GENERAL CERTIFICATE OF SECONDARY EDUCATION
MATHEMATICS C (Graduated Assessment)

MODULE M9 - SECTION B
MONDAY 22 JANUARY 2007

Candidates answer on the question paper.
Additional materials: Geometrical instruments
Tracing paper (optional) Scientific or graphical calculator

Candidate Name

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre Number and Candidate Number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this Section is 25.
- \quad Section B starts with question 6.
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.

For Examiner's Use
Section B

This document consists of 8 printed pages.

Formulae Sheet

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$

Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

6 (a) Multiply out and simplify.

$$
(2 x-5)(x+1)
$$

(a).
(b) Factorise.
(i) $x^{2}-9$
\qquad
(b)(i)
(ii) $x^{2}+6 x-7$
(ii).
(c) Simplify.

$$
\frac{6 x+6}{x+1}
$$

(c)

\qquad

7 In the women's marathon at the 2004 Olympics, 66 athletes finished the race. The table summarises their times.

Time $(t$ minutes $)$	Frequency
$145 \leqslant t<150$	5
$150 \leqslant t<160$	19
$160 \leqslant t<170$	24
$170 \leqslant t<180$	10
$180 \leqslant t<230$	8

(a) On the grid, draw a histogram to represent these results.

(b) One of these athletes is chosen at random.

Calculate the probability that she completed the marathon in less than 160 minutes.
(b)
(c) In the men's marathon, 81 athletes finished the race. This histogram summarises their times.

One of the athletes who finished the men's marathon and one of the athletes who finished the women's marathon are chosen at random.

Calculate the probability that they both completed their races in less than 160 minutes.
(c).
(d) In the men's 200 m race at the 2004 Olympics, Frankie Fredericks came fourth and Francis Obikwelu came fifth.
Both Frankie and Francis were given an official time of 20.14 s , correct to 0.01 s .
Calculate the upper bound of the difference in their times.
(d)

8

8 A rectangular room is measured as 5.2 m long by 3.8 m wide.
Both measurements are correct to $0 \cdot 1 \mathrm{~m}$.
Calculate the lower bound of the area of the room.
\qquad
2

9 (a) A candle is in the shape of a square-based pyramid. The length of each side of the base is 8 cm . The length of each sloping edge is 10 cm .

(i) Show that the height of the pyramid is 8.2 cm , correct to 1 decimal place.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Calculate the volume of wax in this candle.
(a)(ii) \qquad cm^{3}
(b) Two other candles are in the shape of cylinders.

They are mathematically similar to each other, with one candle being twice as high as the other.

(i) State the ratio 'area of base of smaller candle : area of base of larger candle'.

$$
\text { (b)(i) } 1 \text { : }
$$

(ii) The smaller candle is made from $50 \mathrm{~cm}^{3}$ of wax.

How much wax is needed to make the larger candle?
(ii)
. cm^{3} [2]

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© OCR 2007

