Mathematics C

Mark Schemes for the Units

June 2007

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2007
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Mathematics C (1966)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2331	Module Test M1	1
2332	Module Test M2	5
2333	Module Test M3	9
2334	Module Test M4	13
2335	Module Test M5	17
2336	Module Test M6	21
2337	Module Test M7	25
2338	Module Test M8	29
2339	Module Test M9	33
2340	Module Test M10	39
2341	Terminal Unit Foundation Tier	43
2342	Terminal Unit Intermed. Tier	49
2343	Terminal Unit Higher Tier	57
2345	Internal Assessment	(OCR Marked)

Mark Scheme 2331 June 2007

SECTION A

1	(a)	79	1	
	(b)	12	1	
	(c)	30	1	
2	(a)	Platinum or 1772	1	
	(b)	1060	1	
	(c)	3410	1	
	(d)	1600	1	
	(e)	1535	2	M1 for $1064+471$ seen or implied
3		D F	2	1+1
4		All 4 correct	2	1 for 2 correctly indicated
5	(a)	The correct 5 only ACB BAC BCA CAB CBA	2	1 for 3 correct, condoning errors or repeats
	(b)	(i) 3:40 or equivalent	1	Allow alternative common time formats
		(ii) 4 o'clock or equivalent	1	Allow alternative common time formats. Follow through from part (ii)
6	(a)	Evens Unlikely Impossible	1 1 1	SC2 for all the probabilities correctly given numerically ie $\begin{array}{lll}\frac{1}{2} & \frac{1}{12} & 0\end{array}$
	(b)	(i) 60	1	
		(ii) 25	1	
7	(a)	79	1	
	(b)	24	1	
	(c)	Forton	1	

Section A Total: 25

SECTION B

8	(a) (i) 7	1	
	(ii) 9	1	
	(iii) 7	1	
	(b) (i) $(2,5)$	1	
	(ii) $(0,4)$ indicated in some way	1	Correct by eye ($\pm 2 \mathrm{~mm}$)
9	(a) (i) 3123	1	
	(ii) $\begin{gathered}\text { Sensible (true) } \\ \text { comment }\end{gathered}$	1	For example, "numbers go 12 3" or "number are diagonal" or pattern 123", " $1{ }^{\text {st }}$ line is the same as the $4^{\text {th }}$ line" (or $2^{\text {nd }} / 5^{\text {th }}$ line or $3^{\text {rd }} / 6^{\text {th }}$) or equivalent. Not just" I followed the pattern" or equivalent - must have a relevant description.
	(b)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
10	(a) (i) 1 hexagon	1	
	(ii) 2 pentagons	1	
	(b) $\frac{1}{4}$ or $\frac{2}{8}$ or equivalent	1	Condone 2/8 and 1/4
	(c) Correct	3	2 for correct sail regardless of position. (1 for two correct sides) 1 for correctly drawn mast height and position on the board.

11 (a) (£)1370				1	
	(b)		(g)	2	$\begin{aligned} & \text { M1 for "2" or " } 8 \div 4 \text { " or } \\ & \text { " } 24 \text { " or " } 8 \times 3 \text { " o.e. seen. } \end{aligned}$
-	(c)	(i)	200 (cm)	1	
		(ii)		1	Allow follow through (i) $\div 25$
	Matching unit			2	1 for the less accurate correct "number" outside this range (7.8-9.2 or 78-92) 1 for (5-15) cm or (50-150) mm for the units mark. If zero scored for question SC1 for 3.2 ± 0.2 and 3.2 ± 0.2 and 2 ± 0.2 or 6.4 ± 0.2 and 2 ± 0.2 (or $\times 10$ equivalent) seen.
	(d)	(i)		1	
			(£) 250	1	Allow follow through 2000 - "their (i)"

Section B Total: 25

Mark Scheme 2332 June 2007

SECTION A

1	$\begin{array}{lll}\text { (a) } & \text { no } & \text { no } \\ \text { no } & \text { no } & -\end{array}$	1	All correct
	(b) Correct line of symmetry drawn on shapes 3 and 6	2	W1 for each
2	$\begin{aligned} & 123+321=444 \\ & 1234+4321=5555 \\ & 123456+654321=777777 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
3	(a)(i) $61 / 2$	1	
	(ii) 1	1	SC1 for 201/2 in (i) and 3 in (ii)
	(b) 150	1	
	(c) 6:55	1	Accept any correct equivalent time
4	(a) Half of the cards are not clouds	1	
	(b) Mark $4 \cdot 3$ to 6 cm from 0	1	
5	(a) 45 or attempt at 3×15 64 or 'their 45 ' +19 'their 64' - 60 4	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Seen or implied Or W4 for 4 as answer without wrong working If 0 awarded then SC3 for 23 as answer Or SC1 for 83 seen
	(b) 15	2	W1 for 1.4-1.25 or 140-125 or 140 cm seen or figs 15 seen
	(c) 1.60 to 2.00 inclusive	1	Or 160 cm to 200 cm
6	(a) 168	2	W1 for attempt at 6×28 seen or figs 168 seen
	(b) 13	2	W1 for $78 \div 6$ seen in correct order or figs 13
	(c)(i) 10	1	
	(ii) 26-28	1	

Section A Total: 25

SECTION B

7	(a) 1 (hour) 40 (minutes)	2	W1 for attempt at valid time interval or 40 mins seen or answer between 1 hr 30 mins and 2 hrs not inclusive
	(b) 12:50	1	Accept valid equivalents
8	(a) 9	2	M1 for attempt at ordered list seen, minimum 7 numbers ordered.
	(b) 14	1	
9	(a)(i) North West	1	Accept NW
	(ii) Bank (Street) left, Mill (Street) left	2	W1 for any 2 correct
	(b) $4 \cdot 25$	2	M1 for attempt to add all three weights or $0.75(0)$ seen or figs 425 or $4(\cdot \ldots)$
10	(a) 180	1	
	(b) 175	1	
	(c) 525 or ft their (b)	1	
11	(a) D A C	2	W1 for any 2 correct
	(b) Cylinder	1	
12	(a)	2	W1 for any 3 correct
	(b) $46^{\circ}\left(\pm 2^{\circ}\right)$ must f.t. their A	1	
13	(a) 104.5(0)	2	W1 for $18 \times 5.25+10$ or $94.5(0)$ seen or figs 1045
	(b) 2 is enough for 16 (so need 3)	1	Or 2 children would be without a helper
	(c) 6 (sweets) 12 (left over)	2	W1 for each

Section B Total: 25

Mark Scheme 2333 June 2007

SECTION A

1	(a) 17 isw (b) add 3	1 1	
2	(a) $6742 \cdot 7$ (b) 3.404 (c) 14.4	1 1 2	M1 for attempt at 2.4×6 or digits 144
3	$\begin{aligned} & \frac{1}{2}=0.5 \\ & \frac{1}{5}=0.2 \\ & \frac{1}{4}=0.25 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
4	$\begin{aligned} & \text { (a) } 18 \\ & \text { (b) } 6 \\ & \text { (c) } 11 \end{aligned}$	1 1 1	
5	(a) 20 (b) $(4+5) \times 3=27$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	or $((4+5) \times 3)=27$
6	(a) 128 (b) 30	2 1	M1 for $640 \div 5$
7	(a) Monday (b) $6-3-125$ (c) 2	1 2 1	W1 for three in the correct order or correct reverse order
8	(a) all correct and none incorrect (b) 125 (c) $6 \cdot 5(0)$	2 1 1	W1 for three correct squares condoning errors and omissions

Section A Total: 25

SECTION B

\begin{tabular}{|c|c|c|c|}
\hline 9 \& \begin{tabular}{l}
(a) (9) 1512711 \\
(b) 54 \\
(c) Red \\
(d) 4
\end{tabular} \& 2
1
1
3 \& \begin{tabular}{l}
W1 for two correct or ft their table \\
M1 for attempt to add all the numbers M1 a total \(\div 9\) soi
\end{tabular} \\
\hline 10 \& \begin{tabular}{l}
(a) D \\
(b) E \\
(c) \\
(d) 745
\end{tabular} \& 1
1
1

2 \& | any orientation |
| :--- |
| M1 for $20 \times 35(+45)$ or 700 seen |

\hline 11 \& | (a) $12-14$ |
| :--- |
| (b) 12-16 |
| (c) 8 |
| (d)(i) 22 to $22 \cdot 5$ |
| (ii) 72 | \& 2

1
2
1

2 \& | M1 for 3-3.25 oe seen |
| :--- |
| M1 for 24 |
| M1 for use of an amount which is a factor of 80 eg $5,8,10,20$, or 40 |
| or W1 for 36 |

\hline 12 \& | (a) correct right-angle correct length (4 cm) |
| :--- |
| (b) 123-130 | \& 1

1

2 \& $$
\begin{aligned}
& \pm 2^{\circ} \\
& \pm 2 \mathrm{~mm} \\
& \text { M1 for } 12 \cdot 3-13(\cdot 0) \text { seen }
\end{aligned}
$$

\hline 13 \& $\frac{5}{14}$ \& 1 \& accept 0.36 or $0.35(.$.

\hline
\end{tabular}

Section B Total: 25

Mark Scheme 2334 June 2007

SECTION A

1(a)	(-2,3) cao	1	
(b)(i)	C and D correctly plotted	1	
(ii)	$(-2,-2)$ or ($3,-2$)	1	Must f.t their D
(c)	20 cm	1	Or f.t their square or rectangle only.
2(a)	16 cao	1	
(b)	5 cao	1	
(c)	7 cao	1	
3(a)	$\begin{array}{lllllllllll}0.029 & 0.125 & 0.2 & 0.204 & 0.27\end{array}$	2	W1 for one incorrect or all reversed
(b)	$\frac{27}{100}$	1	
4(a)	Line $x=1$ drawn	1	
(b)	Correct reflection	1	
5(a)	175 g	1	
(b)	30	1	
(c)	75 g	2	W1 for 25 seen
6	£8970 with working	3	W1 for 8970 with no working shown. or M1 for a complete attempt at multiplication or addition of boxes if grid method used. If choice of method, mark the one which leads to answer on answer line. and W1 for figs 69, 207, 78, 104, 13 or 1725 seen, or 4 correct boxes if using grid method. or W1 if repeated addition of 26 lots of 345 seen award W1 for 2 of digits 8970 in correct position.
7(a)	$\begin{aligned} & W=6 x . \text { Accept } \mathrm{W}=x+x+x+x+x+x \text { or } \\ & W=6 x x \end{aligned}$	2	W1 for $6 \times$ o.e seen.
(b)	$\mathrm{T}=6 x+\mathrm{y}$ or T=w+y o.e	1	f.t from (a)
8(a)	$\frac{109}{300}$	2	W1 for wrong form or $\text { W1 for } \frac{109}{\text { Sum of frequencies }}$
(b)	Valid reason	1	

Section A Total: 25

SECTION B

\begin{tabular}{|c|c|c|c|}
\hline 9(a) \& 29 \& 1 \& \\
\hline (b) \& 15 \& 3 \& \begin{tabular}{l}
M1 intention to add 7 numbers (total not needed), can be soi by \(80-130\) and \\
M1 Division of a total between 80 and 130 by 7 \\
or \\
W2 Final answer of 11.4 to 18.6 inclusive \\
or \\
W1 Final answer of 80-130
\end{tabular} \\
\hline 10(a) \& 70 \& 2 \& M1 for \(14 \times 5\) (soi by method) \\
\hline (b) \& 33 \& 2 \& W1 for 15, 8 or 20 seen \\
\hline 11(a) \& 5.6 km \& 1 \& \\
\hline (b) \& 1 hour 10 minutes \& 1 \& \\
\hline (c) \& Correct line drawn \& 1 \& \\
\hline 12 \& £1-50 \& 3 \& \begin{tabular}{l}
W2 18.5(0) or 1.5 \\
or \\
M1 \(2 \times 5.35\) or \(2 \times 3.9(0)\) seen. \\
or \\
W1 for \(10.7(0)\) or \(7.8(0)\) seen \\
And \\
M1 for intention to add their 10.7(0) \\
and \(7 \cdot 8(0)\)
\end{tabular} \\
\hline 13(a) \& \(145^{\circ}\) \& 1 \& \\
\hline \& (Angles on a)straight line or (Straight) line (adds to) \(180^{\circ}\) \& 1 \& \\
\hline (b) \& \(110^{\circ}\) \& 2 \& M1 for \(180-(2 \times 35)\) o.e. \\
\hline 14 \& 320
\[
\mathrm{cm}^{2}
\] \& 3

1 \& | M1 for 12×10 or 25×8 or 18×12 or 13×8 seen |
| :--- |
| Or |
| W1 for one correct area 120, 200, 104 or 216 |
| And |
| M1 for attempt at addition of their two areas |

\hline 15 \& 17(m) with at least one correct trial. \& 3 \& | W1 for 17 on answer line and table blank. |
| :--- |
| Or |
| W1 for one correct substitution, L must be 4 greater than width. |
| And |
| W1 for an improved substitution. Or |
| SC2 for 1721357 no tick as the only entry in table and answer line blank or 21 or 357 |

\hline
\end{tabular}

Section B Total: 25

Mark Scheme 2335 June 2007

SECTION A

1 (a)	2	2	M1 correct algebraic step eg $6 x=12$ / 15-3 or clear flowchart eg 15-3 $\div 6$
(b)	$3 \cdot 5, \quad 31 / 2, \quad 7 / 2$	2	```M1 correct algebraic step eg 2x=7 / 6+1 or clear flowchart eg 1+6\div2```
2 (a)	7000, 6700, 6500,6600	2	$\begin{aligned} & \text { M1 } 100 \times 70 / 67 / 65 / 66 / 60 \\ & \text { or } 6680 \text { or } 6000 \end{aligned}$
(b)	7 to 8	1	inclusive
(c) i	18	2	M1 $0.4(0) \times 45$ oe or 4.5 or $4 \frac{1}{2}$ seen
(ii)	56	2	M1 $28 \div 50$ oe or 28×2 or 3 correct $\%$ of 50 found
(d)	600000	3	M1 75% soi $\left(\mathrm{eg}^{3 / 4, ~} 0 \cdot 75,270^{\circ}\right)$ $0.75 / 3 / 4 \times 800000 \mathrm{soi}$ \& M1or figs $2000(00) \&$ no contradictory evidence or W2 figs $6000(00)$ as final answer
3	Nelson with 2 conversions Polly	3	W2 both correct \& 1 correct conversion or 2 correct conversions or W1 both correct, no conversion or 1 correct conversion
4 (a)	$3 / 8$ oe fraction	2	$\begin{array}{ll} \hline \text { M1 } & 3 / 4 \times 1 / 2 \text { seen } \\ & \text { or } \frac{1.5}{4}, \frac{11 / 2}{4}, 0.375,37 \cdot 5(\%) \end{array}$
(b)	5/16 oe fraction	2	M1 any correct equivalent fraction seen of 1/8 or 3/16
5 (a)	39	1	
(b)	-1	1	accept equivalents
(c)	399	2	correct or ft their (b) using 400 M1 100×4 soi

Section A Total: 25

SECTION B

6 (a)	49	1	
(b)	1000	1	$\begin{gathered} \text { if } 0 \text { scored in }(a), \text { (b): } \\ \text { sc1 } 7 \times 7 \text { and } 10 \times 10 \times 10 \text { both seen } \end{gathered}$
(c)	5	1	condone 5^{3} and $5 \times 5 \times 5$
7 (a)	kite	1	only
(b)	correct statement about properties	2	T for R, F for P, not already stated eg - (2) (lines of) reflection symmetry - diagonals (cross) at right angles - all sides same length / equal T for R, T for P, not already stated eg W1 - diagonals bisect - rotation symmetry (order 2) - (2 pairs) opposite angles equal
8 (a)	clockwise two thirds, 240	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	
(b)	correct diagram	1	intention
(c)	translation and 2 down	2	W1 either, without any other transformation
9 (a)	$5 h$	1	
(b)	$4 a$	1	
(c)	$\begin{aligned} & 3 x \\ & 7 y \end{aligned}$	2	W1 each
10 (a)	24	2	M1 $6 \times 2 \times 2$ soi
(b)i	2	1	
ii		3	W3 both correct \& accurate or W2 both correct \& inaccurate or both correct + wrong consistent scale or $\mathbf{\text { Wr }}$ or or front correct \& reversed correct or plan correct in/accurate 2 by 6 rectangle seen

11	(a)	listing all 6 outcomes	$\mathbf{2}$		only penalise incorrect extras \& repeats once any 3 of their own correct		
	(b)	$\frac{1}{6}$ oe	$\mathbf{2}$		$16 \cdot 6 \%, 16 \cdot 7 \%, 17 \%, 0 \cdot 166,0 \cdot 167$, $0 \cdot 17$ or any correct equivalent fraction ft only their list (at least 2 further rows) for 2 or 1, condone repeating given row		
correct denominator in their fraction							
or wrong form						,	
:---							

Section B Total: 25

Mark Scheme 2336 June 2007

SECTION A

1	(a) Base labelled B	1	
	(b) $\mathrm{p}=10 \mathrm{q}=3 \mathrm{r}=16 \mathrm{~s}=10$	1	
	(c) 476	3	W2 238 Or M2 ($3 \times 16(+) 3 \times 10(+) 10 \times 16) \times 2$ Or M1 area of 1 face calculated without further working leading to volume.
2	(a) 40	1	
	(b)9 7 10 2 8 11 0 5 12 1 4 4 8 8 9 9 13 0 2 5 5 6 6 7	2	For 2 marks condone 1 error in order or 1 omission M1 for mis-order of 20 results with one error or omission Or M1 for 3 errors or omissions in ordered diagram
	(c) Two distinct comments eg aerobics group higher pulse rates spread of pulse rates the same	1	ft from (a) and (b) ft from (a) and (b)
3	(a) 30	2	M1 $3 \times 2 \times 5$
	48	1	or $\mathrm{ft} 18+$ their (a)
4	(a) 75	1	
	(b) -11	2	M1 9 seen from -3x-3 or -29 as answer
5	(a) $3 \mathrm{a}+5$	1	or $5+3 \mathrm{a}$
	(b) $x^{2}+4 x$	1	
6	96	3	```W2 288 / 3 Or M1 \(2 / 3 \times 24 \times 6\) and M1 144 or \(16(48 / 3)\) or \(4(12 / 3)\) www```
7	(a) 1 (5) 913	1	
	(b) Points plotted Ruled line (by eye) thru' $(0,1)(3,13)$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	ft their (a) ft - one straight line through their 4 points
	(c) 1.5 or $11 / 2$ or $6 / 4$	1	or ft their line for non-integral x value Condone coordinate answers $(1.5,7)$

Section A Total: 25

SECTION B

8	(a) 6.69	1	
	(b) 0.4 or equivalent	1	
9	(a) 45 and 0.2	2	W1 45 or 0.2
	(b) $25 \mathrm{~km} / \mathrm{hr}$	3	Accept 24.6 to 25.2 www M2 15 $\div 0.6$ or M1 $15 \div$ by their time or 0.6 seen
10	(a) Sum of 5 (equal) angles at centre is 360	1	
	(b) Correct octagon	2	6 of the angles to measure between 42° and 48°. M1 45° seen, or 'web with 8 spokes (6 of the angles to measure between 42° and 48°) or attempt at regular octagon evidenced by 4 angles between 42° and 48°.
11	Bonus by £4 www	5	```Or W4 for 182.5-178.5 M1 Ace £182.5(0) and M2 \(£ 178.5(0)\) or \(170 \times 1.05\) etc Or M1 £8.5(0) and M1 their Ace total - their Bonus total (or vv) not 175-170```
12	7	3	M1 10x + 5 (=75) and M1 10x $=70$ or ft their first step A1 7 or ft their penultimate step
13	(a) Line drawn	1	Must be between $(50,160)$ and $(50,170)$ to between $(80,183)$ and $(80,193)$
	(b) Reading from their line	1	Read to lower/upper integer
14	B at (-5,2), (-4,5) (-3,5) (-3,2)	3	W2 3 points correct or M2 90 clockwise rotation, centre $(0,0)$ or M1 3 points 'correct' from clockwise rotation, centre $(0,0)$ or M1 90 clockwise/anticlockwise any centre
15	452 (.)	2	M1 3(.) $\times 12 \times 12$ or $\pi \times 12 \times 12$

Section B Total: 25

Mark Scheme 2337 June 2007

SECTION A

1	(a) Positive	1	condone equivalent statements
1	(b)(i) ruled line of best fit between $(2,31)$ and $(2,40)$ inclusive and between $(6,55)$ and $(6,62)$ inclusive	1	
1	(b)(ii) ft their ruled line of best fit	1	tolerance 1 full square
2	$\text { (a)(i) } \frac{19}{20}$	2	M1 for correct use of common denominator eg $\frac{1}{5}=\frac{4}{20}$ or $\frac{3}{4}=\frac{15}{20}$ or $\frac{95}{100}$ seen or implied
2	$\text { (a)(ii) } \frac{8}{9}$	2	M1 for $\frac{8}{15} \times \frac{5}{3}$ or $\frac{40}{45}$ or $\frac{8}{15} \div \frac{9}{15}$ o.e.
2	(b) 320 or 300	2	M1 for two of 20, 8 and 0.5 seen or implied or for answer with figs 32(0) or 30(0)
3	(a) 49	2	W1 for $5 b^{2}=45$ seen or implied
3	(b) $y=-2 x+5$ o.e.	2	W1 if ' $y=$ ' omitted or for $y=-2 x[+c]$ or for $y=m x+5$
4	bisector of angle B constructed $\operatorname{arc}(\mathrm{s})$ radius $5 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ centre D correct position of T clearly indicated	M2 M1 W1	tolerance $\mathbf{2}^{\circ}$; M1 for angle bisector arcs but no line drawn or W1 for angle bisector with no constructing arcs seen or T at 5 cm from D (also implies previous M1)
5	(a) 0.25 or $\frac{1}{4}$ isw cao	3	M2 for $4 x=1$ or M1 for $4 x=k$ or $k x=1$ or $4 x-2=-1$ or $5 x=x+1$ or $5 x-1=x$ and $\mathbf{M} \mathbf{1}$ for answer ft their $a x=b, a \neq 1$ if M0 allow SC1 for $1 / 4$ oe seen embedded
5	(b) 7 cao	3	M1 for $3 x+15$ seen and $\overline{\text { M1 }}$ for $2 x=14$ or ft their expansion if M0 allow SC1 for 7 seen embedded in original equation: $5 \times 7+1=3(7+5)$
5	(c) $[n]>3$ cao	2	M1 for $4 n>12$ or $4 n \geq 12$ or for $n=3$ or for 3 found with other wrong inequality

Section A Total: 25

SECTION B

6	(a) 10 and 1	2	1 each
6	(b) points plotted smooth curve through all their plotted points	W1 W1	tolerance 2 mm ; correct or ft from table; allow one error or omission tolerance 2 mm ; allow only for curve with just one turning point; allow if only 6 points plotted
7	14.75(...) or $14 \cdot 8$	3	M2 for $\sqrt{11 \cdot 2^{2}+9 \cdot 6^{2}}$ (could be in two steps) or M1 for $11.2^{2} \pm 9 \cdot 6^{2}$ or $217 \cdot 6$ or 33.28
8	6.64	2	M1 for 6.6(39...) or digits 664 or W1 for 5.49 or 7.81 as answer or SC1 for both 11.22 and 1.69 seen
9	164 isw	4	M1 for at least 3 midpoints 130, 150, 170 etc seen or implied and M1 for (freq. \times their midpts) seen or implied (390, 3900, 3230, 1900, 420 or total 9840) and M1 for their total $\div 60$ (= $9840 \div 60$) SC3 for answers 154 or 174
10	$p=10 \cdot 8$ $q=5.75 \text { or } 5.7 \text { or } 5.8$	2	if p wrong, then $\mathbf{M} 1$ for $\frac{12}{5} \times 4.5$ o.e. eg $2.4 \times 4.5,0.95 \times 12,4.5 \div 0.4166$ etc if q wrong, then $\mathbf{M 1}$ for $\frac{5}{12} \times 13.8$ o.e. eg $13.8 \div 2 \cdot 4,13.8 \times 0.42,1.15 \times 5$, $\frac{4.5}{\text { their } 10.8} \times 13.8$ etc if $\mathbf{0}$ gained in question on above scheme, allow SC1 for any of these seen: $12 \div 5 \text { or } 2 \cdot 4 \text { or }$ $4.5 \div 5$ or 0.95 or $5 \div 12$ or 0.416 to 0.417 or 0.41 or 0.42 or 0.4 or 25 minutes or $13.8 \div 12$ or 1.15

$\mathbf{1 1}$	(a) 18	$\mathbf{2}$	M1 for $360 \div 20$
	(b) 140 angle between tangent and radius $=$ 90° (or a right-angle) isosceles [triangle] mentioned	$\mathbf{1}$	allow for two of tangent, radius and 90
$\mathbf{1 2}$	6480	$\mathbf{1}$	

Section B Total: 25

Mark Scheme 2338 June 2007

SECTION A

1	(a) 3^{9} (WWW)	2	M1 $3^{12} \div 3^{3}$ or $3^{2} \times 3^{7}$ or $3^{5} \times 3^{4}$
	(b)(i) $3 \sqrt{2}$	1	
	(b)(ii) 6	1	
2	(a) 78.5 $79 \cdot 5$	1 1	Accept 79.49, 79.499 or better
	(b) 1.6×10^{6}	2	M1 2100000 - 500000 or 21×10^{5} or 0.5×10^{6} or figs 16
3	$50 \pi-18 \pi$ (WWW)	3	M2 Evidence of $\frac{\pi \times 10^{2}}{2}-\frac{\pi \times 6^{2}}{2}$ or better M1 Sight of $\frac{\pi \times 10^{2}}{2}$ or $\frac{\pi \times 6^{2}}{2}$ or $\pi 10^{2}-\pi 6^{2}$
4	$(r=) \sqrt[3]{\frac{3 V}{4 \pi}}$ WWW	3	W1 operation of $\times 3$ correct and W1 ft operation of $\div 4 \pi$ correct and W1 ft operation of cube root correct
5	(a) $\times \checkmark \times \checkmark \times$	2	M1 any 3 correct including a \checkmark
	(b) $\frac{2}{11}$	1	
6	$x=11 / 2 \text { and } y=1$ following algebra and WWW	3	M1 Mult by 2: $4 x+10 y=16$ Condone one error M1 (Subtract to) eliminate x (ft $1^{\text {st }}$ step) $13 y=13$ Condone one error If M0, W1 for correct x, y. 3 marks only for completely correct algebraic method
7	(a) ${ }^{-8}$ and 27	1	
	(b) Graph	2	P1 5 Points or $\mathrm{ft}(\mathrm{a}) \pm 1$ square C1 Within 1 square of correct middle five points
8	$\begin{array}{ll} y \leq x-2 & \text { o.e. } \\ y \geq 2 & \text { o.e. } \end{array}$	1	SC1 for $y=/ \geq x-2$ and $y=/ \leq 2$ Condone use of < and >.

Section A Total : 25

SECTION B

9	(a) $x^{2}+11 x+24$	2	M1 any 3 out of 4 expanded terms correct
	(b)(i) $2 x(a-3 b)$	2	M1 2(ax-3bx) or $x(2 a-6 b)$
	(b)(ii) $(x-10)(x+2)$	2	M1 $(x \pm 10)(x \pm 2)$
10	Rotation Rotation or Turn 180° (Centre) $(0,0)$ or origin or O Enlargement Enlargement, any sf or any centre Correct sf (-1) Correct centre $(0,0)$ or origin or O	1 1 1 M1 A1 A1	NB $1 / 2$ turn scores 2 If $\mathbf{W} \mathbf{0}$, allow $\mathbf{W} \mathbf{1}$ for image drawn. NB Any description involving two or more transformations scores 0 .
11	(a) 29-31 WWW	2	M1 27-29 and 57-59 written or clearly marked on horizontal axis. If no labels and more than 2 marks take outer 2 values. SC1 Correct IQR for Saturday (74).
	(b) Any two of these three comments (no more than one of each) Comment on average/median but not mean or mode. Comment on spread. Comment on an interval.		Examples More money is spent on Saturday. Greater range of amounts are spent on Saturday. More people spent between $£ 40$ and $£ 60$ on a Tuesday.
12	(a) Both points $16 \cdot 7,16 \cdot 8$ plotted. Allow $\pm 2 \mathrm{~mm}$ (1 square) Using template accept within circle.	3	W2 One point plotted or two points at correct heights. (If more than two points then mark the worst two for W2). W1 Correct calculation seen for a moving average or any 2 points at correct height.
	(b) $4.8(\ldots)$ or $4 \cdot 9$	3	M2 $\frac{1 \cdot 3}{26 \cdot 8}$ or $1 \cdot 048 \ldots$ or $104 \cdot 8 \ldots$ or M1 figs 13 or $\frac{28 \cdot 1}{26 \cdot 8}$

13	(a) $7 \cdot 17(\ldots)$ or $7 \cdot 18$ or $7 \cdot 2$ WWW	3	$\begin{gathered} \text { M2 }(\mathrm{BN}=) \sqrt{7 \cdot 6^{2}-2 \cdot 5^{2}} \text { or } \\ \sqrt{57 \cdot 76-6 \cdot 25} \text { or } \sqrt{51 \cdot 51} \\ \text { M1 }\left(\mathrm{BN}^{2}=\right) 7 \cdot 6^{2}-2 \cdot 5^{2} \text { or } \\ \sqrt{7 \cdot 6^{2}+2 \cdot 5^{2}} \text { or } \sqrt{64 \cdot 01} \\ \hline \end{gathered}$
	(b) 70.6 to 71 incl WWW	3	M2 $\cos ^{-1}\left(\frac{2 \cdot 5}{7 \cdot 6}\right)$ or $90-\sin ^{-1}\left(\frac{2 \cdot 5}{7 \cdot 6}\right)$ or $\tan ^{-1}\left(\frac{(a)}{2 \cdot 5}\right)$ or M1 $\cos =\left(\frac{2 \cdot 5}{7 \cdot 6}\right)$ or $\sin =\left(\frac{(a)}{7 \cdot 6}\right)$ or $\tan =\left(\frac{(a)}{2 \cdot 5}\right)$ or $\sin \mathrm{B}=\left(\frac{2 \cdot 5}{7 \cdot 6}\right)$

Section B Total: 25

Mark Scheme 2339 June 2007

SECTION A

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
1(a) \\
(b)
\end{tabular} \& \(0.6,0.3\) and 0.7 in correct places in tree diagram
\[
0.42 \text { o.e. }
\] \& \begin{tabular}{l}
2 \\
2 ft
\end{tabular} \& \begin{tabular}{l}
1 for \(1^{\text {st }}\) branch or both of second branches correct \\
ft their ' \(0.6 \times 0.7\) ' evaluated provided both less than 1 \\
or M1 for their ' \(0.6 \times 0.7\) '
\end{tabular} \\
\hline \begin{tabular}{l}
2(a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& \frac{1}{9} \text { or } 0.11 \ldots \\
\& 2
\end{aligned}
\] \& \[
1
\]
\[
1
\] \& after \(1 / 9\) ignore wrong attempts at decimals \\
\hline 3 \& 3.999.. to 4 \& 2 \& M1 for 6.499.. to 6.5 or 2.5 seen \\
\hline 4 \& \begin{tabular}{l}
angle at the centre \(=2 \times\) angle at circumference
\[
40^{\circ}
\] \\
alternate segment
\end{tabular} \& \begin{tabular}{l}
\[
1
\]
R1 \\
1 R1
\end{tabular} \& \begin{tabular}{l}
Indep \\
Accept ' angle at centre' (is twice) \\
after answer 80 \\
Indep. \\
or other complete reasons, must mention angle between. radius (or diameter) and tangent and isosceles triangle
\end{tabular} \\
\hline \begin{tabular}{l}
5(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\(3 b(a+5 b)\) final answer \\
\(x-7\) www final answer
\end{tabular} \& 2
3 \& \begin{tabular}{l}
M1 for \(3\left(a b+5 b^{2}\right)\) or \(b(3 a+15 b)\) or \(3 b\) (\(\ldots+\ldots\)) \\
M2 for \((x-7)(x+1)\) seen \\
or M1 for (\(x \pm 7\)) \((x \pm 1)\) \\
After M0, SC1 for \(((x-6)(x+1)\) as numerator leading to final answer of
\[
x-6
\]
\end{tabular} \\
\hline 6 \& \begin{tabular}{l}
\(3 \times 10^{2}\) or \(10 \times 10^{-3}\) or \(9 \times 10^{-3}\) or 0.009 seen or 300 from \(3.2 \times 10^{2}\) or 0.01 from \(9.5 \times 10^{-3}\) or 30 from \(3.2 \times 9.5\) \\
[27, 28.5, 30 or 32\(] \times 10^{-1}\) o.e. (implies previous M1) \\
Michael
\end{tabular} \& M1

A1

A1 \& | Accept 2.7, 2.85 or $3.2\left(\times 10^{\circ}\right)$ |
| :--- |
| 2.7, 2.85 or 3.2 imply previous M1 but not 3 alone |
| Dep on at least M1 without any errors seen |
| After 0 scored, SC1 for 320 and 0.0095 seen |

\hline
\end{tabular}

7(a)	$y=36 / x^{2}$ o.e.	2	M 1 for $(\mathrm{k}=) 36$ or $9=\mathrm{k} / 2^{2}$ or better or y $=\frac{k}{x^{2}}$ seen
(b)	0.36 o.e.	1ft	2ft (their 36$) \div 10^{2}$
(c)	3 and -3	$\mathrm{ft} \sqrt{(\text { their } 36 / 4)}$ both solutions W 1 for 3 or -3 provided $\mathrm{k}=36$ shown in question or M1 for $4=$ their $36 / x^{2}$ or better	

Section A Total: 25

SECTION B

8(a)	$(y=) \frac{3 x+2}{16} \quad$ o.e. final ans $x^{2}+3 x-10$ final answer	3 2	M2 for $3 x+2=y+15 y$ or better or $(y=) \frac{3 x-2}{16}$ or M1 for $3 x-15 y=y-2$ M1 for 2 correct terms (from 3) in final answer or 3 out of $x^{2}, 5 x,-2 x,-10$ or correct expression given then spoilt
9	Triangle with coordinates $(-2,-2)(-6,-2)(-6,-4)$	2	M1 for two correct vertices or correct method shown but slightly inaccurate or SF2 centre the origin or SF -2 any centre After M0, SC1 for correct SF -1 enlargement (vertices at ($-1,-1$), $(-3,-1),(-3,-2))$
10(a) (b)	$\begin{aligned} & 60 \\ & 31.57 \text { to } 31.6 \text { or } 32 \mathrm{www} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 for $5 \times 4+6 \times 10+10 \times 8+15 \times 2$ condone an error in 1 product or 190 seen or $24 / 76 \times 100$
11(a) (b)	$2143.5 \text { to } 2145$ 20 to 20.2 www	2 2	M1 for $4 \div 3 \times \pi \times 8^{3}$ SC1 for 17157 to 17160 M1 for $\sqrt[3]{2}$ or $4 / 3 \times \pi r^{3}=2 \times(a)$ seen or implied by ($r^{3}=$)1024 or better After MO, SC1 for answer 10 to 10.1 (finds the radius) www
12(a) (b)	circle drawn with compasses, centre $(0,0)$ radius 5 cm line through $(0,1)$ with gradient 1 $\begin{aligned} & x=2.8 \text { to } 3.2, y=3.8 \text { to } 4.2 \\ & x=-3.8 \text { to }-4.2, y=-2.8 \text { to } \end{aligned}$ -3.2	2 1 1 1ft 1 ft	1 for freehand circle cutting axes in correct place Long enough for 1 intersection with their circle or part of circle. If line not ruled then penalty 1 mark if 1 or 2 marks earned Correct or ft from their diagonal line and their circle or their part circle (1 small square acc) Either order

13	$10^{2}+10^{2}$ $7.07 \ldots$ or 7.1 or 14.1 or 14.14 or $\sqrt{200}$ or $\sqrt{ } 50$ or better. $\tan \theta=12 /$ their AM o.e. inv tan used 59.38 to 59.5	M1	or $5^{2}+5^{2}$ or $\sin 45=x / 10$ or $\cos 45=x / 10$ ww2

Section B Total: 25

Mark Scheme 2340 June 2007

SECTION A

1	(a) 8	2	W1 for $\sqrt{64}$ or $4 \sqrt{ } 2$ or $2 \sqrt{16}$ or $2 \times 2 \times 2$ or 2×4 seen
1	(b) $3 \sqrt{ } 7$	2	W1 for $\sqrt{28}=2 \sqrt{7}$ or $\sqrt{ } 4 \sqrt{7}$
2	(a) 10, 17, 33, 35	2	W1 for two correct
2	(b) bulbs per hour or frequency per hour	1	Accept bulbs \div hours, frequency \div hours
2	(c) Either A or B chosen and justified appropriately and numerically using end classes. or Either A or B chosen but justification not numerical. or Neither chosen but acceptable numerical reason stated.	2 W1 W1	Eg B: fewer bulbs last less than 50 hours (or less than 100 hours) B: more bulbs last longer than 200 hours. A: more bulbs last over 500 hours. Eg B: fewer bulbs last a short time. A: more bulbs last a long time. Eg More A bulbs last over 500 hours.
3	$\begin{aligned} & x^{2}+(x-9)^{2}=41 \text { or }(y+9)^{2}+y^{2}=41 \\ & (x-9)^{2}=x^{2}-18 x+81 \text { oe or } \\ & (y+9)^{2}=y^{2}+18 y+81 \text { oe } \\ & 2 x^{2}-18 x+40=0 \text { or } x^{2}-9 x+20=0 \\ & (x-4)(x-5) \text { oe or } \mathrm{ft} \\ & \\ & x=4 \text { or } 5 \text { cao } \\ & y=-5 \text { or }-4 \text { cao } \end{aligned}$	M1 M1 M1 M1 W1 W1	for attempt to substitute one variable in circle eqn for expansion; condone one error M1 for equation with like terms collected attempt to factorise, or complete square, or subst in quad. formula or W1 for ($4,-5$) and W1 for ($5,-4$), marking to benefit of candidate
4	$\begin{aligned} & \mathrm{A}(0,3) \\ & \mathrm{B}(135,0) \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	-1 once only for reversed coords W1 for 270 or 135 seen
5	$\begin{aligned} & \text { (a) }(x+4)^{2} \\ & -22 \text { cao } \end{aligned}$	2	or $a=4$ M1 for $(\text { their } 4)^{2}+b=-6$ or for $-6-4^{2}$ used
5	(b) (-4, -22)	2	1 for each coord., ft their (a) for ($-a, b$)
5	(c) $-4 \pm \sqrt{ } 22$ f.t. i.s.w. or $\frac{-8 \pm \sqrt{88}}{2}$ i.s.w.	2	M1 for $x+4=(\pm) \sqrt{22}$ f.t. or $\begin{align*} & \frac{-8 \pm \sqrt{8^{2}-4 \times 1 \times-6}}{2 \times 1} \tag{or}\\ & \sqrt{88} \text { seen } \\ & \hline \end{align*}$

Section A Total: 25

SECTION B

6	$\begin{aligned} & \mathrm{L}=51^{\circ} \\ & (\mathrm{LA}=) \frac{870}{\sin (\text { their } 51)} \times \sin 73 \\ & 1070 \text { to } 1071 \end{aligned}$	W1 M2 A1	Could be on the diagram. M1 for $\frac{L A}{\sin 73}=\frac{870}{\sin (\text { their } 51)}$ oe After M0, SC1 for answer 928-928.5
7	(a) $(3 x-1)(x+3)$	2	W1 for other versions of ($3 x \pm 1)(x \pm 3)$
7	(b) Final answer $\frac{4 x}{4 x^{2}-9} \text { or } \frac{4 x}{(2 x-3)(2 x+3)}$	3	SC2 if the correct answer reached but then cancelled M1 for $\frac{2 x-3+2 x+3}{(2 x+3)(2 x-3)}$ and A1 for final answer with a numerator of $4 x$ or a denominator of $4 x^{2}-9 \text { or }(2 x+3)(2 x-3)$
8	(a)(i) $\mathbf{p}+\mathbf{r}$ or $\mathbf{r}+\mathbf{p}$	1	condone lack of vector notation
8	(a)(ii) $1 / 2$ their (i)	1	$\mathrm{ft} \mathrm{if} \mathrm{(a)(i)} \mathrm{is} \mathrm{a} \mathrm{proper} \mathrm{vector}$
8	(b) $\overrightarrow{D E}=\overrightarrow{D A}+\overrightarrow{A E}$ or $\overrightarrow{D E}=-r+\overrightarrow{A E}$ or $\overrightarrow{D E}=\overrightarrow{D C}+\overrightarrow{C E}$ Completion with at least one interim step	M1 M1	or M 1 for $\overrightarrow{\mathrm{DE}}=\frac{1}{2} \overrightarrow{\mathrm{DB}}+$ diagonals of a parallelogram bisect each other and M1 for completion
9	25 or 26	2	M1 for $\frac{1852}{14312} \times 200$ oe
10	(a) 92	1	

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(b) trial with positive \(m \leq 20\) and correct outcome rot to 0 dp or better \\
Two trials - one each of 13 and 14 or between 13 and 14 (outcomes one above 50 , one below)
\end{tabular} \& \begin{tabular}{l}
W1 \\
W1 \\
W1
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|r|}
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 4 \\
\hline 5 \\
\hline 6 \\
\hline 7 \\
\hline 8 \\
\hline 9 \\
\hline 10 \\
\hline
\end{tabular} \\
1 or 0.1 etc Please che appropriate
\end{tabular} \& \begin{tabular}{|r|}
\hline 87.31231 \\
\hline 78.83574 \\
\hline 75.05008 \\
\hline 71.49747 \\
\hline 68.18278 \\
\hline 65.09005 \\
\hline 62.20444 \\
59.51207 \\
\hline 57 \\
\hline
\end{tabular} \& 11
12
13
14
15
16
17
18
19
20
13.5

reger \& \begin{tabular}{l}

54.65615
52.46927
50.42883
48.52504
46.74874
45.09139
43.54503
42.10222
40.75604
39.5
49.46044

values in the
\end{tabular}

\hline 11 \& | (a) $\frac{7.2}{4.8}$ or $\frac{4.8}{7.5}$ soi |
| :--- |
| Convincing completion | \& | M1 |
| :--- |
| A1 | \& | or $\frac{A D}{2.4}=\frac{C D}{4.8}$ |
| :--- |
| NB ans giv | \& | $\frac{D}{8} \text { etc or tri }$ |
| :--- |
| ven | \& ume \&

\hline 11 \& | $\begin{gathered} \text { (b) } \frac{1}{3} \pi \times 7.2^{2} \times(19.2+9.6) \\ \frac{1}{3} \pi \times 4.8^{2} \times 19.2 \end{gathered}$ |
| :--- |
| vol large cone - vol small cone 1085 to 1101 | \& | M1 |
| :--- |
| M1 |
| M1 |
| A1 | \& | (1563.457. |
| :--- |
| (463-246...) |
| ft their clea |
| or W4 for c | \& | r attempts |
| :--- |
| orrect ans | \& \&

\hline
\end{tabular}

Section B Total: 25

Mark Scheme 2341 June 2007

SECTION A

1 (a)	20	1	
(b)	$1 / 2$, half	2	or ft 10/their (a), fully cancelled M1 any equivalent inc 50% and 0.5 or $\mathrm{ft} 10 /$ their (a) ISW cancelling for the M1
2 (a)i	228	2	M1 attempt to subtract soi
(ii)	108	2	M1 attempt to multiply soi implied by figs 80 or 28 or 54
(b)i	49	1	
(ii)	$0 \cdot 5$	1	
(iii)	70	1	
(iv)	1, 5, 7, 35	1	all, only
3 (a)	$\begin{array}{lc}\text { grams, } & \mathrm{g} \\ \text { centimetres, } & \mathrm{cm} \\ \text { metres, } & \mathrm{m}\end{array}$	3	W1 each
(b)	correct diagram	3	ruled by eye, within 1 mm by eye: W1 all 3 long horizontal lines correct \& vertical line (ft their horizontals) W1\& short horizontal line ($<7.5 \mathrm{~mm}$) W1 and no extra lines or shading pattern or not ruled/>1mm out/wide tramlines, W2 all correct length \& position or not ruled/>1mm out/tramlines, no W1 more than one other error
4 (a)	George Lerner	3	W1 each, only, clearly identified
	Etch-A-Sketch		
	Meccano, Lego		(both) any order
(b)	CanadaTrivial Pursuits Board 1979	1	all
(c)i	$10 \cdot 5$	2	M1 figs 105 (00...) or subtraction begun correctly
(ii)	400000	1	

5 (a)	2085	2		correct addition of at least two amounts or at least 2 of the digits correct figs 2085
(b)	$13 / 4$	1		only
(c)	4:30	3	M	acc equivalents $2 \cdot 5$ or $2 \frac{1}{2}$ or $2: 30$ or 2 h 30 or equivalent or 4.5 or $4: 50$ or 4 h 50 $150 \div 60$ soi or timespan totalling exactly $21 / 2$ hrs clearly shown
(d)	800	2	M	$1400 \div 7$ or 200 or $5600 \div 7$
(e)	140	2		10% found correctly (may be implied by 280) or clear complete attempt to find 5%
6 (a)	arrow within 2 mm of point	1		
(b)	arrow within 2 mm of point	1		
7 (a)	$1014 \cdot 8(0) \quad$ with working seen	3	W	figs 10148(0) with working seen complete method any of figs $708,944,258,129,86$, 989, 1032 seen or any 4 rectangles correct 1014.8(0) without working
(b)	$20 / 21 / 22 \times 40$ 20×43 $800 / 840 / 880$ 860	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$		acc parallel reverse equivalents: ```700\div40 700\div20 740\div20 740\div 4 0 17.5 35 37 18.5```
8 (a)	correct rotation	3		intention, may be freehand correct, either left or base vertex wrong or clockwise rotation 90 about origin correct orientation \& size
(b)	reflection $y=-1 \text { or } y+1=0$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		for first mark also accept: reflect reflected reflecting mirror image mirror line line of symmetry
9 (a)i	25	1		
(ii)	4	2		condone x 4 and 4 x $5 x=21-1$ (20) or better or correct flowchart method
(b)	correct equation	1		must include x, one operation, one $=$ sign $x=4$

Section A Total: 50

SECTION B

10 (a)	$\begin{aligned} & 80 \\ & \times 2 \end{aligned}$	2		each acc equivalents; direction and quantity
(b)	$\begin{aligned} & 62 \\ & 32 \\ & -6 \end{aligned}$	3		each ft their 62-30 correctly found acc equivalents; direction and quantity
11 (a)	40	1		
(b)	47	1		
12 (a)i	$28 \cdot 5$	1		
(ii)	9	1		
(b)	$\begin{array}{\|l\|} \hline-14 \\ \hline \end{array}$	2	W1	either order, oe either correct or 14,3 both correct but no operations
13 (a)	7	2	M	figs 2625(0) \div figs 375(0) soi or repeated subtraction/addition
(b)i	True Love Waits	1		clear intention
(ii)	I Break	1		clear intention
(c)	255 (.00) www	4	$\begin{array}{r} \text { W3 } \\ \text { o } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { or } \\ \text { sc1 } \end{array}$	figs 255 (00) $\begin{array}{llll} 12 \times 500 & \text { or } £ 60 & \text { or } & (£) 6000 \text { p } \\ 14 \times 5 & \text { or } £ 70 & \text { or } & (£) 7000 \text { p } \\ 12.5 \times 10 & \text { or } £ 125 & \text { or } & (£) 12500 \text { p } \end{array}$ if 0 scored in total: 6000 or 7000 or 125000 correctly placed
14 (a)	46 to 50	1		
(b)	73	2		M1 180 soi
(c)	opposite (angles) or X angles	1		
(d)i	$6 x=180$	2	M	accept equivalents of $6 x$ $4 x+x+x \quad(=\ldots)$ or equivalents
(ii)	30	1		
15 (a)	all correct	2	W	no more than 4 errors

(b)i	$\frac{1}{16} \text { isw or } 0.0625 \text { or } 6.25 \%$	1		throughout (b): ft from their table
(ii)	0 or $\frac{0}{n}$ or impossible	1		wrong denominator or wrong form: penalise 1 mark once only
(iii)	$\frac{6}{16}$ or equivalent isw or 0.375 or 37.5%	2	W	correct numerator seen or denominator of 16
				2/24, 4/24, 6/24 misread of table numerators to ft from the entire table denominator of 24 used throughout if 0 scored in (b) denominator of 16 used throughout (b)
16 (a)	$\begin{aligned} & \hline 2 \times 480 \text { seen } \\ & 8.5 \times 54 \text { seen } \\ & 960+459+430 \text { seen } \end{aligned}$	3		both substitutions \& addition shown 2×480 or 960 or 8.5×54 or 459 seen their $960+$ their $459+430$ seen
(b)	$3 \cdot 24$	3	W	figs $323(\ldots)$ or $324(\ldots)$ implied by 21.72 or 21.73 0.175×18.49 alternative marking: complete method leading to 17.5% of 18.49 if no arithmetic errors a correct \% of 18.49 seen (be convinced) (except 0\%, 100\%)
(c)i	20-30	1		
(ii)	correct diagram	3		for each of the following, maximum W2 - axes correctly scaled - five of heights correct - horizontal spacing/joining correct

Section B Total: 50

Mark Scheme 2342 June 2007

SECTION A

1	(a)	£1014.8(0) with working	3	W3	W2 for figs 10148(0) with working or M1 for any complete method which would lead to the correct answer allowing arithmetic errors AND W1 for figs 708 or 944 or 258 or 129 or 86 or 989 or 1032 seen Using grid method accept 4 rectangles correct Answer only (with no working) W1 for £1014.8(0)
	(b)	20×40 800 or 840 or 860 or 880	2	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	Accept 21×40 or 20×43 or 22×40 f.t only
2	(a)	Final answer $2 a+5 b$	2	W2	W1 for each
	(b)	Final answer $8 y+12$	1	W1	
	(c)	Final answer 5(a-2)	1	W1	
3		$\begin{aligned} & \frac{5}{8} \times 400 \\ & \frac{20}{100} \times 400 \\ & 400-\text { their }(250+80) \\ & 70 \end{aligned}$	4	M1 M1 M1 A1	Implied by 250 seen www Implied by 80 seen www Answer only W4
4	(a)	Positive	1	W1	Accept written description
	(b)i	Ruled line of best fit	1	W1	From (5, 15-20) \& (45, 40-45)
	(ii)	23 to 28	1	W1	
5	(a)	Correct rotation	3	W3	W2 for an error in one point but still with the right-angle or W2 for correct but clockwise rotation or W1 for correct orientation
	(b)	Reflection or mirror image and no other transformation line $y=-1$ or $y+1=0$	2	W1 W1	
6	(a)	1, 5, 9	2	W2	W1 for 2 correct SC1 for $-3,1,5$
	(b)	$5 n-1$ o.e.	2	W2	W1 for $5 n$ or equivalent seen
	(c)	$T+5=6 n \text { or } \frac{T}{6}=n-\frac{5}{6}$	2	M1	

		$\begin{aligned} & \frac{T+5}{6}(=n) \text { or } \frac{T}{6}+\frac{5}{6}(=n) \text { or } \\ & (T+5) \div 6(=n) \end{aligned}$		A1	W1 for $\frac{ \pm T \pm 5}{ \pm 6}(=n)$ or $\begin{aligned} & T+5 \div 6(=n) \text { or } \\ & T+5 / 6(=n) \text { or } \\ & \frac{T+5=n}{6} \end{aligned}$ Answer only W2
7	(a)	$5 x=21-1$ or better 4	2	$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	Condone $\times 4$ and $4 \times$ Answer only W2
	(b)	$2 x=9 \text { or }-2 x=-9$ $4 \frac{1}{2}$ or 4.5 or $\frac{9}{2}$ isw	3	M2 A1	$\begin{aligned} & \text { M1 for } 4 x-2 x=8+1 \text { or } \\ & 2 x-1=8 \text { or } \\ & 4 x-2 x=9 \text { or } \\ & 2 x=k \text { or } \\ & k x=9 \end{aligned}$ Answer only W3
8	(a)	$360 \div 45$ 8	2	M1 A1	Answer only W2
	(b)i	$\frac{180-108}{2}$ 36 (Base angles of) isosceles triangle (equal)	3	M1 A1 W1	Answer only W2 Accept, dep on M1, angles in a triangle (=180)
	(ii)	216 Angle at the centre is twice angle at circumference	2	W1 W1	Accept "Angle at centre" if 216 given
9	(a)	All heights correct Points plotted at mid points and joined with ruled straight lines	2	W1 W1	$\begin{aligned} & \text { Allow } \pm 2 \mathrm{~mm} \text { in plotting } \\ & \pm 2 \mathrm{~mm} \end{aligned}$
	(b)i	168	1	W1	
	(ii)	30	1	W1	After W0 in part(b) allow SC1 for both 164 and 15 or 25 or 35
	(c)	Men - lower interquartile range	1	W1	Accept smaller box or box(es) shorter
10	(a)i	165000	1	W1	
	(ii)	1.4×10^{7}	2	W2	W1 for answer figs 14 or $a \times 10^{7}$ with $1 \leq a<10$
	(b)	$\frac{16}{5} \times \frac{25}{6}$ o.e with improper fractions $13 \frac{1}{3}$	3	M1 A2	Condone one error in the improper fractions A1 for $\frac{40}{3}$ www o.e. seen Answer only

					W3 for $13 \frac{1}{3}$ www or W2 for $\frac{40}{3}$ o.e. www

Section A Total: $\mathbf{5 0}$

SECTION B

11	(a)	5 and -1	1	W1	
	(b)	Correct ruled line	2	W2	W1 for 6 points plotted (f.t.).
	(c)	$2 \frac{1}{2} \text { or } 2.5 \text { or } \frac{5}{2}$	1	W1	
12	(a)	All 12 values correct	2	W2	W1 for further 8 correct
	(b)	All marks in part (b) are f.t. from table.			In part (b) answers of $\frac{2}{24}, \frac{4}{24}, \frac{6}{24}$ can score a maximum of 2
	(i)	$\frac{1}{16} \text { isw or } 0.0625 \text { or } 6.25 \%$	1	W1	
	(ii)	0 or $\frac{0}{n}$ or impossible	1	W1	
	(iii)	$\frac{6}{16}$ or equivalent isw or 0.375 or 37.5\%	2	W2	W1 for 6 seen in numerator or After no marks in part(b) allow W1 for a denominator of 16 throughout Consistent wrong denominator in (i) and (iii) - 1 once. Wrong form - 1 once
13	(a)	Angle BTJ $=68$ to 72° $\mathrm{JT}=9.3$ to 9.7 cm	2	$\begin{array}{\|l\|} \hline \text { W1 } \\ \text { w1 } \\ \hline \end{array}$	
	(b)	288° to 292°	1	W1	
	(c)	If $\mathbf{2}$ marks are awarded in part (a) 4.45 to 4.8 If $\mathbf{2}$ marks are not awarded in part (a) Measure JB Figs $0.5 \times$ examiner's measured JB Correct conversion	3	W3 W1 W1 W1	W2 for figs 445 to 48 or W 1 for $\mathrm{JB}=8.9$ to 9.6 cm and M1 for Their JB $\times \frac{50000}{100 \times 1000}$ Allow $\pm 2 \mathrm{~mm}$ Allow $\pm 2 \mathrm{~mm}$ f.t. f.t.
14	(a)	$\begin{aligned} & \frac{65.7}{45}(\times 85) \\ & € 124.1(0) \end{aligned}$	2	M1 A1	Implied by figs 146 seen SC1 for figs 1241 Answer only W2
	(b)	$\begin{aligned} & \frac{45}{65.7}(\times 90.52) \text { or } 90.52 \div \text { their } 1.46 \\ & \text { or } 90.52 \times 0.68(49 \ldots) \end{aligned}$	3	M2	M1 for $90.52 \div \frac{65.7}{45}$

		£62(.00)		A1	Answer only W3
15	(a)i	2.81	2	W2	W1 for figs 281 to 282 seen or W1 for 7.45 or 2.65 seen or W1 for final answer 2.75
	(ii)	3	1	W1	
	(b)	$0.2 \text { or } \frac{1}{5}$	1	W1	
16	(a)	$2160 \div 12^{2}$ 15	2	M1 A1	After M0 give SC1 for 180 seen Answer only W2
	(b)	$\pi \times 5^{2}$ 78.5 to 78.6 144 - their (78.5 to 78.6) 65.4 to 65.5	4	M1 A1 M1 A1	W2 for 78.5 to 78.6 seen Answer only W4
17	(a)	$\begin{aligned} & \frac{840}{7+5}(\times 7) \\ & 490 \\ & \hline \end{aligned}$	2	M1 A1	Implied by 350 or 70 seen Answer only W2
	(b)	$\begin{aligned} & \frac{840-777}{840}(\times 100) \text { or } \frac{63}{840}(\times 100) \\ & (\pm) 7.5 \end{aligned}$	3	M2 A1	M1 for $\frac{777}{840}(\times 100)$ or figs 925 seen After M0 allow SC1 for 63 seen Answer only W3 for 7.5 W2 for figs 75
18	(a)	$x \times x \times(x+2)$ or $x^{2}(x+2)$ seen Correctly derives given equation	2	M1 A1	SC1 if brackets are omitted
	(b)	One value $1<n<2$ substituted One value $1.5 \leq n<2$ substituted 1.8 Use of (2 x$)^{\mathbf{2}}$ instead of $\mathbf{2 x}{ }^{\mathbf{2}}$ Two values between 1 and 2 substituted 1.5	3	W1 W1 W1 W1 A1	Results must be seen. Results must be seen In each case accept results to 1 sig fig or better. (Corrected or truncated) Results must be seen
19	(a)	$(x-5)(x-3)$ isw	2	W2	W1 for ($x \pm 5$) ($x \pm 3$) isw
	(b)	Multiplication of equation (1) by 3 or Multiplication of equation (1) by 5 and	3	M1	Accept 2 terms correct Or equivalent to equate x or y terms, accept 2 terms correct in each equation

		Multiplication of equation (2) by 3 Subtracting equations $x=2, y=-3$		M1	A1
20	150 or 152 www Dep. On first M1 At least 2 terms correct ft Dep on M2 Answer only W1				

Section B Total: 50

Mark Scheme 2343 June 2007

SECTION A

1	(a) Rotation 180° (Centre) $(0,1)$	$\mathbf{1}$ (b) Triangle (2,1) (4,1) (4,2)	$\mathbf{2}$

6	(a) 8	2	M1 360/45
	(b)(i) 220 because x is double angle at circumference	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(ii) 60 www	3	```M1 for <QRO = 50 M1 for 360 - (}110\mathrm{ + their 50 + their 140) A1 60 or FT their 220 (dep.on M1 M1)```
7	Multiply by 2 and 3 or 5 and 2 $\begin{aligned} & 19 x=95 \text { or } 19 y=-19 \\ & x=5 y=-1 \end{aligned}$	$\begin{aligned} & \hline \text { M2 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1 $4 x+6 y=14$ condone 1 error M1 $15 x-6 y=81$ condone 1 error Adding to eliminate y -condone 1 error Or W1 from M0
8	(a) Not enough info - cheapest anywhere in interval	1	
	(b) True - $50+60+40+30+20$	1	
	(c) True - 10 squares out of 40	1	Or 50 out of 200 houses FT their 50 and their 200
	(d) False $-100^{\text {th }}$ (or $100.5^{\text {th }}$) house in interval 200000 to 300000	1	FT their 200
9	$\begin{aligned} & (4 x-1)(2 x+3) \\ & 1 / 4 \\ & -1.5 \text { or } \frac{-3}{2} \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { W1 } \\ & \text { W1 } \end{aligned}$	$\text { M1 }(4 x \pm 1)(2 x \pm 3) \text { or }(4 x \pm 3)(2 x \pm 1)$ SC1 2 solutions correct following through from their factorisation (must have given $8 x^{2}$ and ± 3)
10	(a) $\frac{12}{90}$ or equivalent isw	2	M1 $\frac{4}{10}$ or $\frac{3}{9}$ or equivalent isw
	(b) $\frac{20}{90}$ (www) or equivalent isw	3	$\begin{aligned} & \hline \text { M2 } \frac{12}{90}(+) \frac{2}{90}(+) \frac{6}{90} \\ & \text { or M1 2/90 or } 6 / 90 \\ & \text { or RR and BB and GG (identified } \\ & \text { with or without calculations) } \end{aligned}$
11	Sketch graph	3	M1 amplitude 2 or curve from $(0,2)$ and M1 One period of 120 or 3 complete cycles

Section A Total: 50

SECTION B

12	(a) $£ 490$	2	M1 840 / (+ 5)
	(b) (\pm) 7.5%	3	W2 for 92.5 (\%) M2 $\frac{840-777}{840}$ Or M1 $\frac{777}{840}$ IF MO allow SC1 for 63 seen
13	(a) $x \times x \times(x+2)$ or $x^{2}(x+2)$ seen Correctly derives given equation	M1 A1	condone omission of brackets For A1 must equate to 13 and brackets must have been used or clear 'splitting of diagram' or $x \times x \times x+x \times x \times 2$
	(b) One value between 1 and 2 substituted. One value between 1.5 and 2 substituted. 1.8	M1 M1 A1	Results must be seen. Accept results to 1 sig fig or better. (Corrected or truncated) If M0, max W1 for 1.8 www . If candidate evaluates $(2 x)^{2}$ then M1 for two values between 1 and 2 substituted. A1 for 1.5 (NB not W1)
14	2,3,4,5,6,7	3	M2 $1<\mathrm{n} \leq 7$ Or M1 $(\mathrm{n}) \leq 7$ or $\mathrm{n}>1$ or $1<\mathrm{n}$ Or W2 4 correct integers and no extras or 6 correct integers and 1 extra Or W1 4 correct integers and 1/2 extras
15	False and false Eg $1 / 3$ is bigger than $1 / 4$ $\operatorname{Eg} 3 \times 5=15$	1 1 1	dependent on false dependent on false
16	(a) 411.(6..) to 411.7 or 412 isw	3	$\begin{array}{\|l\|l} \hline \text { M2 494/1.2 } \\ \text { Or M1 } 1.2 \end{array}$
	(b) 251.(..) isw	3	$\begin{aligned} & \text { M2 } \pi \times 8 \times 10 \text { or } \\ & \text { M1 } \pi \times 8 \end{aligned}$

17	150 or 152 (www, scale drawing is not allowed)	4	W3 for 150.4 to 151.99 M2 $255 \times \sin 36.5$ or $255 \cos 53.5$ Or M1 $\sin 36.5=\frac{B C}{255}$ From M0, M1 or M2 allow W1 for answer from trig. involving 255 and $36.5 / 53.5$ to 2 or 3 significant figures. If cos and Pythagoras used: M1 for $255 \times \cos 36.5$ M1 (their adjacent) ${ }^{2}+\mathrm{BC}^{2}=255^{2}$
18	(a) 5.19×10^{7}	1	
	(b) 359.2...or 359.3 and 396 www	4	W2 49500000, 48500000, 135000 and 125000 seen Or W1 any 2 of these values seen Or W1 digits 495, 485, 135, 125 And M1 their 495.. divided by their 125 .. Or their 485 .. divided by their 135 .. A1 359.2...or 359.3 or 359 or 360 and 396 or 395.9..
	(c) (i) 15.9 million isw	1	
	(ii) 107-108 million	3	M1 t = 16 and M1 $15.9 \times 1.127^{\text {their } t}$ from $t=6,15,16,17,160$
19	(a) <DCF = < EBF because isosceles triangle $\begin{aligned} & C F=B F \\ & C D=B E \text { and } S A S \text { stated } \end{aligned}$	1 1 1	Or CD = BE then $\mathrm{CF}=\mathrm{BF}$ with SAS stated
	(b) 9.35 to 9.4(...) www	3	$\begin{aligned} & \text { M2 } 88.4 \ldots \ldots \\ & \text { Or M1 } \mathrm{PQ}^{2}=8^{2}+14^{2}-2 \times 8 \times 14 \cos 40 \end{aligned}$

20	$\begin{gathered} \text { (a) } 2 x-1=6 x^{2}-2 x-5 \\ 6 x^{2}-4 x-4=0 \end{gathered}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
	(b) $(-0.55,-2.1)$ and (1.2, 1.4) www	4	W1 $\frac{2 \pm \sqrt{ }\left((-2)^{2}-4 \times 3 \times-2\right)}{2 \times 3}$ W2 $\frac{(2+\sqrt{ } 28)}{6}$ or $\frac{(2-\sqrt{ } 28)}{6}$ W3 1.2 and - 0.55 Or (1.2, 1.4) or (-0.55,-2.1)
21	(a) Height multiplied by cube root of 2	1	If height doubled, volume $\times 8$
	(b) 25.3 to 25.6	2	M1 $\sqrt[3]{2}$ or 1.25 to 1.26 seen

Section B Total: 50

Mark Scheme 2345 June 2007

MARKING GUIDE Winning Lines

This guide gives some of the examples of evidence that candidates may produce. The examples are not exhaustive neither are they minimum requirements.
In the examples stated $W=$ number of win lines, and $h=$ the height (and width) of a square grid.

	Strategy	Communication	Reasoning
1	- Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Correctly counts the number of horizontal win lines of a single length in one diagram	- Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. One diagram to show some (horizontal) winning lines.	- Candidates show that they understand a general statement by finding particular examples that match it. Draws any new winning line OR finds the correct number of horizontal, vertical or total winning lines.
2	- Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and applying mathematics to practical contexts. Finds all the correct winning lines of a single length in any diagram.	- Candidates present information and results in a clear way, explaining the reasons for their presentation. A series of diagrams showing winning lines and totals.	- Candidates search for a pattern by trying out ideas of their own. Any set of three related results, eg all horizontals in three different diagrams.
3	- In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible. All the correct winning lines of a single length in three different diagrams.	- Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams. Diagrams and totals, probably tabulated and with notes in the form "I have found...", "I drew ..", that explain the work.	- Candidates make general statements of their own, based on evidence they have produced, and give an explanation of their reasoning. Makes a (simple) generalisation that is correct for their results Eg one of The number of horizontal = the number of verticals. > The number of horizontals in a row $=$ length - win +1 > $W=2 h+2$ etc

	- Candidates carry through substantial tasks and solve quite complex problems by breaking them down into smaller, more manageable tasks. Systematic production of related results leading to a correct algebraic generalisation for one situation. Eg $W=2 h+2$ This could also be for the total of horizontal and/or vertical lines of length s on any square grid.	- Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams. Candidate links the methods of presentation (diagrams and tables) through using a commentary that tells the story of the work that has been done and unites the forms of presentation and recording.	- Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases. Candidate tests the generalisation in R3 with new data. Eg If a formula for the total number of win lines of a single length in any grid has been obtained, then the results for a previously unused grid are calculated and then checked from first principles.
5	- Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions. The candidate changes a variable and generates sufficient evidence so that a further generalisation may be made eg $>$ Changes grid dimension(s). $>$ Changes the length of the win line The candidate's intention must be clear. This could also be for a COMPLETE solution for all lines of length s on any square grid	- Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made. Shows C4 and then uses algebra to represent a generalisation, which must then show substitution eg C 4 and $\mathrm{T}_{\mathrm{h}}=2 \mathrm{~h}+2$ and substitutes $h=13$ to find T_{13} OR Decides to improve presentation in a way which is followed through to improve understanding eg plots results on a graph and uses this to find gradient 2 hence 2 h .	- Candidates justify their generalisations or solutions, showing some insight into the mathematical structure of the situation being investigated. They appreciate the difference between mathematical explanation and experimental evidence. Clearly explains (F/I) that the number of horizontals = height of the grid (and why) and the same for the verticals and that there are only two diagonals. Hence, 2h+2. OR (I/H) why there can only be $\mathrm{h}-3$ +1 win lines in a row of length h and win line 3.

6	- Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques. Uses algebraic techniques (represents line length by a variable and deduces the number of win lines in a LINE and, hence, in a SET OF LINES) and achieves a formula for their chosen development. Demonstrates understanding of the methods used. GOES BEYOND COUNTING. OR applies difference method to achieve a formula for the sum of the diagonals leading to a quadratic.	- Candidates convey mathematical meaning through consistent use of symbols. Candidate uses algebra with two, clearly defined variables, and manipulation of these, to find an answer. Eg. Derives result for any rectangular grid in which the length of the win line = one dimension of the rectangle. OR Derives a formula for the number of diagonals in a square grid such that the length is one variable and the win line is the second. (Links to S6)	- Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result. Derives 2h(h-2), with reasoning, for square grid. OR candidate considers a series of formulae and, as a result, makes further progress. Some examples are; $>$ Rectangular grids of different heights (win length = height), deducing overall formula for horizontals in any grid. Win lines of different lengths on a fixed square grid, deducing a formula for the horizontals, OR verticals OR diagonals for each. Reasoning must be shown in making the deduction from the results.
	- Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry.	- Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument.	- Candidates' reports include mathematical justifications, explaining their solutions to problems involving a number of features or variables.
7	Uses appropriate algebraic methods to find a formula for a three variable situation. Eg; $>$ Win line, length of grid, height of grid. Or derives suitably complex quadratic Eg. > Square grid, length of win line. > Cube, in which the lines are viewed in 3D and win line = edge of cube. (NOT simply surface lines)	Presents clear working, with annotation, to support their development that goes beyond S5. (This is most likely to be linked to $\mathbf{S 7}$ but may be awarded to a good case of S6.) All variables must be defined and an argument must be presented through the use of algebra.	S7 or better achieved. Presents a clear argument for WHY the formula achieved in S7 applies. This might involve a clear explanation of how the sum of diagonals was achieved, showing that the diagonals resolve into the sum of two triangular numbers and a rectangular number in the case where the win length is less than the side of the grid.

8	- Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques. Win line, length of grid, height of grid, solution completely correct Or uses algebraic techniques to extend $\mathbf{S 7}$ formula by a further variable eg > Cube with lines in 3D and win line not equal to side length. > Cuboid with lines viewed in 3D	- Candidates use mathematical language and symbols efficiently in presenting a concise reasoned argument. Presents a clear, elegant construction of the formula, properly annotated, to support the S8 development, or very good S7. Concise algebra, without significant error.	- Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid. S7 or better achieved. This draws upon the same evidence as S8 and C8. If C8 is awarded then this mark will probably be awarded as well. Look for understanding of proof offered within the work.

SPECIFY and PLAN [S] OCR Set Task 2007 Marking Guide "Food for Thought!"

This guide contains examples of some evidence candidates might produce in response to the task
Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.
2. Candidates must provide evidence of their plan being implemented.
3. If secondary data is provided it must be in sufficient quantity to allow sampling to take place.

			Minimum requirements	Notes
1		Candidates choose a simple well-defined problem. Their aims have some clarity. The appropriate data to collect are reasonably obvious. An overall plan is discernible and some attention is given to whether the plan will meet the aims. The structure of the report as a whole is loosely related to the aims.	- Candidates show they understand a simple task. - There is an implicit plan.	* Records relevant fat data in a list and may draw a block graph.
2				* S1 and shows organisation in the work
3		Candidates choose a problem involving routine use of simple statistical techniques and set out reasonably clear aims. Consideration is given to the collection of data. Candidates describe an overall plan largely designed to meet the aims and structures the project report so that results relating to some of the aims are brought out. Where appropriate, they use a sample of adequate size.	- Candidates set out reasonably clear aims (or the purpose). - Their planning is largely designed to meet the aims/purpose. - They use data appropriate to the problem.	* Writes one relevant aim and produces a minimal plan to meet the aim. Eg To collate the data on fat content for cheeses, find the mean and compare this to another food.
4				* Writes one or more aims and produces a clear plan that will allow one aim to be met. Eg. Detailed plan for S3 with reasons for the food to be chosen to compare to cheese.

5		Candidates consider a more complex problem. They choose appropriate data to collect and state their aims in statistical terms with the selection of an appropriate plan. Their plan is designed to meet the aims and is well-described. Candidates consider the practical problems of carrying out the survey or	- Candidates consider a substantial problem stating their initial aims clearly at the beginning of the report. - Their plan is explicitly stated to meet those aims. - They choose an appropriate sample.	Writes two or more aims in general terms. A written plan that allows at least two aims to be tested. Relevant data is used. Eg. To compare cheese fat content to other foods and another "nutrient" such as water content, or tests to see whether high calorie foods contain high fat content.
6		experiment. Where appropriate, they give reasons for choosing a particular sampling method. The project report is well structured so that the project can be seen as a whole.		Writes two or more aims in statistical terms and constructs an efficient plan to test the aims. Data is carefully selected. Eg. As S5 but aims in the form"... showing positive correlation between fat content and calorific value" with a clear structure drawing all components of the task together.
7		Candidates work on a problem requiring creative thinking and careful specification. They state their aims clearly in statistical terms and select and develop an appropriate plan to meet these aims giving reasons for their choice. They foresee and plan for practical problems in carrying out the survey or experiment.	- Candidates work on a demanding problem. - They state their aims clearly in statistical terms and give valid reasons for their choice of planning. - They explain and act upon limitations of their chosen sample (eg bias), where appropriate.	* An overall structure justifying the subdivision into individual tasks. Each task stated in statistical terms, carefully specified and related to the main task. Eg. Intends to show that fresh food is better for you than processed food. Explains how the data selected will be used, defining "better" and how this will be measured.
8		Where appropriate, they consider the nature and size of sample to be used and take steps to avoid bias. Where appropriate, they use techniques such as control groups, or pre-tests or questionnaires or data sheets, and refine these to enhance the project. The project report is well structured and the conclusions are related to the initial aims.		S7 is expanded to involve justification for choice of data, possibly whole populations. Specific aims and components stated in correct statistical language. Clear justification, in statistical terms, for how each aim will be met. Methods justified and related to the tasks.

COLLECT, PROCESS and REPRESENT [C]

Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.
2. The mark awarded to a particular technique should reflect the quality of use and understanding as well as its position within the Level Indicators.
3. The inclusion of statistical techniques outside the National Curriculum does not necessarily justify the award of higher marks.
4. 'Diagrams' include tables, charts and graphs. At 5-6 marks the diagrams used should be appropriate. At 7-8 marks the range of diagrams should be appropriate to the problem chosen and the statistical strategy chosen.
5. 'Redundancy' implies unnecessary and/or inappropriate diagrams or calculations. This includes techniques that are not used for any conclusion.

		Minimum requirements	Notes
1	Candidates collect data with limited relevance to the problem and plan. The data are collected or recorded with little thought given to	- Candidates collect or use data and record it.	* Evidence haphazardly recorded from S1.
2	processing. Candidates use calculations of the simplest kind. The results are frequently correct. Candidates present information and results in a clear and organised way. The data presentation is sometimes related to their overall plan.		* One technique, (grade G) used. Eg bar chart, tally chart... * Some organisation shown in the work
3	Candidates collect data with some relevance to the problem and plan. The data are collected or recorded with some consideration given to efficient processing. Candidates use straightforward and largely relevant calculations involving techniques meeting the level detailed in the handling data paragraph of the grade description for grade F. The results are generally correct. Candidates show understanding of	- Candidates collect or use data with some relevance to the problem. - They utilise statistical techniques/diagrams (see note 1 above) to process and represent the data. - Their results are generally correct.	* Two techniques (one grade F) used. Eg Tabulated results, mean fat content * Results contain few obvious errors.
4	situations by describing them using statistical concepts, words and diagrams. They synthesise information presented in a variety of forms. Their writing explains and informs their use of diagrams, which are usually related to their overall plan. They present their diagrams correctly, with suitable scales and titles.		* The results of C 3 , and a further grade E technique, are linked with a commentary (which tells the story).

Candidates collect largely relevant and mainly reliable data. The data are collected in a form designed to ensure that they can be used. Candidates use a range of more demanding, largely relevant calculations that include techniques meeting the level detailed in the handling data paragraph of the grade description for grade C. The results are generally correct and no obviously relevant calculation is omitted. There is little redundancy in calculation or presentation. Candidates convey statistical meaning through precise and consistent use of statistical concepts that is sustained throughout the work. They use appropriate diagrams for representing data and give a reason for their choice of presentation, explaining features they have selected.
Candidates collect reliable data relevant to the problem under consideration. They deal with practical problems such as non-response, missing data or ensuring secondary data are appropriate. Candidates use a range of relevant calculations that include techniques meeting the level detailed in the handling data paragraph of the grade description for grade A. These calculations are correct and no obviously relevant calculation is omitted. Numerical results are rounded appropriately. There is no redundancy in calculation or presentation. Candidates use language and statistical concepts effectively in presenting a convincing reasoned argument. They use an appropriate range of diagrams to summarise the data and show how variables are related.

- Candidates collect/sample largely relevant data.
- They utilise appropriate calculations/techniques/ diagrams (see note 1 above) within the problem.
- Their results are generally correct.
* Uses grade C techniques. Eg Makes own hypothesis and plans to test this; discusses correlation from scatter graph to link fat content to sugar content,
* Results contain few obvious errors

* C5 with little redundancy.

* Use of additional, appropriate, grade C or better (Box and whisker, quartiles, etc) techniques.
* Statistical language used consistently.
- Candidates collect/sample largely relevant data.
- They utilise appropriate and necessary calculations/techniques/ diagrams (see note 1 above) consistently within the problem.
- Their results are correct.
[Some minor errors may be
condoned provided they do not detract from the quality of the argument.]
* At least S6 awarded.
* Statistical language used accurately and consistently.
* Three techniques (one grade A) used. Eg Compares fat content two + foods with cf curve, histogram and comments,
* Presents multifaceted argument using data, grade A and B techniques and statistical language efficiently and effectively.

INTERPRET and DISCUSS [I]

Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.
2. The number of marks awarded at this strand is unlikely to exceed the mark at Strand 1 by more than 1.
3. The use of ICT is to be encouraged to allow candidates more time to analyse and interpret the data. (There is no requirement for the diagrams to be drawn by hand).

		Minimum requirements	Notes
1	Candidates comment on patterns in the data. They summarise the results they have obtained but make little attempt to relate the results to the initial problem.	- Candidates comment on their data.	* Makes a comment based on the data. Eg. "Goats cheese has no fat"
2			* Any summary or comparative comment, based on the data. Eg "None of the cheeses contain fibre"
3	Candidates comment on patterns in the data and any exceptions. They summarise and give a reasonably correct interpretation of their graphs and calculations. They attempt to relate the summarised data to the initial problem, though some conclusions may be incorrect or irrelevant. They make some attempt to evaluate their strategy.	- Candidates summarise some of their data. - They make a statement based on their diagrams or calculations, which is relevant to the problem.	* Evidence of processing data. * Relevant comment made based on the processed data. Eg "The mean fat content for the cheeses is 21.5 g per 100 g ."
4			* I3 AND S3 * Summarises their working and diagrams and relates the comments back to their original aim.

Where relevant, they allow for the nature of the sampling method in making inferences about the population. They evaluate the effectiveness of the overall strategy and make a simple assessment of limitations.

- Candidates summarise and correctly interpret their diagrams or calculations.
- They relate these interpretations back to the original problem.
- They evaluate their strategy.
* Using their results makes two comparisons, within the context of their task. Eg Fat content of cheese and meat AND water content of cheese and meat.
* Some evaluation of strategy Eg "I should have taken data from more foods", OR "The scale on my graphs was too small to see the patterns clearly", OR "I didn't need to calculate all three averages".
* 15 and ...
* Evaluation is more sophisticated and includes comments on the limitations of their data and the implications of their findings. (Some reasons) Eg Assesses how "current" the data is and discusses whether the results will be true for ALL cheeses or foods, types of processing etc
- Candidates summarise and correctly interpret their results.
- They show an appreciation of the significance of these results.
- They recognise possible limitations in their strategy and suggest improvements (where appropriate)
* S6 awarded (no lower than S5)
* Clear understanding of findings.
* A correct and detailed evaluation, in statistical terms, of their strategy and use of techniques is made.
* Valid improvements are suggested with reasons.

* 17 and...

* Justifies improvements that may have been suggested and/or offers clear commentary showing an understanding of how the conclusions could be used (for example) by dieticians, doctors etc

Unit Threshold Marks

	Unit	Maximum Mark	a*	a	b	c	d	e	f	g	p	u
2331	Raw	50								27	14	0
	UMS	35								24	12	0
2332	Raw	50							36	19	12	0
	UMS	42							36	24	(18)	0
2333	Raw	50							32	16		0
	UMS	47							36	24		0
2334	Raw	50						37	19	12		0
	UMS	54						48	36	(30)		0
2335	Raw	50						25	12			0
	UMS	59						48	36			0
2336	Raw	50					28	14				0
	UMS	71					60	48				0
2337	Raw	50				27	12					0
	UMS	83				72	60					0
2338	Raw	50			29	14						0
	UMS	95			84	72						0
2339	Raw	50		32	15							0
	UMS	107		96	84							0
2340	Raw	50	30	13								0
	UMS	120	108	96								0

Notes

The above table shows the raw marks and the corresponding key uniform scores for each unit (module test) available in the June 2007 session.

Raw marks falling between two raw marks in the appropriate row above are converted, by a linear map, to a uniform score between the uniform scores that correspond to the two raw marks.

The grade shown in the above table as ' p ' indicates that the candidate has achieved at least the minimum raw mark necessary to access the uniform score scale for that unit but gained insufficient uniform marks to merit a grade ' g '. This avoids having to award such candidates a ' u ' grade. Grade 'p' can only be awarded to candidates on 2331 (M1) and 2332 (M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (1966).
For a description of how UMS marks are calculated see;
http://www.ocr.org.uk/exam_system/understand_ums.html
Statistics are correct at the time of publication.

General Certificate of Secondary Education (Mathematics C - Graduated Assessment) (1966)
June 2007 Assessment Session
Unit Threshold Marks

	Unit	Maximum Mark	a*	a	b	c	d	e	f	g	u
2341	Raw	100					64	51	39	27	0
	UMS	239					200	160	120	80	0
2342	Raw	100			70	49	38	27			0
	UMS	319			280	240	200	160			0
2343	Raw	100	71	54	37	20					0
	UMS	400	360	320	280	240					0
2344	Raw	48	43	37	31	26	22	18	14	10	0
	UMS	160	144	128	112	96	80	64	48	32	0
2345	Raw	48	43	37	31	26	22	18	14	10	0
	UMS	160	144	128	112	96	80	64	48	32	0

Specification Aggregation Results

Foundation Tier

	A *	A	B	C	D	E	F	G
Overall Threshold Marks					388	308	228	148
Percentage in Grade					9.2	33.3	32.6	17.3
Cumulative Percentage in Grade					9.2	42.5	75.1	92.4

The total entry for the examination was 23411

Intermediate Tier

	A* *	A	B	C	D	E	F	G
Overall Threshold Marks			548	468	388	308		
Percentage in Grade			16.2	41.5	26.1	11.3		
Cumulative Percentage in Grade			16.2	57.7	83.8	95.1		

The total entry for the examination was 34784
Higher Tier

	A *	A	B	C	D	E	F	G
Overall Threshold Marks	708	628	548	468				
Percentage in Grade	16.6	33.9	37.6	10.8				
Cumulative Percentage in Grade	16.6	50.5	88.1	98.9				

The total entry for the examination was 17068

Overall

	A	A	A	B	C	D	E	F
	G							
Percentage in Grade	3.7	7.7	16.0	21.6	14.9	15.6	10.2	5.4
Cumulative Percentage in Grade	3.7	11.4	27.4	49.0	63.9	79.5	89.7	95.1

75263 candidates were entered for aggregation this series

For a description of how UMS marks are calculated see; http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

