GENERAL CERTIFICATE OF SECONDARY EDUCATION MATHEMATICS C (GRADUATED ASSESSMENT)
MODULE M8 - SECTION A

MONDAY 21 JANUARY 2008

Candidates answer on the question paper
Additional materials: Geometrical instruments Tracing paper (optional)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Show your working. Marks may be given for a correct method even if the answer is incorrect.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this Section is 25.

This document consists of 8 printed pages.

Formulae Sheet

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$

$$
\begin{aligned}
& \text { Sine rule } \quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \text { Cosine rule } a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 Sophie catches a bus on Monday morning and on Tuesday morning.
On each morning the probability that the bus is late is $\frac{3}{10}$.
(a) Complete the tree diagram.

(b) Work out the probability that the bus is not late on Monday morning but is late on Tuesday morning.

> (b)

2 (a) Make v the subject of this formula.

$$
J=m v-m u
$$

(a)
(b) Solve

$$
\frac{x}{3}+5=2
$$

(b)
(c) Solve.

$$
4 x<9-2 x
$$

(c)

3 In these expressions, a and b represent lengths.
Which one of these expressions could represent an area?
Give a reason for your answer.
$a^{2}-a b$
$\frac{1}{2} a\left(a^{2}+b\right)$
$a b(a+b)$
$2 a+3 b$
\qquad because
\qquad
\qquad

4 Work out.

$$
4 \frac{2}{5}+2 \frac{3}{4}
$$

Give your answer as a mixed number.

Find the single transformation that is equivalent to
a rotation of 180° about centre $(0,0)$ followed by a translation of $\binom{4}{2}$.
Use the diagram above to help you.
The single transformation is \qquad

6 (a) Write 0.00365 in standard form.
(a)
(b) Work out $\left(6 \times 10^{4}\right) \times\left(2 \times 10^{-2}\right)$. Give your answer in standard form.

7 (a) Factorise.

$$
x^{2}-2 x-15
$$

(a)
(b) Hence solve this equation.

$$
x^{2}-2 x-15=0
$$

(b)

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

