

Mathematics C

General Certificate of Secondary Education J517

Mark Schemes for the Units

March 2008

J517/MS/R/08M

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2008

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

GCSE Mathematics C (J517)

MARK SCHEMES FOR THE UNITS

Unit	Page
B272 Module Test M2	1
B273 Module Test M3	3
B274 Module Test M4	5
B275 Module Test M5	8
B276 Module Test M6	10
B277 Module Test M7	14
B278 Module Test M8	17
Grade Thresholds	20

B272 Module Test M2

Section A

1	(a)	* * 18 24	2	W1 for two correct numbers in the correct
		5 20 * *		place
	(b)	424 cao	1	
2		12	3	M1 87 - 15 or 72 and M1 <i>their</i> 72 ÷ 6
3	(a) (i)	30	1	
	(ii)	15	1	
	(b) (i)	$\frac{1}{4}$ o.e (cao)	1	
	(ii)	20	1	
4	(a) (i)	Camelford	1	
	(ii)	South East	1	
	(b) (i)	Left, Second Right	1 1	
5		$ \begin{array}{c} 2 \cdot 1 \ 0 \\ (0) \cdot 9 \ (0) \\ \underline{(0) \cdot 1 \ 8} \\ 3 \cdot 1 \ 8 \end{array} $	1 1 1	ft <i>their</i> 3 values.
				If zero scored SC1 for any two of figs 21,9 or 18 in table next to the relevant item, without contradiction
6		6·5 to 7·5m	1	
7	(a)	36 - 40	1	
	(b)	Acute Reflex	1 1	
8	(a)	(0)·80	1	
	(b)	3·30 cao	2	W1 for 1.8(0) and 1.5(0) only or 3.3 or 330

9	(a)	50	1	
	(b)	98.6	1	
10		10	2	M1 Attempt to divide 50 by 4.65 or 10.75
11		Correct reflection	2	W1 Correct horizontal lines W1 Correct diagonal line
12	(a)	⁻⁶ ⁻⁵ ⁻¹ 2 22 25	2	W1 One number incorrect or all correct reversed
	(b)	11	1	
	(c)	-3	1	
13	(a)	Correct pattern	1	
	(b)	23	1	ft from pattern
	(c) (i)	53	1	
	(ii)	Add 5 (each time) oe	1	
	(d)	It should end in a 3 oe	1	
14	(a) (i)	1	1	
	(ii)	3 Half the numbers are 3 oe	1 1	
	(b) (i)	3	1	
	(ii)	2	2	M1 1 1 2 2 2 3 3 3 3 (8 correct)
15	(a)	600	2	M1 4·8 – 4·2 or (0)·6
	(b)	√ × × ×	2	W1 three correct, no blanks

Section B

B273 Module Test M3

Section A

1	(a) (i)	20% to 25%	1	
	(ii)	No with "sensible reason"	1	Accept "yes" with mention of "about 90°/quarter" or "about 180°/half"
	(b)	30	1	Condone "million"
2	(a)	25 (minutes)	1	
	(b)	15 (minutes) oe	1	eg "quarter of an hour"
3		1983 1995 or 1996 4 – 4·2 (million)	1 1 1	
4	(a) (i)	3000	1	
	(ii)	400	1	
	(b)	1.21(0)	2	M1 for digits "121" seen SC1 1·2
	(c)	70 (units)	2	M1 for evidence of attempt at 14 × 5
	(d)	40 (p) oe	3	M1 1000 ÷ 50 (=20) M1 <i>their</i> 20 × 2
	(e)	✓ × ✓ × ✓	2	Condone Y(es) or N(o) W1 for 3 or 4 correct SC1 for blanks instead of crosses but all correct ticks
5		4	1	Condone embedded answers
6	(a)	6	2	M1 for 2 or 3 seen
	(b)	372(.000)	1	
7		Correct enlargement	2	Any orientation or sense W1 for each correct limb of the "L"

Section B

8	(a)	256	1	
	(b)	20	1	
	(c)	6·25	1	
	(d)	12	1	
9	(a) (i)	17·5 to 18·5	1	
	(ii)	80 to 100	1 1	Evidence of working
	(iii)	21 to 23	1	
	(b)	765·(957) or 766 or 765	2	M1 3600 ÷ 4·7 seen or implied
	(c)	762·971	2	M1 digits 762 or 1525 seen SC1 3.638 seen
	(d)	0.7 to 1.2	1	
	(e)	15 to 17 M(etres)	2 1	M1 "× 2" or 8 \pm 0·2 seen Independent mark
	(f) (i)	0.7	1	
	(ii)	530 to 550	1	
10	(a)	5	2	M1 2 × 2.5 seen or implied
	(b)	0.42(0)	1	
	(c) (i)	$\frac{3}{10}$ or equivalent	1	No odds (eg 3 to 10)
	(ii)	Zero, 0, 0/10	1	Or equivalent
	(d) (i)	Either of	1	
	(ii)		1	Condone tops of tins not shaded

Section B Total: 25

B274 Module Test M4

Section A

1	(a)	3 2 0 (none) <i>or</i> 1	2	W1 any 2
	(b)	Correct pattern	2	W1 intention Eg one 'block' correctly placed or other complete pattern of order 4
2	(a)	4 or 6	1	Either but no extras
	(b)	48 or 60	1	Either but no extras
	(c)	6	1	Only
3	(a)	30·59, 3059 <u>p</u> <u>with working</u>	3	 M1 Complete method AND W1 figs 266(0) or 399 or 532 or 2300 or 69 seen OR W1 4 correct rectangles (grid methods) OR W1 1330 (correct), seen from 133 × 10 (1330 only scores W0) SC2 Answer 3059 only or (£)3059 with working
	(b)	Large <u>with</u> correct reason and no wrong reasons	3	W2 for 6.75 (and 6.20)(25 DVDs)or 27 and 24(\cdot 8)/25(1 DVD)or 1.35 and 1.24(5 DVDs)or (2.70 and) 2.48(10 DVDs)or 13.50 and 12.40(50 DVDs)ORW1 for 27 or 24(\cdot 8)/25 or 1.35 or 1.24 or13.50 or 12.40SC2 Large because it is 55p cheaper(www)M1 clear attempt to compare equivalentquantities but with 1 arithmetic error
4	(a)	0.2	1	
	(b)	30%	1	
	(c)	4/100 oe	1	

5	(a)	ху ое	1	
	(b)	P = 2x + 2y oe	2	W1 $2x + 2y$ oe (<i>P</i> omitted) or $\underline{P} = x + y \times 2$ oe SC1 if 0 scored so far in (a), (b): correct expressions reversed in (a), (b)
	(C)	36	1	
6	(a)	30	1	
	(b)	160 300 600 90	2	M1 any 2 correct
7	(a)	5	1	
	(b)	6	1	

Section B

8	(a) (i)	C at (⁻¹ , 2) or (⁻ 3 , ⁻ 4)	2	W1 A triangle with either base or height
		Cat(1,2)O(3, 4)		correct or right-angled
		(condone unlabelled)		(must be labelled or identified by triangle drawn)
	(ii)	(-3, -4) or (-1, 2)	1	Or ft <i>their</i> (a)(i)
	(b) (i)	(⁻ 5, 4) marked	1	Intention
	(ii)	(5, 4) marked	1	Or ft <i>their</i> (b)
9	(a)	8 10 12	_	
		12 14 16	2	W1 each correct row OR
				W1 any 4 entries correct
	(b)	Times by 2 oe	1	
	(c) (i)	34	1	
	(ii)	23	1	Accept embedded
10	(a)	Correct reason	2	W1 for 40 seen
	(b)	20 30	2	W1 each correctly placed value OR W1 for 5, 15
11	(a)	74	1	
		'Triangle180' or 'angles in triangle (= 180)' or better	1	
	(b) (i)	No <u>and</u> 'too big' or 'more than 180' or better	1	
	(ii)	33	2	M1 for $\frac{180-114}{2}$
12	(a)	53·7, 54 www	3	W2 462 to 462·3 or figs 537
				OR M1 addition soi (implied by 500 to 600)
				AND
				M1dep division by 10 seen
	(b)	RD(K)S(H) or (H)S(K)DR and 54	3	M1 evidence of trials including R, D <u>and</u> S (routes or digits, may be on map)
				AND M1dep one correct route total

B275 Module Test M5

Section A

1	(a)	VL, SJ, SL, ZJ, ZL	2	W1 for 3 more correct; ignore repeats and extras
	(b)	$\frac{4}{6}$ or $\frac{2}{3}$ isw	2	Correct or ft <i>their</i> (a) W1 for correct denominator ft table or for answer in wrong form
2	(a) (i)	0.85 – 0.95	2	W1 for $4 \cdot 3 - 4 \cdot 7$ (cm) seen or <i>their</i> $4 \cdot 5 \div 5$ seen OR SC1 for answer 1 km
	(ii)	(0)68 – (0)72	1	
	(iii)	156 – 160	1	
	(b)	443·1	1	
	(c)	20 000 000	1	
	(d)	100 ÷ 20 = 5 or 6 × 18 = 108 and 6 months	2	Or $6 \times 18 = 108$ and $5 \times 18 = 90$ and $5\frac{1}{2}$ months W1 for 100 and 20 seen or $6 \times 18 = 108$
3	(a)	<u>3</u> 5	1	cao
	(b)	$\frac{5}{\frac{21}{40}}$ indicated	1	
	(c)	1/10 or 0·1	2	M1 for $\frac{2}{20}$ oe fraction seen or 0.4 × 0.25 seen
4	(a)	6	1	
	(b)	26	1	
	(c)	4·5 o.e.	2	M1 for $4x = 25 - 7$ or better
5		24	2	M1 for $\frac{12}{50}$ or 2 × 12 or figs 24 or $\frac{24}{100}$
6	(a)	Square has more (than 2) lines of reflection symmetry	1	
	(b) (i)	Sketch of rhombus	1	Clear intention
	(ii)	Rhombus	1	

Section B

$\begin{array}{ c c c c c c } \hline \begin{array}{ c c c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c c } \hline \begin{array}{ c c } \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \hline \begin{array}{ c } \hline \end{array} $	-	(-)		-	
(c)24 cm³2Or ft their (b) M1 for attempt at $2 \times 3 \times 4$ ft (b)8(a)3 sectors correct and labelled Angles: 36° , 72° , 162° , 90° Percentages: 10% , 20% , 45% , 25% 4Allow $\pm 1\%$ or $\pm 3^{\circ}$ W3 for 2 correct with labels or 3 cc with no labels W2 for 1 correct with label or 2 cor with no labels W1 for all angles/percentages see(b)192 or 168 seen their 192 - their 168 24W2 M1 A1OR M1 for $480 \div 5 \times 2$ or 480×0.35 M1 for 40% seen M1 for 40% seen M1 for $'their 0.05' \times 480$ o.e. A1 for 24 Allow W4 for 24 www9(a) 324 1 cao10(a) $3, 7$ 1 Both correct (b)3 points plotted correctly Correct ruled line1 their table No ft11(a) $7a$ 1 Correct ruled line1 their table No ft11(a) $7a$ 1 Correct turned line12(b) $13x + 4y$ 2 CW1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	7	(a)	3 by 4 rectangle correctly placed	1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	(b)	2, 3, 4	1	Any order
$mathbf{mathb}{mathbf{mathbf{mathb}{mathbf{mathb}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}{}}} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-	(C)	24	2	
Markov Angles: 36°, 72°, 162°, 90° Percentages: 10%, 20%, 45%, 25%W3 for 2 correct with labels or 3 co with no labels W2 for 1 correct with label or 2 cor with no labels W1 for all angles/percentages see(b)192 or 168 seen their 192 - their 168 24W2 Alternative method: M1 for 480 ÷ 5 × 2 or 480 × 0.35 Alternative method: M1 for 40% seen M1 for 'their 40%' - 35% (= 5%) M1 for 'their 0.05' × 480 o.e. A1 for 24 Allow W4 for 24 www9(a)3241 Care Correct ruled lineCao10(a)3, 71 Correct ruled lineBoth correct N ft11(a)7a1 N oft11(b)13x + 4y2 C W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for 3 × 4 + 2 × 5 or 12 and 10			cm ³	1	W1 for altempt at $2 \times 3 \times 4$ it (b)
Percentages: 10%, 20%, 45%, 25%with no labels W1 for all angles/percentages see(b)192 or 168 seen their 192 - their 168 24W2 M1 A1OR M1 for $480 \div 5 \times 2$ or 480×0.35 M1 A1 A1Alternative method: M1 for 40% seen M1 for $'their 40\%' - 35\%$ (= 5%) M1 for $'their 0.05' \times 480$ o.e. A1 for 24 Allow W4 for 24 www9(a)3241cao10 (b)33751cao11 (b)3 points plotted correctly Correct ruled line1ft their table No ft11 (b)13x + 4y2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	8	(a)		4	W3 for 2 correct with labels or 3 correct with no labels
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Percentages: 10%, 20%, 45%,		
24 A1Alternative method: M1 for 40% seen M1 for 'their 40%' - 35% (= 5%) M1 for 'their 0.05' × 480 o.e. A1 for 24 Allow W4 for 24 www9(a)3241cao(b)33751cao10(a)3, 71Both correct(b)3 points plotted correctly Correct ruled line1ft their table No ft11(a)7a1(b)13x + 4y2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	-	(b)			-
Allow W4 for 24 www9(a)3241cao(b)33751cao10(a)3, 71Both correct(b)3 points plotted correctly Correct ruled line1ft <i>their</i> table No ft11(a)7a1(b) $13x + 4y$ 2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10					M1 for 40% seen M1 for ' <i>their</i> 40%' - 35% (= 5%) M1 for ' <i>their</i> 0⋅05' × 480 o.e.
(b)33751cao10(a)3, 71Both correct(b)3 points plotted correctly Correct ruled line1ft <i>their</i> table No ft11(a)7a1(b) $13x + 4y$ 2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10					
10(a)3, 71Both correct(b)3 points plotted correctly Correct ruled line1ft their table No ft11(a)7a1(b) $13x + 4y$ 2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	9	(a)	324	1	сао
(b)3 points plotted correctly Correct ruled line1ft their table No ft11(a)7a1(b) $13x + 4y$ 2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	-	(b)	3375	1	сао
Correct ruled line1No ft11(a)7a1(b) $13x + 4y$ 2W1 for one correct term seen or $8x + 5x + 3y + y$ in any order(c)222M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	10	(a)	3, 7	1	Both correct
(b) $13x + 4y$ 2 W1 for one correct term seen or $8x + 5x + 3y + y$ in any order (c) 22 2 M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	-	(b)			
or $8x + 5x + 3y + y$ in any order (c) 22 2 M1 for $3 \times 4 + 2 \times 5$ or 12 and 10	11	(a)	7a	1	
	-	(b)	13 <i>x</i> + 4 <i>y</i>	2	
12 (a) Dean, greater mean 1	-	(c)	22	2	M1 for 3 × 4 + 2 × 5 or 12 and 10 seen
	12	(a)	Dean, greater mean	1	
(b) Sajid, smaller range 1	-	(b)	Sajid, smaller range	1	

B276 Module Test M6

See	ction A			
1	(a) (i)	0.06	1	
	(ii)	0.43	2	M1 for 0·4() or figs 43
	(b)	<u>11</u> 15	3	M2 for $\frac{22}{30}$ or $\frac{44}{60}$ oe
				OR M1 for one fraction changed to any suitable common denominator, eg $\frac{27}{30}$ or $\frac{10}{60}$
2	(a) (i)	41	1	
	(ii)	42	2	M1 for evidence of marking off from both sides
	(b)	On average, Helsby are faster and Helsby have a greater variation of times	1	A comparison of median A comparison of range Strict ft <i>their</i> (a)(i) and (ii). ie. MUST be based on <i>their</i> values in (a)
	(c)	0·85 oe	1	
3	(a)	21	1	
	(b)	$(^{-}3)^2$ should equal 9' or 'he's only squared 3, not $^{-}3'$	1	
4	(a)	Isosceles Δ	1	
	(b)	55 Corresponding angle	1	Accept alternate angles with angles on a line as alternative method. Reasons are dependent on $y = 55^{\circ}$ Condone F angle or Z angle
5	(a)	Positive correlation, or 'the bigger the engine the faster the top speed'	1	
	(b) (i)	Ruled line of best fit	1	
	(ii)	102 - 107	1	Or ft <i>their</i> line if positive gradient, within 1 square tolerance

6		AD = 8cm and $\angle A = 90^{\circ}$ $\angle B = 112^{\circ}$ BC = 7cm and shape complete	1 1 1	Allow $\pm 2mm$ and $\pm 2^{\circ}$ Allow $\pm 2^{\circ}$ Allow $\pm 2mm$ (condone no labels)
7	(a)	CD	1	Accept DC
	(b)	DE or HI	1	Accept ED or IH

Section B

8	(a)	4 (3) 2 1 0	1						
	(b)	All points plotted	1	ft <i>their</i> table provided points lie within the grid.					
		Correct straight line drawn	1	Correct line implies correct points plotted, ie 2 marks					
9	(a) (i)	$2\frac{1}{2}$ or 2.5 or $\frac{5}{2}$	2	M1 for $2x = 8 - 3$ or better					
	(ii)	3	3	M2 $7x = 21$ or $-7x = -21$ OR M1 $5x + 2x = 23 - 2$, or					
				-5x - 2x = -23 + 2, or 7x - 21 = 0, or 7x + 2 = 23, or 5x = 21 - 2x, or $kx = \pm 21$, or					
				\pm 7x = k (k is an integer)					
	(b)	10 <i>x</i> – 15	1						
10	(a)	3.4 or $\frac{17}{5}$	1						
	(b)	4·47	2	W1 for 4·466() or 4·46 or 4·467 or 15·27					
	(c)	2 h 24 min	1						
11		391 000 cm ³	3	M2for figs 391, or $60 \times 85 \times 50 + 80 \times 85 \times 20$, or $140 \times 85 \times 50 - 80 \times 85 \times 30$, or $140 \times 85 \times 20 + 60 \times 85 \times 30$ ORM1for $60 \times 85 \times 50$ or figs 255, or $80 \times 85 \times 20$ or figs 136, or $140 \times 85 \times 50$ or figs 595, or $80 \times 85 \times 30$ or figs 204, or $140 \times 85 \times 20$ or figs 238, or $60 \times 85 \times 30$ or figs 153Independent					
12	(a)	997·50 (p)	2	M1 for 997.5 or $\frac{456}{16}$ or 28.5 or $\frac{16}{456}$ or 0.035()					
	(b)	23 cao; ignore any units	2	M1 for $655.5 \div$ <i>their</i> 28.5 or $655.5 \times \frac{16}{456}$					

13	10·5 www	4	M3 for $\frac{47\cdot25}{4\cdot5}$ or $\frac{\frac{1}{2} \times (8\cdot8 + 6\cdot2) \times 6\cdot3}{4\cdot5}$ OR M2 for 47·25, or $4\cdot5 \times L = \frac{1}{2} \times (8\cdot8 + 6\cdot2) \times 6\cdot3$ OR M1 for $\frac{1}{2} \times (8\cdot8 + 6\cdot2) \times 6\cdot3$, or <i>their</i> area $\div 4\cdot5$
----	----------	---	---

B277 Module Test M7

Section A

1		120	2	M1 for 600 \div (4+1) or better seen or for
				480 seen
2	(a)	5 ⁷	2	M1 for 5^{10} seen or attempt at $4 + 6 - 3$
	(b)	$5^3 \times 2$ or $5 \times 5 \times 5 \times 2$	2	M1 for 5, 5, 5, 2 seen or a correct factor tree
3	(a)	37 <u>and</u> alternate angles	2	M1 for 37 A1 for alternate angles (condone Z angles) or any fully correct alternative reasoning
	(b)	128 or <i>their x</i> + 91 evaluated	2	M1 for 52 clearly indicated next to <i>y</i> or for any correct method or 180 – 52 or 91 + <i>their x</i> or 128 seen (not as answer)
4	(a)	2	1	
	(b)	7 points correctly plotted and a smooth curve through plotted points	2	 W1 for 7 points correctly plotted (or ft) W1 for a smooth curve through 7 plotted points with at least 5 correct (or ft)
	(c)	^{-2.6} to ^{-2.8} and 0.6 to 0.8	2	W1 for each answer
5	(a)	Perpendicular bisector of AB with at least one set of arcs in support	2	Allow W1 for correct line with no arcs or for no line but both sets of arcs
	(b)	Two correct positions of T	2	W1 for each, ft <i>their</i> straight perpendicular bisector. If 0 scored here then SC1 for arc radius 5·8 to 6·2 cm centred on A and at least 2cm long
6	(a)	$[x=]\frac{A-12}{5}$ or equivalent	2	M1 for 5 <i>x</i> = <i>A</i> – 12
	(b)	x^2 + 4x + x + 4 or better as final answer	2	M1 for three correct terms from x^2 , $4x$, x , 4
7		3 <i>n</i> + 2 or equivalent, final answer only	2	W1 for 3 <i>n</i> seen

Section B

8		Yes <u>and</u> 84 or 71 or 71⋅6 – 71.7 or 72 seen	2	M1 for an attempt at a correct conversion eg 0.7×120 or 86 ÷ 1.2 oe or 84 or 71 or 71.6 – 71.7 or 72 seen
9		10·1 - 10·2 www	3	M2 for $\sqrt{12 \cdot 6^2 - 7 \cdot 5^2}$ or $\sqrt{102 \cdot 51}$ OR M1 for $12 \cdot 6^2 - 7 \cdot 5^2$ or $102 \cdot 51$ or $?^2 + 7.5^2 = 12.6^2$ OR SC1 for $\sqrt{12 \cdot 6^2 + 7 \cdot 5^2}$ or $\sqrt{215 \cdot 01}$ or $14.6 - 14.7$
10	(a) (i)	Negative	1	
	(ii)	Line of best fit and 7800 to 9000	2	W1 ruled line from "40" to "80" W1 answer in range
	(b)	18 625 or 18 630 or 18 600	4	SC3 for 16 125 or 21 125 OR W1 for at least 3 from:12 500, 17 500, 22 500 and 27 500 seen or used AND either M2 for $\frac{\sum fd}{\sum f}$ with <i>d</i> in ranges 10 000 $\leq d \leq 15$ 000 etc OR M1 for $\sum fd$ (=2 235 000)
11		6·9() or 7 www	4	W3 for 57 to 57.1 www OR M1 for 612 \div 36.4 or 16.8() seen AND M1 for 960 \div <i>their</i> 16.8 or 57 – 57.1 AND M1 for 64 – <i>their</i> 57 Allow equivalent methods

12		-2, -1, 0, 1, 2, 3, 4	3	M2 for at least 5 correct and max one extra, or all correct with max 2 extras OR M1 for $-\frac{5}{2} < n \le 4$ or at least 4 correct and max two errors.
13	(a)	$\frac{3}{25}$ or 0.12 or 12% isw	1	
	(b)	67 or 67·2 or 68	2	M1 for 560 × <i>their</i> (a) OR ft <i>their</i> part (a) eg M1 560 × <i>their</i> (a) A1 <i>their</i> correct answer (or rounded or truncated)
14		24.768 or 24.77 or 24.8	3	M2 for $0.4 \times 2.4 \times 1.2 \times 21.5$ or figs 247(6) or 2477 or 248 OR M1 for $0.4 \times 2.4 \times 1.2$ or 1.152 or figs 115(2)

B278 Module Test M8

Section A

1	(a)	A rotated 90° anticlockwise about (0, 0) to B	2	M1 90° clockwise rotation about (0,0)			
	(b) B rotated 90° clockwise about (⁻3, 0) to C			M1 90° anticlockwise rotation about (-3, 0), or 90° clockwise rotation about incorrect centre. ft <i>their</i> B for both M1 and W2			
	(c)	Translation $ \begin{bmatrix} -3 \\ -3 \end{bmatrix} $	1	ft <i>their</i> C for both 1 mark and 2 marks If 0 scored out of 2, SC1 "3 down and 3 left" or "-3 -3" (or better)			
2	(a)	A median 23000 B IQR 25000 to 27000	1 2	M1 14(000) or 40(000)			
	(b)	A median lower	1	ft <i>their</i> median			
3		12x = 36 x = 3, y = 1.5	M1 A1	or $24y = 36$ oe or W1 $x = 3$, $y = 1.5$ (answer without working)			
4		$2\frac{13}{20}$	3	M2 $\frac{85}{20} - \frac{32}{20}$ or $\frac{25}{20} - \frac{12}{20}$ or $\frac{65}{20} - \frac{12}{20}$ or $\frac{53}{20}$ or $3 - \frac{7}{20}$			
				OR M1 $\frac{17}{4} - \frac{8}{5}$ or $\frac{5}{20}$ or $\frac{7}{20}$ or $\frac{12}{20}$ or $\frac{25}{20}$ or $\frac{32}{20}$ or $\frac{65}{20}$ or $\frac{85}{20}$ oe			
				OR W2 $\frac{13}{20}$ or $n\frac{13}{20}$			
5	(a)	$y = x^3 + 3$	1				
	(b)	$y = 3 - x^2$	1				

6	(a)	6 × 10 ⁸	1	
	(b)	8·3 × 10 ³	2	W1 digits 83 as part of valid working (not just seen)
7		R shown	3	Mark identified region For a region with 3 or fewer boundaries, give 1 mark for each correct boundary For a region with 4 or more boundaries, mark the worst 3 boundaries
8		$p(q^2 - t^2)$ eg dimensions L × L ² eg volume – volume = volume and each term has 3 letters multiplied	M1 A1	length × area

Section B

9	(a)	x+2	1	1
9	(a)	X + Z	1	
	(b)	(x=) <u>P-8</u> or <u>8-P</u>	2	M1 7 $x = P - 8$ oe
		7 -7		OR SC1 (x=) P+8
				SC1 $(x=) \frac{P+8}{7}$
		0050		
10		£850	3	M2 <u>340</u> 0·4
				OR
				M1 40% (=) £340 soi
11	(a)	(<i>x</i> – 3)	1	
	(b)			ft the size (a)
	(b)	3, -2	1	ft <i>their</i> (a)
12		x < 2	2	M1 5 <i>x</i> < 10
				or W1 $x = 2$ or $x > 2$ or $2 < x$
13		215000 or 215035 to 215040		
		www		
		integers only	3	M2 ×1·14 ⁴ or 215038(·4) OR
				M1 ×1·14 or 145144(·8) or 145145
				OR M1 × <i>their</i> 1·14 ⁴
				$\mathbf{W}\mathbf{I} \times \mathcal{U}\mathcal{U}\mathcal{U}\mathbf{I} + \mathbf{I} $
14		2 or 0·08 or 8% oe 25	2	M1 $\frac{2}{5} \times \frac{1}{5}$
		25		5 5
15	(a)	Radius and tangent meet at		
		right angle / 90°	1	
	(b)	32·(0)° www	3	M2 tan B = 5/8
				OR M1 use of tan B or tan C with 5 and 8
	(c)	9·4() www	3	M2 √89 or 8/cos 32 or 5/sin 32
				OR M1 5 ² + 8 ² or cos 32 = 8/x or
				$\sin 32 = 5/x$
16		(28+26+21+23+22+26+20)		
		$\frac{(20+20+21+23+22+20+20)}{7}$		
		or 166/7	M2	or M1 any 7 consecutive temperatures
				added OR
				M1 166
		23.7()	A1	dependent on M1 or M2
			dep	

Grade Thresholds

<u>General Certificate of Secondary Education</u> <u>Mathematics C – Graduated Assessment (Specification Code J517)</u> <u>March 2008 Examination Series</u>

Unit Threshold Marks

Unit		Maximum Mark	a*	а	b	С	d	е	f	g	р	u
B272	Raw	50							37	20	12	0
	UMS	70							60	40	30	0
B273	Raw	50							30	15		0
	UMS	79							60	40		0
B274	Raw	50						37	22	13		0
	UMS	90						80	60	50		0
B275	Raw	50						27	12			0
	UMS	99						80	60			0
B276	Raw	50					28	13				0
	UMS	119					100	80				0
B277	Raw	50				25	12					0
	UMS	139				120	100					0
B278	Raw	50			29	14						0
	UMS	159			140	120						0

Notes

The above table shows the raw mark thresholds and the corresponding key uniform scores for each unit (module test) entered in the March 2008 session.

Raw marks in between grade boundaries are converted to uniform marks by a linear map. For example, 24 raw marks on unit B278 would score 133 UMS in this series.

The grade shown in the above table as 'p' indicates that the candidate has achieved at least the minimum raw mark necessary to access the uniform score scale for that unit but gained insufficient uniform marks to merit a grade 'g'. This avoids having to award such candidates a 'u' grade. Grade 'p' can only be awarded to candidates on B241 (M1) and B242 (M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (J516).

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

66

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553