GENERAL CERTIFICATE OF SECONDARY EDUCATION
MATHEMATICS C (Graduated Assessment)

Candidate Name

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre Number and Candidate Number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this Section is 25.

WARNING
 You are not allowed to use a calculator in Section A of this paper.

For Examiner's Use

Section A	
Section B	
Total	

This document consists of 8 printed pages.

Formulae Sheet

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$
Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 (a) Estimate.
$\sqrt{\frac{502 \times 6180}{324}}$
\qquad
(a)
(b) Estimate.

$$
\left(1 \cdot 8 \times 10^{5}\right) \times\left(4 \cdot 3 \times 10^{-3}\right)
$$

(b)

2 (a) Make d the subject of this formula.

$$
t=\sqrt{\frac{2 d}{a}}
$$

(a).
(b) Make x the subject of this formula.

$$
3 x-2 y=a x+5
$$

(b)

(a) Write down the equation of this circle.
(a)
(b) Find graphically the coordinates of the points of intersection of this circle with the line $y=3-2 x$.
(b) $(\ldots \ldots . ., \ldots \ldots .$.$) and (....... ,)$

$4 \mathrm{~A}, \mathrm{~B}$ and C are points on a circle, centre O . AT is a tangent.
Angle $\mathrm{OAB}=y^{\circ}$.

(a) Express angle BAT in terms of y, giving your reason.

Angle BAT = \qquad ${ }^{\circ}$ because \qquad
(b) Using triangle OAB , express angle BOA in terms of y.

(b)

\qquad
(c) Using the theorem
the angle at the centre is double the angle at the circumference,
express angle ACB in terms of y.
Write your answer as simply as possible.
(c)
(d) What theorem do your results for parts (a) and (c) prove?
\qquad

5 The frequency ($f \mathrm{~Hz}$) of the note produced by a string is inversely proportional to the length $(s \mathrm{~cm})$ of the string.
A string of length 30 cm produces a note of frequency 150 Hz .
(a) Find the equation connecting f and s.
(a)
(b) Find the frequency of the note produced by 20 cm of this string.
(b)

Hz [1]

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© OCR 2007

