1 litre	2	M1 250 or 1100 seen

B274 Module Test M4

Section A

$\left.\begin{array}{|l|l|l|l|l|}\hline \mathbf{1} & \text { (a) } & \text { (i) } 17 \cdot 84 & \mathbf{1} & \\ \hline & & \text { (b) } & \text { (ii) } 7 \cdot 92 & (0) \cdot 54 \\ & & \text { (ii) }(0) \cdot 054\end{array}\right)$

Section A Total: 25

Section B

7	(a)	$(-5,1)$	1	
	(b)	B plotted at (${ }^{-3},-2$)	1	
	(c)	D plotted at (3,4)	1	Must ft their B
	(d)	Kite	1	Must ft their quadrilateral
8	(a)	$\frac{5}{12}$	2	W1 for 5 as numerator, or 12 as denominator
	(b)	3	2	W1 for quarter of spinner clearly indicated, or for attempt at $12 \div 4$ seen, or for attempt to convert $\frac{1}{4}$ into twelfths
9	(a)	105	2	W1 for $360-(140+115)$ oe
	(b)	53	2	W1 for 180-(90 + 37) oe
10	(a)	(i) 16	2	W1 for 15,17 as answer, or for ordered list of at least 8 numbers seen
		(ii) 21	1	cao
	(b)	Carlos because median is higher	1	Must ft their (a)
11	(a)	$0 \cdot 5$	1	Accept equivalents
	(b)	400	1	
	(c)	24	3	W2 for answer of 4 www , or $2000 \div 500$, or $2 \div 0 \cdot 5$ OR W1 for 2000 or 0.5 seen, or indication that $4 \times 500 \mathrm{ml}=2$ litres If 0 scored, SC1 for answer 12 www
12	(a)	$10 \times 10 \cdot 5=105$	1	
	(b)	Correct trial with first number > 10 Further correct improved trial 18 and 18.5 on answer line	1 1 1 1	Including tick in correct column or correct answer As above

Section B Total: 25

B275 Module Test M5

Section A

1	(a)	2		1	
	(b)	$3 \text { cort }$	rect squares shaded; no others	2	1 for 2 correct squares shaded and a maximum of 1 wrong, or for 3 correct and one extra
2	(a)	27		1	
	(b)	2^{4}		1	Mark final answer
	(c)	$\frac{5}{6}$		1	
	(d)	$\frac{3}{28}$		1	Ignore subsequent cancelling
	(e)	(i) ${ }^{-2}$		1	
		(ii) ${ }^{-8}$		1	
3	(a)	$\begin{array}{ll}\text { Number of edges } & 12 \\ \text { Number of faces } & 6\end{array}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b)	(i) 30		2	M1 for evidence of $2 \times 3 \times 5$ attempted
		(ii) Correct net (5 more faces correctly placed), correct size		W3	Ignore extra flaps W2 for 3 more correct pieces correctly placed; ignore extra pieces. OR W1 for 2 more correct pieces correctly placed; ignore extra pieces. After 0 scored, SC1 for a net of a cuboid of incorrect size
4		15 or 16 www 'their 16' - their 15' Ana saves more by $£ 1$ cao		W2 M1 A1	Or M1 for $50 \times 0 \cdot 3$, or $40 \div 5 \times 2$ SC2 Ana saves more by $£ 1$ without working
5	(a)	$9 a+2 c$		2	M1 for 9a or (+) $2 c$ seen
	(b)	(i) 4		1	
		(ii) $5 \cdot 5 \mathrm{oe}$		2	M1 for $2 x=5+6$ or better or their $2 x$ correctly halved

Section A Total: 25

6	(a)	$\begin{aligned} & \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3, \mathrm{~A} 4, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{C} 1 \text {, } \\ & \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4 \end{aligned}$	2	M1 for at least 8 of these (n (1 1)
	(b)	$\frac{1}{12} \text { or } \mathrm{ft} \text { their (a) }$	1	Accept decimal and percentage equivalents
7	(a)	$\begin{array}{lll}4 & 2 & 8\end{array}$	1	
	(b)	At least two points plotted of $(0,-4)$, $(3,2)$ and $(6,8)$, or ft from table Correct ruled line drawn from at least $(0,-4)$ to $(5,6)$	1	Tolerance $\pm 1 \mathrm{~mm}$ Tolerance $\pm 2 \mathrm{~mm}$ at these points
	(c)	-3 , or ft from their ruled straight line	1	Accept ${ }^{-} 2 \cdot 9$ to ${ }^{-} 3 \cdot 1$, or tolerance $\pm 1 \mathrm{~mm}$ from their ruled straight line
8	(a)	24	1	
	(b)	$21 \cdot 2$	2	M1 for 6.2 or 15
9	(a)	5500	1	
	(b)	3452	1	
	(c)	12	2	M1 for $\frac{96}{8}$ or $\frac{96}{800}(\times 100)$
10	(a)	(i) Yes because $90\left({ }^{\circ}\right.$) or $1 / 4$	1	oe, eg 25%, right angle, etc
		(ii) $72\left({ }^{\circ}\right.$) or 20% mentioned $\frac{360}{5}$ shown, or 20% linked to Conservative and $1 / 5$	1	Must also have 'Yes' to get both marks
		(iii) 25	2	Accept 24 or 26 for 2 marks M1 for $\frac{45}{360} \times 200$ or 12.5% of 200 oe, tolerance 1° or 0.5%
	(b)	(i) $4 \cdot 2$	1	
		(ii) Beaton and range	1	Strictly ft their (i)
11	(a)	$A C=5.4 \mathrm{~cm}$ drawn, or arc this radius drawn $B C=6 \cdot 1 \mathrm{~cm}$ drawn, or arc this radius drawn Both relevant compass arcs and triangle completed	1 1 1	Tolerance $\pm 2 \mathrm{~mm}$ for both sides; arcs must be drawn in relevant position After 0 scored, SC1 for an incorrect triangle with construction arcs
	(b)	75 to 79 or ft from their triangle	1	

Section B Total: 25

B276 Module Test M6

Section A

Section B

8		$\begin{aligned} & \text { stopped } \\ & 2 \cdot 5 \text { or } 2^{1 / 2} \\ & 475 \end{aligned}$	1 1 1	Allow equivalent expressions for 'stopped' Allow equivalents such as 'two and a half'
9	(a)	(i) F and N	1	Either way around
		(ii) Face IJKL marked or indicated	1	Accept IJKL as the answer
	(b)	82 www or $8200 \mathrm{~mm}^{2} \mathrm{www}$	3	M1 two of the three measurements (2 cm , 3 cm and 7 cm allowing $\pm 1 \mathrm{~mm}$) seen or implied from one of their areas $(6,14,21$, 12, 28 or 70) M1 two different correct areas seen from eg (i) 6,14 and 21 (ii) 12,28 and 42 or (iii) 70 alone is enough ft their measurements if they are incorrect and ft their method Candidates may mark a longer distance, eg the total length as 10 (or width 11); this will count as one length unless they show a part length as well. So 10 and 11 seen scores M1 M0. Figures may be on the diagram. Allow answers in mm
10	(a)	$\begin{array}{lllll}1 & 3 & 5 & 7 & 9\end{array}$	1	
	(b)	Correct ruled line	2	M1 for four points plotted correctly ($\pm 2 \mathrm{~mm}$) ft their table
11		$5 \cdot 3$	2	M1 37-23, 7-0064, or figs 53(13...) seen
12		$3 \cdot 5$ oe www	3	Maximum of M2 if answer not correct, from: M1 collecting the x terms eg $5 x-3 x+a=b$ or better M1 collecting the constants eg $a x=6+b x+1$ or better M1 for $x=\frac{b}{a}$ after $a x=b(a \neq 1)$

$\mathbf{1 3}$	(a)	Four points plotted correctly	$\mathbf{2}$	$\mathbf{1}$ for two points plotted correctly ($\pm 1 \mathrm{~mm}$)
	(b)	Negative	$\mathbf{1}$	Allow a description such as ' as the temperature increases the number sold decreases'
	(c)	Ruled line of best fit	$\mathbf{1}$	From at least $(5,50$ to 60$)$ to (20, 18 to 28)
	(d)	35 to 45	$\mathbf{1}$	Correct or ft their single ruled LOBF
$\mathbf{1 4}$	(a)	$55 \cdot 38$ to $55 \cdot 44$	$\mathbf{2}$	M1 $\pi \times 4.22$
	(b)	19.68 or 19.7	$\mathbf{2}$	M1 $4.8 \times 8.2 \div 2$

Section B Total: 25

B277 Module Test M7

Section A

1	(a)	Ruled line of best fit	1	From at least (1-25, 42 to 47) to (3,25 to 30)
	(b)	Read off at $x=2.3$ from their attempt at a straight LOBF	1ft	ft their LOBF only if it has a negative gradient
	(c)	Negative	1	Accept 'as the engine size increases fuel economy decreases' oe Ignore 'weak', 'strong', etc. Description must compare trend
2	(a)	$\begin{array}{llllllll}-6 & -1 & 2 & 3 & 2 & -1 & -6\end{array}$	1	
	(b)	Parabola drawn within ± 1 square cao	2	P1 6 points plotted either correctly or ft (a) ; tolerance ± 1 square
	(c)	A comment referring to the points of intersection with the x-axis or (line) $y=0$	1	
3	(a)	$x=55^{\circ}$ Correct reason related to parallel lines	2	M1 for any of the angles a, c, d, e,f,g,h found or seen on diagram, but not b $\begin{aligned} & a=d=122^{\circ}, c=f=55^{\circ}, e=58^{\circ}, g= \\ & 125^{\circ}, h=58^{\circ} \end{aligned}$
	(b)	$\angle B A C$ is 95°, not 90°	1	Accept $\angle \mathrm{BAC}$ should be 90°
4	(a)	7^{6}	1	Accept $7^{6} / 1$
	(b)	$\begin{aligned} & x=4 \\ & y=1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	If 0 scored, SC1 for tree/ladder completed to prime factors with at most one error, or for 4 and 1 reversed
	(c)	$2 \text { or } \frac{2}{1}$	1	
5	(a)	$\begin{aligned} & {[7 x-2=] 4 x+10} \\ & 3 x=k \text { or } k x=12 \\ & x=4 \text { or } 12 / 3 \end{aligned}$	M1 M1 M1	Accept $3 \cdot 5 x-1=2 x+5$ or $1 \cdot 5 x=k$, or $k x=6$ Correct or ft from their $a x=b(a \neq 1)$ Allow W3 for answer 4, dep on $3 x$ and 12 seen, or trials
	(b)	$x>5$ final answer	2	M1 $2 x>10$ or answer of 5 with wrong inequality or $x=5$.

$\mathbf{6}$	(a)	40	$\mathbf{2}$	W1 8 or $0 \cdot 2$ seen
$\mathbf{7}$	(b)	Division by a number less than one would give an answer $>8 \cdot 16$	$\mathbf{1}$	Accept alternative valid arguments such as 'answer should not terminate since factors of 85 are 5 and 17'
$\frac{4}{9}$ and $\frac{7}{12}$	$\mathbf{2}$	W1 $\frac{4}{9}$, or $\frac{7}{12}$, or $\frac{4}{9}$ and $\frac{7}{12}$ and one other		

Section A Total: 25

Section B

8	(a)	$\frac{52}{200} \text { oe }$	1	Ignore incorrect cancelling/conversions after correct relative frequency seen
	(b)	Attempt to highlight the differences between the frequencies, eg unfair because the frequencies are very different	1	Accept fair with reference to chance (coincidence) or closeness of frequencies to 50 or (relative frequency) of $1 / 4$
9		£36 391 SFr	2	M1 $82 \cdot 8 \times \frac{240}{552}, 82 \cdot 8 \div 2 \cdot 3$, oe M1 $170 \times \frac{552}{240}, 170 \times 2 \cdot 3$, oe If 0 gained, $\mathbf{S C 1}$ for any of these seen: $552 \div 240$ or $2 \cdot 3$ $240 \div 552$ or 0.434 to 0.435 or 0.43 $552 \div 82 \cdot 8$ or $6 \cdot 66$ to 6.67 or $6 \cdot 6$ or $6 \cdot 7$ $240 \div 170$ or $1 \cdot 411$ to $1 \cdot 412$ or $1 \cdot 41$ or $1 \cdot 4$, or for identifying a relevant ratio
10	(a)	$C=24 n+35$	2	W1 $24 n$ Condone units used in formula
	(b)	$(n=) \frac{c-15}{30}$	2	M1 $30 n=C-15$, or $\frac{C}{30}=n+0 \cdot 5$ or correct ft from error seen
11		$x^{2}+2 x-5 x-10$ or better	2	Condone $\pm 5 x$ and ± 10 M1 any 3 out of 4 terms correct
12		Midpoints soi Their midpoints \times frequnecies Attempt at their $\Sigma \mathrm{fm} \div 50$ $157 \cdot 6$ www	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	at least 3 of 145, 155, 165, 175 at least 3 correct dep on their midpoints within intervals $(7880 \div 50)$ Allow W4 www
13	(a)	7.8 www	3	M2 $(A B=) \sqrt{13 \cdot 0^{2}-10 \cdot 4^{2}}$ or $\sqrt{60 \cdot 84}$ or $\sqrt{169-108 \cdot 16}$ OR M1 $\left(A B^{2}=\right) 13 \cdot 0^{2} \pm 10 \cdot 4^{2}$ OR $\operatorname{SC1}\left(A B^{2}=\right) \mathbf{2 7 7} \cdot 16$ or $(A B=) 16 \cdot 6(\ldots)$
	(b)	53.5	1	

14	(a)	$\left(2 \times \pi \times 5^{2}\right)+(2 \pi \times 5 \times 12)$ or better	M3	eg $2 \times 25 \pi+120 \pi$ or 170π
OR				
50π or 120π	M2			
		$(2 \times) \pi \times 5^{2}$ or $2 \pi \times 5 \times 12$ OR	M1	157 to 158 or 376.8 to 377.2
533.8 to 534.3 www	A1	Allow W4 www SC3 final answer of 455.2 to 455.8 or 145π from $25 \pi+120 \pi$		
	(b) 8.5 oe	$\mathbf{1}$		

B278 Module Test M8

Section A

1	(a)	Enlargement $(0,2 \cdot 5),(10,2 \cdot 5),(2 \cdot 5,5),(7 \cdot 5,5)$	2	M1 enlargement with incorrect SF and centre $(0,0)$ correct, or correct SF and incorrect centre, or 2 correct vertices
	(b)	22 or $22 \cdot 0$	2	M1 2.5×8.8 seen or implied
2	(a)	(i) $x=1$ correct	1	
		(ii) $y=x+2$ correct	1	
	(b)	Region R correct	2	M1 following correct lines in (a), for indicating a region on the correct side of two of the lines
3		$6 \frac{11}{15}$	3	M2 $11 / 15$ or $101 / 15$ OR M1 $5 / 15$ or $6 / 15$ or $35 / 15$ or $66 / 15$
4		$\pi a b$ because eg length \times length	2	W1 π ab
5	(a)	3.4	1	
	(b)	2.2 and 5.6 marked Box with only 3.4 marked, or only their 3.4 marked within box	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Condone not joined to 0.2 and 12
	(c)	Comments eg Average distance greater at H Smaller spread at H	2	For 2 marks one comment must be in context using distance/travel oe W1 for each distinct comment referring to schools Must ft their box plots
6	(a)	Paraguay, Ecuador, Argentina, Brazil	1	
	(b)	1.8×10^{7}	2	$\begin{aligned} & \text { M1 } 1.78(\ldots) \times 10^{7} \text { or } 1 \cdot 7(\ldots) \times 10^{7} \text { or } \\ & 18 \times 10^{6} \text { oe } \end{aligned}$
	(c)	20	1	Accept 21
7		$(x+5)(x-4)$ ${ }^{-5}$ or 4 or ft their factors if two solns.	2	M1 for factors, using integers excluding 0 , giving two terms correct when expanded Both solutions required Both solutions without method scores 1 mark only

Section A Total: 25

Section B

8	(a)	Triangle B vertices (1, 2) $(2,2)(1,0)$	2	M1 180° rotation but incorrect centre
	(b)	Triangle C vertices $(5,4)(6,4)(5,2)$	2	M1 one direction correct ft their B for W2 and M1
	(c)	Rotation 180° about $(2,3)$ OR Enlargement SF $^{-1}$ centre $(2,3)$	2	M1 either Rotation 180° or about $(2,3)$ Description must ft their C for W2 and M1
9		$x=2 y-4$	2	M1 $2 y=x+4$ or $\frac{x}{2}=y-2$ From incorrect 1st step allow ft to their final answer
10		$£ 420$ www	3	$\begin{aligned} & \text { M2 } 493 \cdot 50 \div 1 \cdot 175 \text { oe } \\ & \text { OR } \\ & \text { M1 } 1 \cdot 175 \text { or } 117 \cdot 5 \text { seen } \end{aligned}$
11	(a)	$8 a+5 c=2300$	1	
	(b)	$\begin{aligned} & 8 a+8 c=2960 \text { or } 5 a+5 c=1850 \\ & 3 c=660 \text { or } 3 a=450 \\ & a=150, c=220 \end{aligned}$	M1 M1 W1	ft from (a) Condone 1 error in multiplication Condone 1 error in subtraction
12		77 or 77.4 to 77.5 without wrong method used	3	$\begin{aligned} & \text { M2 } 95 \times 0.96^{5} \\ & \text { OR } \\ & \text { M1 } 0.96 \end{aligned}$
13	(a)	Tree diagram correct	2	M1 first spin 'lose' as 5/8
	(b)	25/64 isw, or 0.39(...), or 39•(...)\%	2	M1 $5 / 8 \times 5 / 8$ fractions oe <1 A1 ft their fractions oe <1
14		43.4 to 43.5 www	3	M1 $\cos x=9.8 / 13.5$ oe $0.72[.$.] M1 inverse trig function soi, ft their trig function A1 43 to 44, dependent on at least M1 scored

[^0]
B279 Module Test M9

Section A

1	(a)	4.2×10^{9}	2	W1 for $4.2 \times 10^{n}(n \neq 9)$, or for $[n \times] 10^{9}$, or for 4200000000 or $4 \cdot 2^{9}$ etc
	(b)	(i) $\frac{1}{8}$ or 0.125	1	
		(ii) 1	1	
		(iii) 3	1	allow ± 3
2	(a)	0.4 on first branch and appropriate labels throughout 0.9 and 0.1 on both sets of second branches	1 1	
	(b)	$1-\mathrm{P}$ (no practice, no practice) $[1-] 0 \cdot 4 \times 0 \cdot 1$ $0.96 \text { o.e. }$	M1 M1 A1	$1-0.4 \times 0.1$ implies previous M1 if not seen already Accept equiv fractions or \%
		Alternative Method: $0.6 \times 0.9+0.6 \times 0.1+0.4 \times 0.9$, or for $0.6+0.4 \times 0.9$ 0.96	M2 A1	M1 for correct three branches identified, or for two of three correct products $0.6 \times$ $0.9,0.6 \times 0.1,0.4 \times 0.9$, or their outcomes, or ft from their tree

3	(a)	$\begin{aligned} & 5(2 x+7)-2(12 x+3) \text { or } \\ & 5(2 x+7)-6(4 x+1) \text { oe soi } \end{aligned}$ $10 x+35-24 x-6$ Their LHS with no fractions $=5 \times 5 \times$ 2 [or 50] or ft seen [oe after any simplification, for those who multiply up one fraction at a time and simplify in between] $[x=]-3 / 2 \text { oe cao }$	M1	For attempt to multiply at least one of LHS numerators by 2,5 or 10 ; may be numerators of two separate fractions or of one fraction, or M1 for at least one fraction 'eliminated' by attempt to multiply For correct expansion of at least one pair of brackets, ft from one previous error, award as numerator of a single fraction or as numerator of two fractions with the same denominator or as Ihs after both fractions eliminated by multiplying For correctly dealing with RHS when eliminating fractions; allow M1ft for $a x+b=5 c \mathrm{ft}$ their $\frac{a x+b}{c}=5(c \neq \pm 1)$ after wrong subtraction AO from wrong working ; allow recovery from missing brackets/sign error
		$\begin{aligned} & \frac{\text { Alternative Method: }}{x+3 \cdot 5-(2 \cdot 4 x+0 \cdot 6)} \text { oe } \\ & -1 \cdot 4 x=2 \cdot 1 \text { oe } \\ & {[x=]-3 / 2 \text { oe cao }} \end{aligned}$	M2 M1 A1	Condone missing brackets; M1 for two terms correct ignoring signs At least one side correct after simplification W0 for $[x=]^{-} 3 / 2$ oe without evidence of correct algebra
	(b)	$(3 x-1)(x-2)$ $x=\frac{1}{3}$ oe or 2 [both required]	M2	M1 for other versions of $(3 x \pm 1)(x \pm 2)$ or other factors of form $(a x+b)(c x+d)$ with a, b, c, d non-zero giving two of the three terms correct Or W1 ft for other answers ft from their factors of form $(a x+b)(c x+d)$ with a, b, c, d non-zero
4		$y=2 x+5$	3	M1 for $y=2 x[+k], k \neq 5$ or ${ }^{-1}$ M1 for $11=$ their gradient $\times 3+k$ oe or for their $k=11-3 \times$ their gradient (may be stepping off on diagram) or for their equation being for a line going through (3, 11) OR M2 for $y-11=2(x-3)$

5	(a)	$x y=20 \text { or } y=\frac{20}{x} \text { or } x=\frac{20}{y} \text { oe }$	2	M1 for $x y=k$ or $y=\frac{k}{x}$ oe with other letters, but not a number instead of k, or for $10=k / 2$ oe
	(b)	-5 www or ft	1	$\mathrm{ft} \mathrm{from} \mathrm{(a)} \mathrm{only} \mathrm{if} \mathrm{M1} \mathrm{gained} \mathrm{there}$
	(c)		2	M1 if one branch correct shape and position

Section A Total: 25

Section B

6		$[x=] \sqrt[3]{\frac{y}{8}}$ or $[x=] \frac{\sqrt[3]{y}}{2}$ as final answer	2	M1 for a correct constructive first step in rearrangement, or for cube root seen
7		104 \angle at centre is double \angle at circumference 52 [$\angle \mathrm{in}$] alternate segment	1 1 1	or \angle at circumference is half \angle at centre Dep on angle correct; or mention of both isosceles triangle and angle between tangent and radius $=90^{\circ}$
8		9 www	2	M1 for 8.8 or $66 \times \frac{100}{750}$ oe
9	(a)	$\begin{aligned} & \text { [speed }=] \text { distance } \div \text { time } \\ & {[\max =] \text { max } \div \min \text { or }[\mathrm{ub}=] \mathrm{ub} \div \mathrm{lb}} \end{aligned}$		May be incorporated in their words Or for max/ub distance and min/lb time mentioned, or for max/ub of 383 and $\mathrm{min} / \mathrm{lb}$ of $43 \cdot 7$, or for 383.5 is ub and 43.65 is lb
	(b)	8.74 www	2	M1 for $382.5 \div 43.75$ or other rot versions of $8 \cdot 742857(\ldots)$ to at least 2 dp
10		Frequency densities seen or implied: $2 \cdot 8,3 \cdot 4,4,4 \cdot 6,2 \cdot 2$ Bars correct widths/ endpoints Bars correct height and vertical axis correctly scaled, using a scale of 1 cm to 1 unit or 2 cm to 1 unit	1 1 1	Condone one error; may be implied by heights of bars using their scale Tolerance for width and height $\leq 1 \mathrm{~mm}$; eg condone 5 to 10 bar starting at 4 No ft from wrong frequency densities for last mark
11	(a)	$(4,1 \cdot 5,2)$	2	1 for two coordinates correct
	(b)	7 or $7 \cdot 0 \mathrm{www}$	2	M1 for $6^{2}+3^{2}+2^{2}$ soi [accept 48.8 to 49]; condone an error in one of $6,3,2$ or for two equivalent applications of 2D Pythagoras OR M1 for the diagonal of a face found to 2 or more sf
12		8.8 to 8.92 inclusive www	3	M2 for $\frac{150}{360} \times \pi \times 2 \cdot 6^{2}$ oe OR M1 for $\frac{150}{360}$ oe or $\frac{360}{150}$ oe [$=2 \cdot 4$] soi, or for $\pi \times 2 \cdot 6^{2}$ or $21 \cdot 2(\ldots)$ seen unless spoiled by circumference etc used

| 13 | $18 \cdot 8(097 \ldots)$ to 3 or more sf www $\mathbf{3}$ | M2 for [linear] sf $=\sqrt[3]{5}$ soi
 OR
 M1 for [volume] sf $=5$ soi
 Allow A1 for 19 if $\mathbf{M 2}$ earned
 Alternative method: |
| :--- | :--- | :--- | :--- |
| M1 for ratio of lengths $=\sqrt[3]{200}: 10$ oe soi
 AND
 M1 for $\frac{11}{\sqrt[3]{200}} \times 10$ oe | | |

Section B Total: 25

B280 Module Test M10

Section A

$\mathbf{1}$	(a)$0 \cdot 13$ (b) 80 has [prime] factors of 2 and 5 www, or the prime factors of 80 are factors of 10 www	$\mathbf{2}$	W1 for $0 \cdot 13 \ldots$ seen For 2 marks there must be no incorrect comment made in addition W1 for $0 \cdot 0125$ seen or $2,2,2,2,5$ seen, or for correct reason given but error in prime factors seen	
$\mathbf{2}$		$\frac{62}{110}$ oe www isw cancelling and conversion	$\mathbf{4}$	W3 for $\left(\frac{3}{11} \times \frac{2}{10}\right)+\left(\frac{8}{11} \times \frac{7}{10}\right)$ oe OR

5	(a)	204 and 336	2	W1 for either value seen with no extras, or both correct with extras
	(b)	6 with a reason	1	eg Six complete sine waves over interval 0 to 360 oe, or $360 \div 60=6$
6	(a)	$\begin{aligned} & x^{2}+(2 x+1)^{2}=10 \\ & {\left[(2 x+1)^{2}=\right] 4 x^{2}+4 x+1 \text { oe }} \\ & 5 x^{2}+4 x-9=0 \end{aligned}$	M1 M1 A1	Brackets essential but can be recovered later Implied by $5 x^{2}+4 x+1=10 \mathrm{www}$ Dependent on $\mathbf{M 2}$ and no errors seen Must have $=0$
	(b)	$(5 x+9)(x-1)$ Must be answered in this part and not in part (a) -9/5 oe and 1 mark final answers	M2	M1 for $(5 x \pm 9)(x \pm 1)$, or for $(5 x \pm 1)(x \pm$ 9) Alternative method for M2, accept: $\begin{array}{ll} & 5 x(x-1)+9(x-1) \\ \text { or } & x(5 x+9)-1(5 x+9) \end{array}$ ft their brackets dep on $\mathbf{M 1}$ earned for factors

Section A Total: 25

Section B

7	(a)	$520^{2}+310^{2}-2 \times 520 \times 310 \cos 38$ Square root soi 335 or 340 www	M1 M1 A2	If $\cos 38$ not stated allow 0.78 to 0.8 to imply M1 Dependent on previous M1 [112445•(...)]; Not for 44100 cos 38 implied by answer 186•(...) If $\cos 38$ not stated, final answer in range 329 to 340 implies M2 www A1 for 335 (...) Allow W4 for answer 335 or 340 www
	(b)	$\begin{aligned} & 1 / 2 \times 520 \times 310 \sin 38 \text { oe } \\ & 49600 \text { to } 49650 \\ & 4.96 \text { to } 4.965 \mathrm{www} \end{aligned}$	M1 A1 A1ft	Allow 50000 after M1 earned Implies previous A mark if correct ft their area $\div 10000$ evaluated to 2 sf or better; dependent on M1 earned Allow answer 5 after M1 earned and no errors seen Allow W3 for answer 4.96 to 4.965 www
8	(a)	85	1	
	(b)	$\begin{aligned} & 62 \times 0 \cdot 97^{5}+23 \\ & 76 \cdot 2 \text { to } 76 \cdot 25 \text {, or } 76 \mathrm{www} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	W1 for answer 42 or M1 for $0.97^{m}=\frac{40-23}{62}$ or better OR If formula not rearranged $\mathbf{M 1}$ for one correct trial in range $36 \leq m \leq 46$ seen (evaluation to 1 dp or better rounded or truncated) Allow W2 for $76 \cdot 2$ to $76 \cdot 25$, or 76 www
	(c)	42.48 or 42.5 or 43	2	
9		$5(x+1)+2(x-3)=3(x+1)(x-3)$ oe $3 x^{2}-13 x-8[=0]$ oe cao $\frac{13 \pm \sqrt{((-) 13)^{2}-4 \times 3 \times-8}}{2 \times 3}$ or better $[\sqrt{265}]$ 4.88 and ${ }^{-0.55}$ cao	M2 A1 M2 A2	Must clear all fractions correctly M1 for $5(x+1)+2(x-3)$ or better seen (could still be in one or two fractions) Must be trinomial ft their eqn provided quadratic and a, b and $c \neq 0$ and must come from some previous working (i.e. not be invented) M1 for one error in quadratic formula A1 for either correct After A0 allow SC1 for both answers which round to 4.88 and ${ }^{-} 0.55$ or for 4.9 and ${ }^{-0.5}$

10		Graph translated by $\binom{2}{0}$	1	Same shape by eye and intention to cross x-axis at 2 and 4
11	(a)	235	2	M1 for three of $6 \times 5,13 \times 5,7.5 \times 10$, 4.5×10 or 1×20 soi [30], [65], [75], [45], [20]
	(b)	Reasons with 0 and 50 being the limits but not actual data values	1	eg The largest waiting time could be less than 50 , or we don't know the individual times, only the groups
	(c)	No with $\frac{30+65+75}{\text { their }(a)} \times 100$ correctly calculated [72[3] \%] in working OR No with $0.8 \times$ their (a) oe (188) correctly calculated and 170 seen in working OR Yes or No - either is OK - when their $0.8 \times$ their (a) is between 165 and 175 with $0.8 \times$ their (a) oe correctly calculated and 170 seen, or for $\frac{30+65+75}{\text { their (a) }}$ correctly calculated and when their \% is 77\% to 83%	2ft	M1 for $\frac{30+65+75}{\text { their }(a)}[\times 100]$ oe or $0.8 \times$ their (a) oe [188] seen in working NB Allow scaled versions of frequencies in this part $\text { eg } \frac{6+13+15}{6+13+15+9+4}[\times 100]$ [$=34 / 47[\times 100]$] gets M1 and could earn both marks if a correct decision is made

B281 Terminal Paper (Foundation Tier)

Section A

1	(a)	161	2	M1 for 61 or 159 or 261 or 171
	(b)	13	1	
2	(a)	Tuesday	1	Accept ${ }^{-4}$
	(b)	7	1	
	(c)	-3	1	
3		26	2	M1 20 or 6 (from $3 b ;$ not from $4+2=6$)
4	(a)	(i) 480	1	
		(ii) bar with height 440	1	$\pm 1 \mathrm{~mm}$ (height and width); condone freehand
		(iii) 60	1	
	(b)	(i) Financial Times	1	
		(ii) 3000000	1	Accept 3(m)
		(iii) 833000	1	
	(c)	(i) mode 70 p median 55	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	W1 45 and 65 selected (as median) OR M1 prices ordered
		(ii) Reason referring to data from question	1	eg Mode is too high oe
5	(a)	£150	2	M1 $600 / 4$, or eg $10 \%+10 \%+5 \%$ with at least one correct (or ft correct) OR W1 450 seen
	(b)	$£ 138$ www	4	W2 588 OR W1 490 or 98 or 480 or 108 OR M1 complete multiplication method which, with no arithmetic errors, would lead to the correct solution AND M1 their 588 + their 150 correct AND A1 138, or A1 ft their 738-600 correct

6	(a)	22	2	W1 for 8 or 6 (or 14) www, or 28 (four sides used) OR M1 $33 \div 1.5$
	(b)	36 www	3	M1 108 or 9×12 AND M1 $108 \div 3$ or their $108 \div 3$ AND A1 36
7	(a)	20	1	
	(b)	13	2	M1 for ($2 x=$) 26 , or their $26 \div 2$
8	(a)	$3 n+3$ or $3(n+1)$ as final answer	1	
	(b)	$3(n+1)$, or 3 is a factor of $3 n$ and 3 oe	1dep	Dependent on (a) correct 0 for an answer not using (a)
9	(a)	400	1	
	(b)	160	2	M1 for $800 \div 5$ or $1 / 5$ of 800 or for answer 640
	(c)	$3: 5$, or $\frac{3}{5}: 1$, or $0 \cdot 6: 1$, or $1: \frac{5}{3}$ isw	2	M1 for partial simplification, eg 6 : 10 or 48: 80 etc isw
10	(a)	$\begin{gathered} (2+5) \times-4=-28 \\ 2 \times(5+-4)^{2}=2 \\ (2 \times 5+-4)^{2}=36 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(b)	15x-20	1	
	(c)	$3 x(2+x)$	2	M1 for $3 x(\ldots)$, or for $x(6+3 x)$, or for $3\left(2 x+x^{2}\right)$, or for $(2+x)(\ldots)$
11	(a)	$\begin{array}{llllll}-1 & 3 & 5 & 5 & 3 & -1\end{array}$	1	
	(b)	All six points plotted Smooth curve through correct points	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\pm 2 \mathrm{~mm}$; allow ft from table $\pm 2 \mathrm{~mm}$ (from correct position of points); no ft from wrong table; must have daylight between top of curve and $(1.5,5)$
	(c)	${ }^{-} 0.7$ to ${ }^{-} 0.9$ or 3.7 to 3.9 , or ft their graph	2	W1 each; $\pm 2 \mathrm{~mm}$

Section A Total: 50

Section B

12	(a)	A ($-1,2$) and B (5, 4) plotted	2	1 each (clear intention)
	(b)	Midpoint correct for their AB	1	Clear intention
	(c)	$(2,3)$	1	Or ft their M (labelled or otherwise)
13	(a)	(i) 21	1	
		(ii) add 4	1	Or up in 4s, count on 4 or $4 n+1$
	(b)	(i) 80	1	
		(ii) Halve or divide by 2	1	
14	(a)	10 to 13	2	M1 evidence of adding squares OR W1 9 to $9 \cdot 9$, or $13 \cdot 1$ to 14
	(b)	South east or SE	1	Condone 135
	(c)	4 to 5 km	3	W2 4 to 5 OR W1 3 to $3 \cdot 9$, or $5 \cdot 1$ to 6 OR M1 8 to $10(\mathrm{~cm})$, or their ' 8 to 10 ' $\div 2$ AND W1 km on answer line
	(d)	$£ 1.79$ www	3	W2 179 OR M1 figs 240, or figs 81, or figs 107 seen AND M1 321(p) or (£)3.21, or 5 - their 3•21, or 500-321
	(e)	27 minutes	1	
15		$\text { eg } \begin{array}{ll} 3+5=8 \\ & 3 \times 5=15 \end{array}$	1	
16	(a)		2	M1 one error, ie 2 squares correctly shaded OR W1 diagram correct with one line of symmetry, but more than 3 squares shaded
	(b)	235	2	W1 2 correct

17	(a)	159000 www	3	W1 795 (000) M1 their total $\div 5$ A1 159000
	(b)	Pie chart correct and labelled 3 ruled sectors within 1% or 3°	3	M1 $3690234\left({ }^{\circ}\right)$ seen or 1025 65(\%) seen OR W2 2 sectors correct with or without labels OR W1 1 sector correct with label
18		```50 because (angles on a straight) line add up to 180 145 because (the sum of the 4 angles in) a quadrilateral is 360```	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	SC $\mathbf{0}, \mathbf{0}$ for 125 with correct reason ft their 50 SC $\mathbf{0}, \mathbf{0}$ for 15 with correct reason
19	(a)	600	2	M1 $4 \times 15 \times 10$
	(b)	24 cm	2	M1 their (a) $\div 25$, or $25 \times \mathrm{h}=$ their (a) A1 ft their (a)
20	(a)	Triangle with vertices at $(3,5),(3,-1)$ and ($6,{ }^{-1}$)	3	2 if two vertices correct OR 1 for enlargement sf 3 drawn in wrong place, or for enlargement with centre $(0,2)$ but wrong sf
	(b)	$\binom{-5}{2}$	1	

Section B Total: 50

B282 Terminal Paper (Higher Tier)

Section A

1	(a)	400	1	
	(b)	160	2	M1 for $800 \div 5$ or $1 / 5$ of 800 or for answer 640
	(c)	$3: 5$, or $\frac{3}{5}: 1$, or $0 \cdot 6: 1$, or $1: \frac{5}{3}$ isw	2	M1 for partial simplification, eg 6 : 10 or 48:80 etc isw
2	(a)	$\begin{gathered} (2+5) \times-4=-28 \\ 2 \times(5+-4)^{2}=2 \\ (2 \times 5+-4)^{2}=36 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	(b)	$15 x-20$	1	
	(c)	$3 x(2+x)$	2	M1 for $3 x(\ldots)$, or for $x(6+3 x)$, or for $3\left(2 x+x^{2}\right)$, or for $(2+x)(\ldots)$
3	(a)	$3 n+3$ or $3(n+1)$ as final answer	1	
	(b)	$3(n+1)$, or 3 is a factor of $3 n$ and 3 oe	1dep	Dependent on (a) correct 0 for an answer not using (a)
4	(a)	Angle bisector drawn with correct arcs	2	W1 for angle bisector drawn with no or wrong arcs
	(b)	$4 \cdot 8$ (accept 4.6 to $5 \cdot 0$)	1dep	Dependent on at least 1 mark scored in (a)
5	(a)	$\begin{array}{llllll}-1 & 3 & 5 & 5 & 3 & -1\end{array}$	1	
	(b)	All six points plotted Smooth curve through correct points	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\pm 2 \mathrm{~mm}$; allow ft from table $\pm 2 \mathrm{~mm}$ (from correct position of points); no ft from wrong table; must have daylight between top of curve and $(1 \cdot 5,5)$
	(c)	-0.7 to -0.9 or 3.7 to 3.9 , or ft their graph	2	W1 each; $\pm 2 \mathrm{~mm}$
6	(a)	1.5 oe www	3	M2 for $4 x=6$ OR M1 for x s or numbers collected and simplified correctly AND M1 for final division correct ft from $a x=b$ or $a x+b=0$ soi
	(b)	(i) $12 a^{5} b^{2}$	2	M1 for two 'terms' correct
		(ii) x^{12}	1	

7	(a)	$3 \cdot 7$	1	
	(b)	0.5 www	2	Accept 0.48 to 0.52 M1 for at least one of 4.55 and 5.05 seen
	(c)	eg On average, the boys jumped further than the girls The results for the girls were more spread out than those for the boys	1 1	1 each for two valid worthwhile comments For 2 marks, at least one comment must refer to distance or lengths or jumped or results Comments must be about different aspects - do not accept both comments about spread 0 if just statistics quoted and no explicit comparison or for just comparison of one or both endpoints or UQ and/or LQ
8	(a)	$106 \text { because }$ angle at centre is twice angle at circumference oe	1	
	(b)	82 because [angle in] alternate segment [angles on] [straight] line [add to 180°]	1 1 1	More than just 'line' required Allow only when RTU used as 56 , or 82 seen as answer
		Alternative reason for $2^{\text {nd }}$ and $3^{\text {rd }}$ marks: angles in triangle [add to 180°] [angle in] alternate segment	1	Allow only when alternate segment theorem used to get final answer eg 82 obtained

9	(a)	$3 / 10,5 / 10$ and $2 / 10$ oe $2 / 9,5 / 9,2 / 9$ on top set and $3 / 9,4 / 9$, $2 / 9$ on middle set and $3 / 9,5 / 9,1 / 9$ on bottom set	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	On first set of branches M1 for one of the three sets of second branches correct
	(b)	$\frac{6}{90}$ oe or ft [isw wrong cancelling following this]	2	eg 2 for $9 / 100$ following use of replacement of fruit M1 for $\frac{3}{10} \times \frac{2}{9}$ or ft their tree
	(c)	$\begin{aligned} & \text { eg } \frac{3}{10} \times \frac{5}{9} \times \frac{5}{10} \times \frac{2}{10} \times \frac{5}{9} \text { or } \\ & \frac{3}{10} \times \frac{5}{9}+\frac{5}{10} \times \frac{3}{9}+\frac{5}{10} \times \frac{4}{9}+\frac{5}{10} \times \frac{2}{9}+\frac{2}{10} \times \frac{5}{9} \\ & \text { or } \frac{5}{10} \times \frac{5}{9}+\frac{5}{10} \text { oe } \end{aligned}$ $\frac{70}{90} \text { oe cao }$ [isw wrong cancelling following this]	M2	For completely correct method ft their tree; M1 for listing at least 3 correct products, ft from their tree with probabilities [may be seen by tree], or for identifying all five correct branches, ft from their tree (even if numbers of fruit, not probabilities, on tree) OR M1 for correct calculation of four wrong branches and then M1 dep for subtraction of result from 1 Alternative Method: For other valid 'non-tree' approaches, allow M2/M1 similarly: e.g. $P($ at least one apple) $\begin{aligned} & =\mathrm{P}(\mathrm{a}, \mathrm{a})+\mathrm{P}\left(\mathrm{a}, \mathrm{a}^{\prime}\right)+\mathrm{P}\left(\mathrm{a}^{\prime}, \mathrm{a}\right) \mathrm{M} 1 \\ & =\frac{5}{10} \times \frac{4}{9}+\frac{5}{10} \times \frac{5}{9}+\frac{5}{10} \times \frac{5}{9} \mathbf{M 1} \\ & =\frac{20}{90}+\frac{25}{90}+\frac{25}{90}=\frac{70}{90} \mathbf{A 1} \text { or } \end{aligned}$ $\frac{5}{10} \times\left(\frac{4}{9}+\frac{5}{9}+\frac{5}{9}\right) 2$ nd $\mathbf{M 1}$ if not earned earlier $\left[=\frac{5}{10} \times \frac{14}{9}\right]=\frac{70}{90}$ or $\frac{7}{9}$ A1 OR (Most elegantly;) $P($ at least one apple $)=1-P\left(a^{\prime}, a^{\prime}\right)$: $P\left(a^{\prime}, a^{\prime}\right)=\frac{5}{10} \times \frac{4}{9}\left[=\frac{2}{9}\right]$ oe M1 1 - their $P\left(a^{\prime}, a^{\prime}\right)$ M1dep $=\frac{7}{9}$ oe $\mathbf{A 1}$ Allow W3 for $\frac{70}{90}$ oe cao www

Section A Total: 50

Section B

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{11} \& (a) \& Triangle with vertices at \((3,5),(3,-1)\) and (\(6,{ }^{-1}\)) \& 3 \& \multicolumn{3}{|l|}{\begin{tabular}{l}
2 if two vertices correct \\
OR \\
1 for enlargement sf 3 drawn in wrong place, or for enlargement with centre \((0,2)\) but wrong sf
\end{tabular}} \\
\hline \& (b) \& \(\binom{-5}{2}\) \& 1 \& \multicolumn{3}{|l|}{} \\
\hline 12 \& (a) \& \& 1 \& \& \& \\
\hline \& (b) \& \(\frac{57}{100}\) oe \& 1 \& \multicolumn{3}{|l|}{ft from their table isw wrong conversions} \\
\hline \& (c) \& \[
\frac{15}{40} \text { oe }[\mathrm{eg} 3 / 8,37.5 \%]
\] \& 1 \& \multicolumn{3}{|l|}{isw wrong conversions} \\
\hline \& (d) \& \begin{tabular}{l}
Suitable question and \\
- 4 to 12 response boxes \\
- non-overlapping clearly defined categories \\
- covering all times \\
- referring to hours or fractions of a day
\end{tabular} \& 2 \& \multicolumn{3}{|l|}{\begin{tabular}{l}
1 Suitable question with minimum 3 responses and fulfilling 3 of the bullet points \\
eg 1 for only 3 appropriate response boxes \\
or 4 or more boxes with an overlap or not covering all times \\
or for more than 12 boxes covering all times and no overlaps \\
\(\mathbf{0}\) for 4 or more with an overlap and not covering all times etc \\
0 for only 3 boxes with overlaps or time omissions
\end{tabular}} \\
\hline 13 \& \& \(407 \cdot 25\) \& 2 \& \multicolumn{3}{|l|}{1 for other rounded or truncated versions of \(407 \cdot 2459(\ldots)\) or for \(211 \cdot 12\)} \\
\hline 14 \& \& \begin{tabular}{l}
Correctly evaluated trial of value between 2 and 3 \\
Correct trials of 2.3 and 2.4 or better (ie outcomes closer to zero with one positive, one negative outcome) OR \\
Correct trials of 2.25 and 2.35 or better (i.e. outcomes closer to zero with one pos, one neg outcome) \\
Answer 2.3
\end{tabular} \& 1
1

1 \& \begin{tabular}{|r|r|}
\hline 2.1 \& -1.539

\hline 2.2 \& -0.952

\hline 2.3 \& -0.233

\hline 2.4 \& 0.624

\hline 2.5 \& 1.625

\hline 2.6 \& 2.776

\hline 2.7 \& 4.083

\hline 2.8 \& 5.552

\hline 2.9 \& 7.189

\hline

 \&

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

\hline 2.39

 \&

\hline-0.15361

\hline-0.07283

\hline 0.009337

\hline 0.092904

\hline 0.177875

\hline 0.264256

\hline 0.352053

\hline 0.441272

\hline 0.531919

\hline
\end{tabular}

\hline
\end{tabular}

15		$\begin{aligned} & \text { Area of circle }=\pi \times 1.3^{2} \text { or } 5.3[09 \ldots] \\ & \text { Volume }=\text { their area } \times 11.4 \\ & =60.4 \text { to } 60.6 \\ & \text { Density }=\text { mass } \div \text { their volume seen } \\ & \text { or used } \\ & \text { Answer } 0.7 \text { or } 0.74 \mathrm{www} \end{aligned}$	M1 M1 A1 M1 A2	May be implied by correct volume formula M0 if their area does not involve π Condone 60 or 61 ; if volume answer not seen, allow A1 for volume implied by A2 or A1 earned for density		
16	(a)	$\begin{aligned} & 0.88 \times 70 \text { oe } \\ & 61.60 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \end{aligned}$	M1 for 0.12×70 oe or for 8.4(0) Allow W3 for 61.60 www , or W2 for 61.6 www SC1 for digits 616 with wrong position of decimal point		
	(b)	$492 \div 80(\times 100) \text { oe }$ 615	M2 A1	M1 for $80 \%=492$ seen or for 0.8 or $\frac{80}{100}$ seen allow W3 for 615 www		
17	(a)	3.6 www	3	M1 for 108 seen or attempt at $\Sigma f x$ (or at least 3 correct values seen of $3,14,12$, $24,30,18,7$) and M1 for their $\Sigma f x \div 30$ or $\Sigma f x \div$ their Σf Allow A1 for 4 if M2 earned or earlier answer of 3.6, and no errors seen		
	(b)	9.9×10^{8} or 9.89×10^{8}	2	W1 for digits 989 or 99 seen		
18		3.5 www	3	M2 for $8.4 \times \frac{4}{9.6}$ oe seen OR M1 for scale factor $=2.4$ or $4 \div 9.6$ seen, or for ratio of sides of PQR : $9 \cdot 6 \div 8 \cdot 4$ [= $1 \cdot 14 \ldots$... or $8.4 \div 9 \cdot 6[=0.875]$		
19		7	2	M1 for one correct trial seen with $1<t<10$		
				2	6	0.00032
				3 0.04	7	$6.4 \mathrm{E}-05$
				4 0.008 5 0.0016	8	$1.28 \mathrm{E}-05$
				5 0.0016	9	$2.56 \mathrm{E}-06$

20	(a)	$[y]<\frac{3}{2}$ or $\frac{3}{2}>y$ www oe as final answer	2	M1 for $3>2 y$ oe OR W1 for 1.5 oe obtained as answer, or for answer ft their $a>b y$ with positive b
	(b)	$[p=][\pm] \sqrt{\frac{C}{2}}$ oe as final answer	2	M1 for 1st step correct or 2nd step correct ft OR SC1 for answer $[p=][\pm] \frac{\sqrt{C}}{2}$
	(c)	$(x-4)^{2}-11$ or $(x-4)^{2}+-11$	3	W1 for $a=4$ or $(x-4)^{2}$ OR W2 for $b=-11$ or $\mathbf{M 1}$ for $5-4^{2}$
21	(a)	$17^{2}-8^{2} \text { or } \sqrt{17^{2}-8^{2}}$ Completion to 15 following 225 or $\sqrt{225}$ or $\sqrt{17^{2}-8^{2}}=15$ Allow eg 289-64 seen to imply M1	M1 A1	Alternative method: M1 for $=17^{2}-15^{2}$ or $\sqrt{17^{2}-15^{2}}$ A1 for completion to 8 following 64 or $\sqrt{64}$ or $\sqrt{17^{2}-15^{2}}=8$ Similarly for showing 8 and 15 gives hypotenuse 17; M1 for $8^{2}+15^{2}=17^{2}$ oe; A1 for supporting calculations Alternative method: 2 for complete correct trigonometric method eg $\tan \mathrm{VMO}=15 / 8$ and obtaining $61 \cdot 9(\ldots)$, then $\mathrm{VM}=8 \div \cos 61 \cdot 9=17 \cdot 0$
	(b)	1280	2	M1 for $\frac{1}{3} \times 16^{2} \times 15$
	(c)	$\sin \mathrm{VMO}=\frac{15}{17}$ or $\tan \mathrm{VMO}=\frac{15}{8}$ or $\cos \mathrm{VMO}=\frac{8}{17}$ oe Use of inverse trig function seen $61 \cdot 9(\ldots) \text { or } 62^{\circ}$	M1	or cos rule or sine rule used with relevant trig fn as subject [ft their trig fn]; may be implied by correct answer Allow W3 for $61 \cdot 9(\ldots)$ or $62^{\circ} \mathrm{www}$, but 0 for question if scale drawing used, not trigonometry

Grade Thresholds

General Certificate of Secondary Education
Mathematics C (J517)
June 2009 Examination Series

Unit Threshold Marks (Module Tests)

Unit		Maximum	\mathbf{a}^{*}	a	b	c	d	e	f	g	p	u
B271	Raw	50								28	14	0
	UMS	59								40	20	0
B272	Raw	50							37	23	15	0
	UMS	70							60	40	30	0
B273	Raw	50							27	12		0
	UMS	79							60	40		0
B274	Raw	50						39	24	14		0
	UMS	90						80	60	50		0
B275	Raw	50						28	13			0
	UMS	99						80	60			0
B276	Raw	50					32	18				0
	UMS	119					100	80				0
B277	Raw	50				28	14					0
	UMS	139				120	100					0
B278	Raw	50			32	16						0
	UMS	159			140	120						0
B279	Raw	50		28	14							0
	UMS	179		160	140							0
B280	Raw	50	31	15								0
	UMS	200	180	160								0

Unit Threshold Marks (Terminal Papers)

Unit		Maximum Mark	\mathbf{a}^{*}	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{g}	\mathbf{u}
B281	Raw	100				69	57	45	34	23	0
	UMS	279				240	200	160	120	80	0
B282	Raw	100	86	69	52	35	21	14			0
	UMS	400	360	320	280	240	200	180			0

Notes

The table above shows the raw mark thresholds and the corresponding key uniform scores for each unit entered in the June 2009 session. Raw marks in between grade boundaries are converted to uniform marks by a linear map. For example, 28 raw marks on unit B278 would score 135 UMS in this series.

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html

For a spreadsheet designed to calculate UMS scores for this specification, please visit the GCSE Maths C e-community at:
http://community.ocr.org.uk/community/maths-gcse-ga/home
The grade shown in the table as ' p ' indicates that a candidate has achieved at least the minimum raw mark necessary to access the uniform score scale for that unit but gained insufficient uniform marks to merit a grade ' g '. This avoids having to award such candidates a ' u ' grade. Grade 'p' can only be awarded to candidates for B271 (M1) and B272 (M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (J517).

Statistics are correct at the time of publication.

Specification Options

Foundation Tier

	A*	A	B	C	D	E	F	G
Overall Threshold Marks				460	380	300	220	140
Percentage in Grade				20.2	24.4	20.1	19.4	12.3
Cumulative Percentage in Grade				20.2	44.5	64.6	84.0	96.3

The total entry for the Foundation Tier was 27348.

Higher Tier

	A*	A	B	C	D	E	F	G
Overall Threshold Marks	700	620	540	460	380	300		
Percentage in Grade	9.6	20.9	29.4	30.0	9.1	0.9		
Cumulative Percentage in Grade	9.6	30.5	59.8	89.8	98.9	99.8		

The total entry for the Higher Tier was 31774.

Overall

	A *	A	B	C	D	E	F	G
Percentage in Grade	5.3	11.5	16.2	25.6	15.9	9.5	8.7	5.5
Cumulative Percentage in Grade	5.3	16.8	33.0	58.6	74.5	84.0	92.7	98.2

The total entry for the examination was 59122.
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

[^0]: Section B Total: 25

