GENERAL CERTIFICATE OF SECONDARY EDUCATION MATHEMATICS C (GRADUATED ASSESSMENT)

MODULE M9 - SECTION A
TUESDAY 24 JUNE 2008

Candidates answer on the question paper
Additional materials (enclosed): None
Additional materials (required):
Geometrical instruments
Tracing paper (optional)

Candidate
Surname

Centre
Number

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Show your working. Marks may be given for a correct method even if the answer is incorrect.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this Section is 25.

WARNING You are not allowed to use a calculator in Section A of this paper.	FOR EXAM	INER'S USE
	SECTION A	
	SECTION B	
	TOTAL	

This document consists of 8 printed pages.

Formulae Sheet

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$

Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 (a) Solve, by factorising.

$$
x^{2}+2 x-15=0
$$

(a)

[3]
(b) Simplify.

$$
\frac{6 x^{2}+4 x}{2 x}
$$

(b)

[2]

2 (a) The population of the USA in 2005 was 2.8×10^{8}.
The total area of the USA is $9 \cdot 4 \times 10^{6} \mathrm{~km}^{2}$.
The population density of the USA, in people per km^{2}, was

$$
\frac{2 \cdot 8 \times 10^{8}}{9 \cdot 4 \times 10^{6}}
$$

Estimate the answer to this calculation.
Show any approximations you use in your working.
(a) \qquad people per km^{2}
[2]
(b) The area of North Korea is $121000 \mathrm{~km}^{2}$, correct to 3 significant figures.

The area of South Korea is $99300 \mathrm{~km}^{2}$, correct to 3 significant figures.
Calculate the upper bound of the total area of North Korea and South Korea.
(b) \qquad km^{2} [2]

3 Rearrange this formula to make x the subject.

$$
y=3 x^{2}+4
$$

4 Work out.
(a) 5^{0}
(a)
(b) 5^{-2}
\qquad
(c) $400^{\frac{1}{2}}$
\qquad
(c)

5 Cone A has base radius 3 cm and height 8 cm .

(a) Calculate the volume of cone A .

Give your answer in the form $k \pi$, where k is an integer.
(a) \qquad . cm^{3} [2]
(b) The total surface area of cone A is $109 \mathrm{~cm}^{2}$, correct to 3 significant figures.

Cone B is mathematically similar to cone A but double the height.
Calculate the total surface area of cone B.
(b) \qquad cm^{2} [2]

6

Not to scale

AC is a diameter of the circle.
BC is a tangent to the circle.
$A B$ is a straight line which intersects the circle at D.
Angle DCA $=64^{\circ}$.
Work out angle x.
Give a reason for each step of your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 The histogram shows the distribution of the distances that students travel to a college.

What percentage of students travel less than 2 miles to the college?

