

Mathematics C

General Certificate of Secondary Education GCSE 1966

Mark Schemes on the Units

March 2007

1966/MS/R/07M

Oxford Cambridge and RSA Examinations

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

 Telephone:
 0870 870 6622

 Facsimile:
 0870 870 6621

 E-mail:
 publications@ocr.org.uk

CONTENTS

General Certificate of Secondary Education GCSE Mathematics C - 1966

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2332	Module Test M2	1
2333	Module Test M3	7
2334	Module Test M4	11
2335	Module Test M5	15
2336	Module Test M6	19
2337	Module Test M7	23
2338	Module Test M8	27
2339	Module Test M9	31
2340	Module Test M10	35
*	Grade Thresholds	38

Mark Scheme 2332 March 2007

SECTION A	
------------------	--

1		$\checkmark \times \times \checkmark$	2	1 for 3 correct Accept "yes" or "no"
2	(a)	1500	1	
	(b)	128	2	M1 for 4 x 32 seen or implied or M1 for digits 128 seen
	(C)	4437	1	
	(d)	(60 to 80) ⁰ inclusive	1	
	(e)	(15 to 25) (m) inclusive	1	
3	(a)	Orange or 27	1	
	(b)	Right 2 nd Left Right	2	1 for two correct responses
	(C)	Phone 4U or 30	1	
4	(a)	(i) 10:40 or equivalent	1	Any common time format
		(ii) 25 (minutes)	1	Allow follow through from 4(a)(i)
	(b)	6	1	
5		acute obtuse reflex right c e a d b f	3	All correct, half for each correct, then round down,
6	(a)	105	1	
	(b)	35	1	
7		£11 [.] 72(p) or 1172 p	2	M1 for digits "1172" or "6 [·] 45+5 [·] 27" seen or clear attempt to add.

8	2 [.] 6	3	M1 for 49 1 or 47 5 + 1 6 seen M1 for 51 7 – ("their 49 1")
			Or
			M1 for 517 – 475 (=42) seen or implied M1 for "their 42" – 16 seen or implied
			Or
			M1 for 51.7 – 1.6 (=50.1) seen or implied M1 for 50.1 – 47.5 seen or implied

Section A Total: 25

SECTION B

9	(a)	cubo cone	id cylinder sphere	2	Award 1 for two or three correct,
	(b)	D		1	Or equivalent indication for D
		С		1	Or equivalent indication for C
10	(a)	(£)3∙	10	2	M1 for sight of 0.25 or $\frac{1}{4}$ or \div 4
					<i>or</i> digits "31" <i>or</i> "62" seen
	(b)	75(%)	1	
11	(a)	(i)	10	1	
		(ii)	"add 2"	1	"direction" + "quantity"
			"up in 2s"		ignore subsequent or extra working.
					Condone "to/too" for "two/2".
	(b)	(i)	16	1	
		(ii)	"double number of circles and take 2" or equivalent	1	Condone what is effectively a repeat of the correct answer for a(ii)
			or "add 2" "up in 2s"		ignore subsequent or extra working. "direction" + "quantity "Condone "to/too" for two/2.
12	(a)	(i)	3	1	
		(ii)	Any number or range in the (inclusive) range 13·9 to 17·1	1	Allow range or number within range
	(b)	(i)	85	1	
		(ii)	100	1	If <i>zero</i> scored in (i) and (ii) SC1 for 170 ÷ 2 seen or implied e.g. "85"
	(C)	(i)	9	1	
		(ii)	10.5	2	M1 for sight ordered list (either way):
					8 9 9 9 10 11 12 15 17 25
					condone two missing numbers

13	(a)	Comedy or C	1	
	(b)	(4 to 6)%	1	
	(c)	Wrong/no	1	Dependent on some – not necessarily correct – working/wording to support "wrong/no" or equivalent negative response.
		(44 – 48)% (is less than half)	1	
		or 2% - 6% (too low)		Need a numerical argument involving or implying percentages.
14		B: (0 ± 2 mm) from zero	1	Indicated unambiguously.
		A: (0.2 to 2) cm from zero	1	
		C: (8 to 9.8) cm from zero	1	201 if none for events in correct order is
				from left B A C

Section B Total: 25

Mark Scheme 2333 March 2007

SECTION A

1	(a) 2800	1	Сао
	(b) 3·2	1	Сао
	(c) 1·3	1	Сао
	(d) 15	2	W1 for 5 seen or 20 ÷ 4 seen or 60 ÷ 4 seen
2	(a) Second shape indicated	1	
	(b) E C	1 1	
3	210 seen	W2	or M1 for attempt at 6 × 35
	0·2(oe) × 'their 210'	M1	or W1 for 10% of 'their 210' correctly calculated
	42 isw	A1	cao or W4 for 42 as answer
		M1 A1	or W1 for 0.6 or 3.5 seen
	Alternative method $0.2(oe) \times 6 \text{ or } 0.2(oe) \times 35$ 1.2 or 7 'their $1.2' \times 35 \text{ or 'their } 7' \times 6$	M1 A1	cao or W4 for 42 as answer
4	(a) 600 (p) or £6(·00) (£)12·5(0) or 1250 p (£)0·15 or 15p	1 1 1	
	(b) 6	2	W1 for 3 seen or 15 ÷ 5 seen or 30 ÷ 5 seen
	(c)(i) 6·1 to 6·3	1	
	(ii) 4·7 to 5	1	
5	(a) 60	2	W1 for 5 × 3 × 4 or 15 seen
	(b)(i) 2.5 or 2 ¹ / ₂	2	W1 for 5 or 10 seen or SC1 for 3 (m) as answer
	(ii) Yes AND (patio doors) 1·5 m or (cupboard) 2·4 cm	2	W1 1.5 or 2.4 seen or W1 for yes with unquantified comparison

Section A Total: 25

SECTION B

6	5		
	(a) $\frac{3}{12}$ oe	1	
	(b) 2 squares shaded	1	Clear indication
	(c) (0)·2 (000)	1	
7	(a)(i) 1 8	1 1	
	(ii) 38	2	W1 for answer in range 36 to 40 or 11, 13, 8, 4, 1, 1 seen or SC1 for 19 as answer
	(b) 8·5	3	 M1 for attempt to add (implied by 45 to 55 seen) M1 for division by 6 seen Or SC2 for 41 as answer
8	(a) ⁻ 4	1	
	(b) warmer	1	
	(±) 6	1	Correct OR ft their negative (a)
9	(a) 12	1	
	(b) 11	1	
	(c) 5	1	
10	(a) 200 or £2(·00)	1	
	(b) 230 or £2·3(0)	2	M1 for 2 × 90 + 50 or 180 seen or £1·8(0) seen or figs 23
11	(a) 70 to 100 or 0.7 to 1	1	
	cm or m	1	Accept correctly matched units only
			Or SC2 for 2 ¹ / ₂ to 3 feet or 30 to 36 inches or 1 yard
	(b) 2 metres is about 6 feet, or 5 feet is about 1.5 m	2	W1 for 3 feet = 1 metre or 30cm = 1 foot or 5 feet = a value between 1.5m and 1.7m
	(c) 1·8	2	M1 for 2×0.9 or figs 18 seen

Section B Total: 25

Mark Scheme 2334 March 2007

SECTION A

(a) (b) (c) (a) (b)	or circle 360 or angles (at a) point 360 3, 10 18 4 1/20 'yes' and clear explanation 213 65 with working	1 1 2 1 2 3	W1 M1 or W1 M1 &	both, only only only accept correct equivalent probabilities condone 'unlikely' or equivalent <u>and</u> correct probability incorrect form <i>or</i> 20 seen implies the need to check all 5 <i>or</i> that prize could be any of the 5 Complete attempt at multiplication (need a carry fig to be convinced in traditional method) <u>figs</u> 213(00) <i>or</i> 10 65(0) seen <i>or</i> 3 correct rectangles (grid methods) Complete attempt at division
(a) (b) (c) (a) (b)	<i>or</i> circle 360 <i>or</i> angles (at a) point 360 3, 10 18 4 <u>1</u> 20 'yes' <u>and</u> clear explanation 213	1 1 2 1 2	W1 M1 or W1	both, only only only accept correct equivalent probabilities condone 'unlikely' or equivalent <u>and</u> correct probability incorrect form <i>or</i> 20 seen implies the need to check all 5 <i>or</i> that prize could be any of the 5 Complete attempt at multiplication (need a carry fig to be convinced in traditional method) <u>figs</u> 213(00) <i>or</i> 10 65(0) seen <i>or</i> 3 correct rectangles (grid methods)
(a) (b) (c) (a) (b)	$\frac{or \text{ circle 360}}{or \text{ angles (at a) point 360}}$ $\frac{3, 10}{18}$ $\frac{4}{20}$ 'yes' <u>and</u> clear explanation 213	1 1 2 1 2	W1 M1	both, only only only accept correct equivalent probabilities condone 'unlikely' or equivalent <u>and</u> correct probability incorrect form <i>or</i> 20 seen implies the need to check all 5 <i>or</i> that prize could be any of the 5 Complete attempt at multiplication (need a carry fig to be convinced in traditional method)
(a) (b) (c) (a) (b)	$rac{or circle 360}{or angles (at a) point 360}$ 3, 10 18 4 $\frac{1}{20}$ 'yes' <u>and</u> clear explanation	1 1 1 2 1	W1	both, only only only accept correct equivalent probabilities condone 'unlikely' or equivalent <u>and</u> correct probability incorrect form <i>or</i> 20 seen implies the need to check all 5 <i>or</i> that prize could be any of the 5
(a) (b) (c) (a)	<i>or</i> circle 360 <i>or</i> angles (at a) point 360 3, 10 18 4 <u>1</u> 20	1 1 1 2		both, only only only accept correct equivalent probabilities condone 'unlikely' or equivalent <u>and</u> correct probability incorrect form or 20 seen
(a) (b) (c)	<i>or</i> circle 360 <i>or</i> angles (at a) point 360 3, 10 18 4	1 1 1		both, only only only
(a) (b)	<i>or</i> circle 360 <i>or</i> angles (at a) point 360 3, 10 18	1		both, only only
(a)	or circle 360 or angles (at a) point 360 3 10	1		both only
			•• •	
	155 full turp - 360		W1	pot turp 260'
(b)	73 <u>and</u> opposite (angles) (equal)	3	W1	accept '73 and X angles (equal)'
(a)	straight line 180 angles straight line	1		accept 'half/semi circle 180' or 'half turn 180'
(6)	/4, /4		or M1	2 fractions with sum of 1
(h)	1/, 3/,	2	M1 W1	pair with product of 88 seen
(a)	11, 8	2	W1	each number, only; either way round
			W2 W1	one error/omission
	ET IS X	3		condone correctly placed
	(a) (b) (b)	(a) 11, 8 (b) $\frac{1}{4}$, $\frac{3}{4}$ (a) straight line 180 angles straight line (b) 73 and opposite (angles) (equal) 155	(a) 11, 8 2 (b) $1/4$, $3/4$ 2 (a) straight line 180 angles straight line 1 (b) 73 and opposite (angles) (equal) 3 155 1	Image: constraint of the second straight line in the s

SECTION B

8	(a)	46	3	M1	13 seen
				&	attempt to add at least 3 sides implied
				M1	by intermediate/final answers eg 30
					WWW
				or	
				M2	43 seen www
	(b)	P = 6h	2		$\operatorname{acc} P = h + h + h + h + h + h$ etc
					6h, h6 exactly or equivalent seen (not
				W1	5h)
9		A, B, F and C $(29.38/29.40)$	3		may be these letters, list of prices, list of
					titles of artists
		or A, B, F and E (29.89/29.90)			working includes final total shown
		with correct working			working includes linal total shown,
		with correct working			intermediate totais snown, estimates
					snown
				МА	correct sum of at least 2 CDs or
				IVI	correct sufficient of 1 CD from 620
					correct subtraction of 1 CD from £30
				or	
		Not		M2	18.39 (ABE no incorrect working)
		D (Loudor than Loud. The			$r_{20,38/20,40}$ or $20.80/20.00$ seen
		D (Louder Indi Loud, The		or	0/ 29/30/29/40 0/ 29/09/29/90 Seen
		Beards, 13:49)		w1	correct 4 chosen no working
		+ Only one of		or	correct 4 chosen, no working
		C (Hits to Hum, 10.99) E (Whistling Rob Harris 11.50)		W2	correct 4 but unconvincing/inaccurate
		& other three			working
10	(a)	correct vertical line drawn	1		need not be ruled, may be dashed etc
	()		_		mark intention
	(b)	(-9, 3)	1		
	(C)	(-7, -5) plotted	1		centre of their mark ±2mm
	(d)	(-8, -1)	2	M1	point identified on grid
					or ft midpoint of A(-9, 3) and <i>their</i> F
		or ft			
		midpoint of A(-9, 3) and <i>their</i> F		or	if 0 for F, M [ie (c) and (d)]
				sc1	both plotted correctly, labels reversed
					or ambiguous
11	(a)i	46	1		
	(ii)	114	1		If 0 scored so far,
				sc1	for (i) 43 <u>and</u> (ii) 107
	(iii)	4	1		
	(iv)	2	1		
	(b)i	23	3	M1	total 161 soi
		www		&	a total divided by 7 seen
				M1	
	(ii)	longer swimming	1		ft only from their mean
		<i>or</i> swimming has higher mean			
			-		
	(C)	13 200	2	M1	132 × 100 soi
					or 13000

(d)	76(·56), 76·6, 77	2	M1	25×1·75×1·75 or equivalent seen or 43·75 seen/rounded/truncated or 3·0625 seen/rounded/truncated or figs 765, 766, 7656
	Tota	25		

Mark Scheme 2335 March 2007

1	(a) $\frac{20}{30}$ ringed and no other one ringed	1	accept any indication of the correct answer
	(b)(i) $\frac{7}{10}$ oe	2	M1 for $\frac{2}{10}$ or $\frac{5}{10}$ seen or both fractions having a common multiple of 2 and 5 as a denominator
	(ii) $\frac{2}{10}$ oe	2	M1 for $\frac{5}{10}$ seen or both fractions having a common multiple of 2 and 10 as a denominator
		[5]	
2	(a) 14 <i>a</i>	2	M1 for 5a + 2a + 5a + 2a or better
	(b) 7 <i>b</i> + 3 <i>c</i>	2	W1 for either term
		[4]	
3	(a) second one ticked and no other (b)	1 2 [2]	allow crosses on incorrect ones and allow Y/N allow 90° or 180° rotations of this answer M1 for five squares in a line
4	(2) 19	[)]	
4	(a) $\frac{10}{4}$ oe	2	M1 for $4x = 7 + 3$ or better
5	$\sqrt{100}$ 4 ² 5 ² 3 ³	2	W1 for three in the correct order, for reversed order or two correct items converted, eg $\sqrt{100=10}$ and $4^2=16$
6			
υ	(a) (i) 17-29 (ii) 20 (b) 30 (×) 40 (=) 1200 or 30 (×) 35 (=) 1050 or 25 (×) 40 (=) 1000	1 2 [4]	allow either way round M1 for either 29 or 37 rounded to 1 s.f.
7	(a) 135 (b)(i) (0)50 – (0)55	1 1	
	(ii) 42 – 45	2	M1 for 8·4 – 8·9 (cm)
		[4]	

Section A

Section B

8	(a) (PS) PH PE PC DS DH DE DC	2	W1 for 4 correct ones (not PS)
	(h) $\frac{1}{2}$	1	accept decimal and percentage equivalents
			follow through from (a)
		[3]	
9	(a) square and rhombus (only)	1	
	(b) trapezium	1	
		[2]	
10	(a)(i) add 4	1	allow any correct statement
	(ii) 43	2	M1 for $4n + 3$ or 23 and 27 or attempt at 19
			+ 6×4
	(b) 2 ⁻ 3	2	1 for each term
		[5]	
11	334.8	2	M1 for 6·2 × 4·5 × 12
10	6	[2]	
12			
	3		
	2		
	6 5 4 -3 -2 -1 0 1 2 8 4 5 6 7 8 7		
	-2		
		1	
	(a) correct line ($x = 5$)	3	W2 for correct rotation but wrong direction
	(b) correct rotation	5	W1 for the correct angle but the wrong
		[4]	centre
13	(a) 55	3	M1 for attempt at Σn (or 440)
			and
			M1(dep) for their 440 ÷ 8 soi
	(b) home mean is higher	1	accept any correct statement on the mean
		[4]	
14	49	5	M2 for 0.55 × 420 oe
			or 231 seen or
			M1 for 420 ÷ 100
			and
			M2 for $\frac{2}{3} \times 420$ or 0.66 x 420
			or 280 seen
			or
			M1 for 420 ÷ 3 or 140 seen
		[5]	

Mark Scheme 2336 March 2007

Section A

1(a)	Correct reflection	W1	
(b)(i)	(×)3	W1	
(b)(ii)	(0,1)	W1	
2(a)(i)	6·18	W1	
(ii)	1·15 i.s.w.	W2	W1 for 1.1() or 2.3 W1 for figs 115
(b)	$\frac{5}{24}$	W2	M1 for $\frac{5}{6} \times \frac{1}{4}$
3(a)	5 correct points plotted and no extras	W2	W1 for 3 correct points plotted
(b)	Negative	W1	
(c)(i)	Line of best fit between (1,70)(11, 57.5) and (1,74)(11, 61.5)	W1	
(ii)	61 to 65 only	W1	
4(a)	36	W1	
(b)	-6	W2	W1 for 4 or -10 seen
5(a)	5.5 or $5\frac{1}{2}$ or $\frac{11}{2}$ i.s.w	W2	M1 for 2x =4+7 or better
(b)	-3	W3	M2 for $3x = -9$ or $-3x = 9$ or M1 for $kx = -9$ or $3x = k$ or 3x + 2 = -7 or 7x = 4x - 9 or 7x - 4x = -7 - 2
6	140	W2	M1 for 360 – (70 + 130 + 120) or W1 for 40 or 320 seen.
	(Angles in a) quadrilateral =360°	W1	
	(Angles on a) straight line = 180°	W1	

Section B

7	0.65	W2	M1 for 1 –(0.05 +0.3) or 0.35 seen
8(a)	13.75	W1	
(b)	39.6	W2	W1 figs 395 to 396, or 33.24 or 0.84
~ /			seen
			SC1 for answer 25.0
9(a)	Final answer 6x+10	W1	
(b)	Final answer 4(2x+3)	W1	
10(a)		W1	
. ,	12.5 or $12 - 2$ cao		
(b)	Final answer 728	W3	M2 for 1120 x $\frac{(100-35)}{100}$ or 1120 x
			100
			0.65
			M1 for 1120 x $\frac{35}{112}$
			100
			or 1120 x 0·35 or 392
			and dependent
			M1 1120- their 1120 x 0⋅35 (=392)
11(a)	12	W1	, , , , , , , , , , , , , , , , , , ,
(b)	1.3	W2	W1 for 2.7 seen or
			SC1 for answer 13
12(a)	11:7	W2	W1 for 11n:7n
			SC1 for 7:11 or
			1.57 : 1 or 1.6 : 1
(b)	29.60	W2	M1 for $\frac{24 \cdot 05}{26}$ (×32) or
			W1 for figs 925 seen or
			W1 for 5.55 or 29.6
			SC1 29·76 or 29·63
13	136 to 137	W4	W2 for 28 to 29 seen or
			M1 for $\pi \times 3^2$
			and
4.4	100	14/2	W1 for 15 x 11 – their π x 3 ² s.o.i
14	168	VV3	M2 for 3.5 x 48 or $\frac{210 \times 48}{60}$ or
			144+24 or 48+48+48+24
			W1 for 3.5 seen or
			M1 3·3 x 48 (implied by 158·4) or
			210 x 48 (implied 10080)

Mark Scheme 2337 March 2007

Section A

1(a)	18	2	M1 for 36 seen or 'their $36' \div 2$ seen, implied by answer 16.5 to 19
(b)	correct horizontal line (12:00,36) to (13:00, 36)	1	Acc to $\pm \frac{1}{2}$ square for both lines.
		05	
	correct sloping line or curve through	2ft	Ft. dep. on a horizontal line drawn condone ('13:00' 36) to ('13:30' 26) ft from
	('13:00',36) to ('13:30',46)		their horizontal line
			M1 for any other line or curve ending at $(\dots, 46)$ or (26)
			or 20 × 0.5 o.e. seen
2(a)	triangle correct and ruled ± 2 mm	1	Point R is 8 cm from P and Q
(b)	arcs and bisector for P correct $\pm 2^{\circ}$	2 ft	Ft their angle P
			W1 for correct ruled bisector ±2° with no/wrong arcs
(c)	full are contro D with 4 on radius	M1	Mustuse compasses
(0)	$\pm 2 \text{ mm}$		
	correct shading (inside arc and below bisector)	A1	dep. on at least W1 in (b)
	· ·		After M0, SC1 for shading below their ruled
			arc with no bisector
			or for shading between PQ, their ruled
2(-)	0.25 a. a. (accort 0.25/1)	2	bisector of angle P and their arc centre P
3(a)	0.35 0.e. (accept 0.35/1)	2	0.71 for 1 – (0.4 + 0.25) implied by answer 0.71
(b)	20	2	
4(2)	$2^3 \times 5$	2	M1 for 2 and 5 seen (may be in division or
4(a)	2 × 5 0.e.	2	tree)
(b)(i)	120 (or 2³ × 3 × 5)	2	M1 for any multiple of 120 selected as
(ii)	8 (or 2 ³)	1	answer of a product that gives 120
			After 0 in (b)(i) and (ii) SC2 for both answers
			reversed or SC1 for 8 or 2^3 in (b)(i) or 120 or $2^3 \times 3 \times 5$
			in (b)(ii)
5(a)(i)	75	1	
(ii)	5	3	M2 for $3x - 2x = 18 - 13$ or better
			or M1 for $3x + 13 = 2x + 18$ or better
			collecting terms after bracket slip e.g. $3x -$
			2x = 9 - 13 dep on x term and number term
	P-2h P		from bracket expansion
(b)	$\frac{1}{2} \frac{2n}{2}$ or $\frac{1}{2} - h$ o.e. final answer	2	M1 for 2b = P – 2h or –2b = 2h – P
			or W1 for $\frac{\pm P \pm 2h}{\pm 2}$ o.e. or correct answer
			seen

Section A Total: 25

6(a)	0.17, 0.51	2	M1 for 1 correct or 0.68 ÷ 4 soi or for figs 17 and 51 seen
(b)	0.97(2)	2	M1 for 0.54 × 1800 ÷ 1000 o.e. or figs 97(2) seen
7	2, 3, 4, 5	3	W2 for 3 correct with no more than 1 incorrect or all correct with 1 extra ans. M1 for $2 \le n < 5.5$ seen – could be separate inequalities or W1 for 2 correct integers given with no more than 2 incorrect
8(a)	1 and 1	1	
(b)	at least 6 points plotted correct or ft smooth curve thro at least 5 correct pts and correct shape	P1 C1ft	to nearest square curve within 1 small square of the 5 points must be reasonable U shape
(c)	1 6 to 1 8 and –1 6 to –1 8	1ft	ft their intersections with <i>x</i> -axis provided at least 2 intersections
9(a)	5	1	Accept 5/1 but not 10/2
(b)	1.51 final answer	2	1 for 1.51 seen or answer 2.29 or 0.484
10(a)	360 ÷ 5 o.e.	1	or 540 (÷ 5) = 108 and 180 – 108 = 72 with no errors seen
(b)	540	2	M1 for 180 – 72 or 108 seen or (5 -2) × 180
11	128	4	M3 for 6400/50 or $\sum fx / 50$ with correct
			mid-values allow 1 slip on mid- values/products or M2 for 6400 or at least 3 of 1040, 2400, 1760, 1200 seen or their $\sum fx$ where x is in the correct range. or M1 for at least 3 of 80, 120, 160, 200 s.o.i. After M0, SC2 for 108 or 148 final answer
12(a)	Angle in semi-circle (is 90)	1	
(b)	7.2(1)	3	M2 for $\sqrt{6^2 + 4^2}$ M1 for $6^2 \pm 4^2$ implied by 52 or 20 seen www For 3 marks accept ans 7 after M2 earned

Section B Total: 25

Mark Scheme 2338 March 2007

SECTION A

1	(a) triangle with vertices at (6, 3)	3	2 if two vertices correct
	(9, 3) and (6, 9)		or
			2 for enlargement sf 1.5 using wrong
			centre
			1 for enlargement centre (0,0) but wrong st
	(b) angle or orientation	1	
2	(a) 4	1	
	(b) +11 or -11	2	1 each
	(c) $24x^{10}y^{3}$	2	1 for 2 'terms' correct
	(d) 125	2	1 for 5^3 or $5 \times 5 \times 5$ or 5×5^2 seen
3	1/6 and 5/7	2	1 each;
			SC1 for 1/6 and 5/7 and one extra
4	(a) pattern has squares of stars	1	
	rh column has 1 star or 'there is 1 extra'	1	
	must be a clear reference to the		
	diagrams not just numbers		Using Differencing Method
			allow 1 for the second difference is 2 so
			there is an <i>n</i> ⁻ term
			and 1 for a correct substitution seen for
	(h) On L 1 on final answer	0	one given pattern to establish the +1
_	(b) $3n + 1$ as final answer	2	1 for <i>3n</i> seen
5	(2) [m] $3F$	3	I nese marks can be gained in any order
	(a) $[r =]\sqrt{\frac{\pi h}{\pi h}}$		
			W 1 for multiplying by 3
			M1 for dividing by πb
			(but $2f \div \pi \div h$ would not score the mark)
			M1 for square root of their complete
			expression for r^2
	(b) Volume and $L \times L^2 = L^3$ o.e.	1	
6	(a) 390 (accept 380 to 400)	2	1 for 640 to 660 or 250 to 270 seen
	(b) valid comparisons	2	1 for each valid comparison, with at least
			one of them in context

Section A Total: 25

SECTION B

7	(a) $15x - 3y = 48$ or $5x + 15y = 40$	M1	condone one error
	subtraction or addition as appropriate to eliminate variable	M1	condone one error; must be correct operation for their equations or
		A1	M2 for complete method of rearranging and substituting (condone one error in each stage)
	x = 3.5 and $y = 1.5$	4	
	(b) correctly evaluated trial of value	1	
	between 2 and 3		
	correct trials of 2.7 and 2.9 ar better	4	
		•	2.3 -3.833 2.73 0.046417
	(one pos, one neg outcome)		2.4 -3.176 2.74 0.170824
	anower 0.7	1	2.5 -2.375 2.75 0.296875
		•	2.6 -1.424 2.76 0.424576
			2.7 -0.317 2.77 0.553933
			2.8 0.952 2.78 0.684952
		-	2.9 2.389 2.79 0.817639
8	(a) 58⋅8 or 59	3	M2 for 120×0.7^2 o.e.;
			or
		_	M1 for 120 × 0.7 o.e. or 84
	(b) 120·5 and 119·5	2	1 each; condone 119 5 first
			allow 120 49, condone 120 499
	(c) 5·50	3	W2 for 5⋅5 or
			M2 for £6·16 ÷ 112 (× 100)
			Or 112
			M1 for 112% = 6.16 or for 1.12 or $\frac{112}{100}$
			seen
9	184(·2) www	4	W3 for 97(·2) www seen
			or
			M2 for 230 × sin 25 or 230 x cos 65 or
			M1 for sin 25 = $\frac{opp}{c}$ or cos 65 = $\frac{adj}{c}$
			230 230
10	(a) 0·2, 0·8, 0·2 on branches	1	
	(b) 0·14	2	M1 for 0.7×0.2
			or
			for 0.7 x their branch
			or
			for figs 14 as final answer

11	18 000 × <i>h</i> = 12	M1	W4 www for 0.66 to 0.67 <u>and cm</u>
	1 litre = 1000 (cm ³) seen or used	M1	W3 www for 0.66 to 0.67
	0.66 to 0.67	A1	allow 0.7 if M2 earned
	cm	U1	allow if no conversion to other units attempted; allow mm if conversion to mm attempted in working etc
			allow W4 www for 6·6 to 6·7 <u>and mm</u>

Section B Total: 25

Mark Scheme 2339 March 2007

SECTION A

1	(a) $\frac{1}{27}$, $\frac{3}{81}$, $\frac{9}{243}$	2	M1 for 3 ⁻³ or $\frac{1}{3^3}$ or 9 × $\frac{1}{3^5}$
	(b) 1	1	
	(c) 3.2×10^{-2}	2	M1 for 32 × 10 ⁻³ o.e. or 0.032 or $\frac{32}{1000}$
2	$\frac{1}{16}$ or $\frac{4}{64}$ or $\frac{2}{32}$ or 0.0625	2	M1 for $\frac{2}{8} \times \frac{2}{8}$ o.e.
3	(a) Correct histogram	3	 W3 for All bars correct or W2 for Any 3 bars correct or W1 for Freq densities: 8, 5, 1.5, 0.7, 0.3 (at least 4)
	 (b) Any two of the following: A statement comparing the means / modes 		eg Weekend calls last longer on
	a statement comparing the range / spread	2	eg Lengths of calls at weekend have greater range/spread
	or a statement comparing an interval from each distribution.		eg There are more calls between 5 – 10 minutes on weekends than weekdays.
4	(a) [−] 1 and 5	3	M1 $y = x + 3$ drawn W1 for each solution f.t. any line passing through $y = 3$ (excluding $y = 3$). Allow a tolerance of half a square for their x - values
	(b) $x^2 - 5x + 4$ ringed	1	
5	(a) 6 <i>x</i> ² – 11 <i>x</i> – 10	3	M2 for 3 terms, with 2 correct or all of $6x^2 - 15x + 4x - 10$ or M1 for 2 out of the 4 expanded terms correct
	(b) 4a(a + 2b)	2	M1 for $a(4a + 8b)$ or $4(a^2 + 2ab)$ or $2a(2a + 4b)$ or $2(2a^2 + 4ab)$
	(c) $(x-5)(x+3)$	2	M1 for $(x \pm 5)(x \pm 3)$
	(d) $\frac{x-5}{x+5}$	2	M1 for $x^2 - 25 = (x - 5)(x + 5)$ seen

Total section A: 25

SECTION B

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	(a) 112 (Opposite angles of a) cyclic	1	Dependent on 112 or 180 – 68 seen
50 Alternate segment theorem1 1 Dependent on 50(b) Angle B (or D or x) is not a right 		quad	•	
50 Alternate segment theorem1 1 1Dependent on 50(b) Angle B (or D or x) is not a right angle or evidence of 62 + their $y \neq 90$ 17(a) $(3,2,0)$ 1(b)(i) AG = $\sqrt{77}$ or AG ² = 77 or AG = 8-7749 following Pythag2(b)(ii) 27 to 27·23(b)(ii) 27 to 27·23(b)(ii) 27 to 27·23M1 for $sin A = \frac{4}{877}$ or $tan^{-1}(\frac{4}{781})$ or $cos^{-1}(\frac{781}{877})$ M1 for $sin A = \frac{4}{877}$ or $tan^{-1}(\frac{4}{781})$ or $cos^{-1}(\frac{781}{877})$ M1 for $u^2 = v^2$ - 2as or $\sqrt{v^2 - 2as}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (d) 12 (e) C(f) 12 (f) 12 (h) 12 <th></th> <th></th> <th></th> <th></th>				
Alternate segment theorem1Dependent on 50(b) Angle B (or D or x) is not a right angle or evidence of 62 + their $y \neq 90$ 1No ft from incorrect x7(a) $(3,2,0)$ 1(b)(i) AG = $\sqrt{77}$ or AG ² = 77 or AG = 8·7749 following Pythag2M1 for $4^2 + 5^2 + 6^2$ or $4^2 +$ their 7·8 ² (abetter)(b)(ii) 27 to 27·23M2 for $\sin^{-1}\left(\frac{4}{877}\right)$ or $\tan^{-1}\left(\frac{4}{781}\right)$ or $\cos^{-1}\left(\frac{781}{877}\right)$ or $\tan A = \frac{4}{781}$ or $\cos^{-1}\left(\frac{781}{877}\right)$ 8(a) $u = \sqrt{v^2 - 2as}$ 2W1 for $u^2 = v^2 - 2as$ or $\sqrt{v^2 - 2as}$ or $u = \sqrt{v^2 + 2as}$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ W1 strict f.t. for $\sqrt{\frac{2}{320}} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times 10^2$ 9(a) 123M2 for $\frac{8^2}{320}$ or $\frac{1}{5}$ or 0·2 or $\sqrt{\frac{720}{320}} \times \frac{16\pi^3}{3}$ (a) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 10(a) (i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2(b) C110(a) (i) $\frac{6.56}{32} + 5.400$ mean and used in10(a) (i) $\frac{6.56}{34} + 5.400$ mean and used in10(a) (i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2M1 for $\frac{2\pi (2r)^3}{3}$ or better		50	1	
(b) Angle B (or D or x) is not a right angle or evidence of 62 + their $y \neq 90$ 1 No ft from incorrect x 7 (a) (3,2,0) 1 (b)(i) AG = $\sqrt{77}$ or AG ² = 77 or AG ² = 77 or AG = 8.7749 following Pythag 2 M1 for $4^2 + 5^2 + 6^2$ or $4^2 +$ their 7.8 ² (or $4^2 + 5^2 + 6^2$) (b)(ii) 27 to 27.2 3 M2 for $\sin^{-1}(\frac{4}{877})$ or $\tan^{-1}(\frac{4}{781})$ or $\cos^{-1}(\frac{781}{877})$ (b)(ii) 27 to 27.2 3 M2 for $\sin^{-1}(\frac{4}{877})$ or $\tan A = \frac{4}{781}$ or $\cos 4 = \frac{781}{877}$ or $\tan A = \frac{4}{781}$ or $\cos 4 = \frac{781}{877}$ 8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $u^2 = v^2 - 2as$ or $\sqrt{v^2 - 2as}$ or $u = \sqrt{v^2 + 2as}$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times \frac{1}{320} \times \frac{1}{3} + \frac{16\pi r^3}{3} = \frac{1}{3} = \frac{1}$		Alternate segment theorem	1	Dependent on 50
angle or evidence of 62 + their $y \neq 90$ 1 7 (a) (3,2,0) 1 (b)(i) AG = $\sqrt{77}$ or AG ² = 77 or AG = 8.7749 following Pythag 2 M1 for $4^2 + 5^2 + 6^2$ or $4^2 +$ their 7.8 ² (or better) (b)(ii) 27 to 27.2 3 M2 for $\sin^{-1}\left(\frac{4}{877}\right)$ or $\tan^{-1}\left(\frac{4}{781}\right)$ or $\cos^{-1}\left(\frac{781}{877}\right)$ or $\cos^{-1}\left(\frac{781}{877}\right)$ 8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $x^2 = v^2 - 2as$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times \frac{1}{320} \times \frac{720}{320} \times \frac{1}{320} \times \frac{1}{3} + \frac{16\pi r^3}{3} = \frac{1}{3}$ 9 (a) (i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3} = \frac{2}{3}$ M1 for $\frac{2\pi (2r)^3}{3}$ or better		(b) Angle B (or D or <i>x</i>) is not a right	1	No ft from incorrect x
of evidence of 62 + their y ≠ 30 1 7 (a) (3,2,0) 1 (b)(i) AG = $\sqrt{77}$ or AG ² = 77 or AG = 8.7749 following Pythag 2 M1 for $4^2 + 5^2 + 6^2$ or $4^2 +$ their 7.8 ² (or better) (b)(ii) 27 to 27.2 3 M2 for $\sin^{-1}(\frac{4}{877})$ or $\tan^{-1}(\frac{4}{781})$ or $\cos^{-1}(\frac{781}{877})$ or $\tan A = \frac{4}{781}$ or $\cos A = \frac{781}{877}$ 8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $x^2 = v^2 - 2as$ or $u = \sqrt{v^2 - 2as}$ or $u = \sqrt{v^2 + 2as}$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or -x = 3yz - 2xy W1 strict f.t. for $y(\pm 2x \pm 3z)$ W1 strict f.t. for $y(\pm 2x \pm 3z)$ W1 strict f.t. for $y(\pm 2x \pm 3z)$ W1 strict f.t. for $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320}$ or $\sqrt{12}$ or $\sqrt{v^2 - 2as}$ or $\sqrt{\frac{720}{320}}$ or $\sqrt{2} \cdot 25$ or 1.5 (accept all inverted) or $E = kv^2$ or $\sqrt{z} = kv$ or $v^2 = kE$ or $v = k\sqrt{E}$ 10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better 10 (a)(ii) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better		angle		
1 (a) (3,2,0) 1 (b) (i) AG = $\sqrt{77}$ or AG ² = 77 or AG = 8.7749 following Pythag 2 M1 for $4^2 + 5^2 + 6^2$ or $4^2 + \text{their } 7.8^2$ (construction of the better) (b) (ii) 27 to 27.2 3 M2 for $\sin^{-1}\left(\frac{4}{877}\right)$ or $\tan A = \frac{4}{781}$ or $\cos^{-1}\left(\frac{781}{877}\right)$ or $\cos^{-1}\left(\frac{781}{877}\right)$ 8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $x^2 = v^2 - 2as$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy$ or $u = \sqrt{2as - v^2}$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times 10^2$ 9 (a) 12 3 M2 for $\frac{8^2}{320}$ or $\frac{1}{5}$ or 0.2 or $\sqrt{\sqrt{\frac{720}{320}} \times 10^2$ 9 (a) 12 3 M2 for $\frac{8^2}{320}$ or $\sqrt{2}\cdot25$ or 1.5 (accept all inverted) or $\sqrt{x^2 - 2as}$ 4 10 $\sqrt{\frac{720}{320}} = \sqrt{2}\cdot25$ or 1.5 9 (a) 12 3 M2 for $\frac{8^2}{320} = \sqrt{720}$ or $\sqrt{2}\cdot25$ or 1.5 (accept all inverted) or $\sqrt{x^2 - 2as}$ 9 (b) C 1 1 1 1 1 9 (a) $\frac{12}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi(2r)^3}{3}$ or $\sqrt{2}\cdot25$ or 1.5 9 (b) C 1 1 1 1<	7	(a) $(3, 2, 0)$	1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	(d) (3,2,0)	•	
AG = 8:7749 following Pythag better) (b)(ii) 27 to 27.2 3 M2 for $sin^{-1}\left(\frac{4}{877}\right)$ or $tan^{-1}\left(\frac{4}{781}\right)$ or $cos^{-1}\left(\frac{781}{877}\right)$ M1 for $sin A = \frac{4}{877}$ or $tan A = \frac{4}{781}$ or $cos^{-1}\left(\frac{781}{877}\right)$ M1 for $sin A = \frac{4}{877}$ or $tan A = \frac{4}{781}$ or $cos^{-1}\left(\frac{781}{877}\right)$ 8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $u^2 = v^2 - 2as$ or $\sqrt{v^2 - 2as}$ or $u = \sqrt{v^2 + 2as}$ or $u = \sqrt{v^2 - 2as}$ or $u = \sqrt{v^2 + 2as}$ or $u = \sqrt{v^2 - 2as}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times \frac{16}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times \frac{16}{320} \times 720$ or $\sqrt{2} \cdot 25$ or $1 \cdot 5$ (b) C 1 10 (a) (i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better		(b)(i) AG = $\sqrt{77}$ or AG ² = 77 or	2	M1 for $4^2 + 5^2 + 6^2$ or $4^2 +$ their 7.8 ² (or
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		AG = 8.7749 following Pythag		better)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		(b)(ii) 27 to 27.2	3	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Ū	M2 for $\sin^{-1}\left(\frac{1}{8\cdot77}\right)$ or $\tan^{-1}\left(\frac{1}{7\cdot81}\right)$ or
8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $\sin A = \frac{4}{877}$ or $\tan A = \frac{4}{781}$ or $\cos A = \frac{781}{877}$ 8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $u^2 = v^2 - 2as$ or $\sqrt{v^2 - 2as}$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times \frac{16\pi v^3}{3}$ 9 (a) 12 3 M2 for $\frac{8^2}{320}$ or $\frac{1}{5}$ or 0.2 or $\sqrt{\frac{\sqrt{720}}{320}} \times \frac{1}{5}$ or $\sqrt{2} + 2s$ or $v^2 = kE$ or $v = k\sqrt{E}$ (b) C 1 10 (a) (i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better				$\cos^{-1}\left(\frac{7.81}{8.77}\right)$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				M1 for $\sin A = \frac{4}{8.77}$ or $\tan A = \frac{4}{7.81}$ or
8 (a) $u = \sqrt{v^2 - 2as}$ 2 W1 for $u^2 = v^2 - 2as$ or $\sqrt{v^2 - 2as}$ or $u = \sqrt{2as - v^2}$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ 9 (a) 12 3 W1 strict f.t. for $y(\pm 2x \pm 3z)$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 140 or $\sqrt{\frac{720}{320}} \times$ 9 (a)				$\cos A = \frac{7.81}{8.77}$
(b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (c) $y = \frac{x}{2x - 3z}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (c) $y = \frac{x}{2x - 3z}$ 3 W1 for $x = 2xy - 3yz$ or $-x = 3yz - 2xy$ (c) $y = \frac{x}{2x - 3z}$ 3 M2 for $\frac{x}{320} - 2xy$ (c) $y = \frac{x}{2x - 3z}$ 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times \frac{x}{320}$ (a) $(1) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 4 10 (a) $(1) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better (a) $(1) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 4 W2 5205 to 5207	8	(a) $u = \sqrt{v^2 - 2as}$	2	W1 for $u^2 = v^2 - 2as$ or $\sqrt{v^2 - 2as}$
(b) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{2x - 3z}$ or $y = \frac{-x}{3z - 2x}$ (c) $y = \frac{x}{3z - 2x}$ (c) $\frac{x}{3z - 2$				or $u = \sqrt{v^2 + 2as}$ or $u = \sqrt{2as - v^2}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(b) $y = \frac{x}{x}$ or $y = \frac{-x}{x}$	3	W1 for $x = 2xy - 3yz$ or
9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ M1 for $\frac{8^2}{320}$ or $\frac{1}{5}$ or 0.2 or $\sqrt{\frac{720}{320}}$ or $\sqrt{2.25}$ or 1.5 (accept all inverted) or $E = kv^2$ or $\sqrt{E} = kv$ or $v^2 = kE$ or (b) C 1 10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better		2x - 3z $3z - 2x$		-X = 3yz - 2xy W1 strict ft for $y(+2x+3z)$
9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ 9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ M1 for $\frac{8^2}{320}$ or $\frac{1}{5}$ or 0.2 or $\sqrt{\frac{720}{320}}$ or $\sqrt{2.25}$ or 1.5 (accept all inverted) or $E = kv^2$ or $\sqrt{E} = kv$ or $v^2 = kE$ or (b) C 1 10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better (a)(ii) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$				
9 (a) 12 3 M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times$ M1 for $\frac{8^2}{320}$ or $\frac{1}{5}$ or 0.2 or $\sqrt{\frac{720}{320}}$ or $\sqrt{2}\cdot25$ or 1.5 (accept all inverted) or $E = kv^2$ or $\sqrt{E} = kv$ or $v^2 = kE$ or $v = k\sqrt{E}$ (b) C 1 10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (b)(i)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (c)(i)(i)(i)(i)(i)(i)(i))(i)(i)(i)(i)(i)(i				W1 strict f.t. for (their bracket)
9 (a) 12 9 (a) 12 12 (b) C 10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (a) (a) (a) (b) C (b) C (b) C (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	(a) 12	3	M2 for $\frac{8^2}{320} \times 720$ or 144 or $\sqrt{\frac{720}{320}} \times 8$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				8^2 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				M1 for $\frac{1}{320}$ or $\frac{1}{5}$ or 0.2 or
$(a)(i) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ $(b) C$ $(b) C$ $(a)(i) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ $(b)(i) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ $(c)(i) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ $(c)(i) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ $(c)(i) \frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$				$\sqrt{\frac{720}{320}}$ or $\sqrt{2.25}$ or 1.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				(accept all inverted)
(b) C 1 10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ 2 M1 for $\frac{2\pi (2r)^3}{3}$ or better (a)(i) 6.55 or 6.5400 scop and used in M1 W2 5206 to 5207				or $E = kv^2$ or $\sqrt{E} = kv$ or $v^2 = kE$ or $v = k\sqrt{E}$
10 (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (a)(i) $\frac{2\pi r^3}{3} + \frac{16\pi r^3}{3}$ (a)(i) $\frac{2\pi (2r)^3}{3}$ or better (a)(ii) $\frac{2\pi (2r)^3}{3}$ or better		(b) C	1	
(2)(i) 6.55 or 6.5400 soon and used in M1 W2 5206 to 5207	10	(a)(i) $\frac{2\pi r^3}{r^3} + \frac{16\pi r^3}{r^3}$	2	M1 for $\frac{2\pi(2r)^3}{r}$ or better
L (a)(y) 6.55 or 6.5400 coop and yead in 1 M1 1 W2 5206 to 5207				3
		(a)(II) 6.55 or 6.5499 seen and used in	М1	W2 5296 to 5297
$6\pi^{2}$ or in two separate volume		$6\pi r^2$ or in two separate volume		
Calculations (fully correct method).		calculations (fully correct method).	A1	
(b) One term is area, the other is length 1		(b) One term is area, the other is length	1	

Total section B: 25

Mark Scheme 2340 March 2007

SECTION A

1	(a) 13.13()	1	
	(b) <u>13</u> 99	1	
2	(a) 10	2	M1 $\sqrt{100}$ or $\sqrt{2} \times 5\sqrt{2}$ or $2\sqrt{25}$ or $\sqrt{2} \times \sqrt{2} \times \sqrt{5} \times \sqrt{5}$
	(b) 3√2	2	M1 multiplying num and denom by $\sqrt{2}$ or $\sqrt{18}$ or better
3	(a) (i) b – a (o.e.)	1	
	(ii) 3 b (o.e.)	1	
	(iii) 3 b – 3 a (o.e.)	2	M1 OC = - 3a
	(b) Trapezium with reason Eg because AB parallel to DC	2	W1 TrapeziumW1 AB parallel to DC
4	(a) (3,0)	1	
	(b) (1,2)	1	
	(c) (3,4)	1	
5	(a) 25cm	2	M1 (SF) 2.5 o.e. eg 20/8 seen
	(b) 420 π (c.a.o.) www	3	M1 $\pi \times 8 \times 10$ or $\pi \times 20 \times 25$ (FT their (a)) And M1 subtraction based on consistent statements involving π isw A1 420 π or 620 π (only from AD = 35cm in (a))
6	-1.5 and 5 www	5	Stage 1 M2 $2x^2 - 2x - 5x - 15 (= 0)$ Or M1 $2x(x - 1) - 5(x + 3)$ Stage 2 And M2 $(2x + 3)(x - 5) = 0$ Or M1 $(2x \pm 3)(x \pm 5) (=0)$ FT their quadratic for M2 or M1 A1 -1.5 and 5 If M0, W1 -1.5 or 5 www leading to their solution

Section A Total: 25

SECTION B

7	(a) 80	1	
	(b) 452 to 453	2	M1 80 × 2 ^{2.5}
8	9 www	2	M1 <u>39</u> ×40 176 A1 9 or 8 from 8.8
9	116.3 to 116.4	3	M2 cos x = -0.44 or -160/360 Or W2 x = 63.6 to 63.7 Or M1 23 ² = $15^{2}+12^{2}-2\times15\times12\times\cos x$
10	(a) Moving averages plotted	2	W1 horizontal position correct (any 5) W1 vertical position correct (any 5)
	(b)(i) 360 to 370	1	
	(ii) estimate correct (their (i) × 4) - 950	2	M1 their (i) × 4 = 320 + 240 + 390 + n A1 their n (FT (i))
11	Ruled straight line through two of our correct points (within ½ square) between their 1.96 and 51.84	2	W1 squares calculated 1.96, 9.61,27.04, 51.84 Or 3 plots within 1/2 square
	a = 0.69 to 0.71 www	2	 W2 0.69 to 0.71 Or M1A1 If answer in range 0.65 - 0.75 and triangle seen on their line (no need to see numbers or division) Or M1A1 FT for triangle seen on their line with numbers or correct division seen, and correct FT answer M1 gradient attempted FT from their straight line
	b = 14.5 to 15.5 www	1	W1 FT their intercept within ½ square
12	(a) $x^2 + (3 - 2x)^2$ (=12) $x^2 + 9 - 6x - 6x + 4x^2 = 12$ $5x^2 - 12x + 9 - 12 = 0$	1 1 1	M1 M1 Allow $5x^2 - 12x - 3 = 0$ for final mark if M2 scored already
	(b) x = 2.6(2) or 2.63 with y = - 2.2(5) or -2.26 or -2.3	4	M2 $\frac{12 \pm \sqrt{204}}{10}$ Or M1 $\frac{12 \pm \sqrt{(144 + 4 \times 5 \times 3)}}{10}$ condone 2 errors
	And x = -0.2(2) or -0.23 with y = 3.4(5) or 3.46 or 3.5		And W1 both x coordinates correct or one pair correct Or
	WWW		W2 both pairs correct

Section B Total: 25

General Certificate of Secondary Education (Mathematics C – Graduated Assessment) (1966) March 2007 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	a*	а	b	с	d	е	f	g	р	u
	Raw	50							40	24	15	0
2332	UMS	42							36	24	(18)	0
0000	Raw	50							27	13		0
2333	UMS	47							36	24		0
	Raw	50						38	24	15		0
2334	UMS	54						48	36	(30)		0
0005	Raw	50						29	15			0
2335	UMS	59						48	36			0
	Raw	50					27	12				0
2336	UMS	71					60	48				0
0007	Raw	50				26	13					0
2337	UMS	83				72	60					0
	Raw	50			30	15						0
2338	UMS	95			84	72						0
	Raw	50		26	12							0
2339	UMS	107		96	84							0
00.40	Raw	50	29	14								0
2340	UMS	120	108	96								0

Notes

The above table shows the raw marks and the corresponding key uniform scores for each unit (module test) available in the March 2007 series.

Raw marks falling between two raw marks in the appropriate row above are converted, by a linear map, to a uniform score between the uniform scores that correspond to the two raw marks.

The grade shown in the above table as 'p' indicates that the candidate has achieved at least the minimum raw mark necessary to access the uniform score scale for that unit but gained insufficient uniform marks to merit a grade 'g'. This avoids having to award such candidates a 'u' grade. Grade 'p' can only be awarded to candidates on 2331 (M1) and 2332 (M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (1966).

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2007