GCSE

Mathematics C

Mark Schemes for the Units

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone:0870 8706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

General Certificate of Secondary Education GCSE Mathematics C - 1966

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2331	Module Test M1	1
2332	Module Test M2	5
2333	Module Test M3	9
2334	Module Test M4	12
2335	Module Test M5	16
2336	Module Test M6	22
2337	Module Test M7	28
2338	Module Test M8	32
2339	Module Test M9	38
2340	Module Test M10	42
2341	Terminal Unit Foundation Tier	46
2342	Terminal Unit Intermediate Tier	52
2343	Terminal Unit Higher Tier	60
2345	Internal Assessment (OCR Marked)	67

Mark Scheme 2331
 June 2006

Section A

Section B

Question	Full marks		Part marks	
8 (a)	$\begin{array}{lll} \mathbf{T} & \mathbf{S} & \mathbf{O} \\ \mathbf{C} & \mathbf{H} & \mathbf{P} \end{array}$	W2	W1	Any three letters correctly matched.
(b)	136 to 152	W2	W1	13.6 to 15.2
(c)	43 to 47 inclusive	W1		Must be ruled
9 (a)	(i) Kniper (ii) Parry (iii) Norman	$\begin{aligned} & \mathrm{W} 1 \\ & \mathrm{~W} 1 \\ & \mathrm{~W} 1 \\ & \hline \end{aligned}$		
(b)	32 to 38 inclusive	W2	W1	Outside this range but 30 to 40 .
(c)	$\begin{array}{ll}\text { (i) } & 1962 \\ \text { (ii) } & 6212\end{array}$	$\begin{aligned} & \text { W1 } \\ & \text { W1 } \end{aligned}$		
(d)	7084	W1		
10 (a)	2	W1		
(b)	12	W2	M1	26 and 14 seen
(c)	2001	W1		
11	£16.89(p)	W4		Digits 1689 seen 8(.)44, 16(.)90, 96(.)89 80 or digits $169 / 8844$ seen
12 (a)	A B C A C B B A C B C A C A B C B A	W2	W1	4 lines correct
(b)	(i) Unlikely (ii) Impossible	$\begin{aligned} & \hline \text { W1 } \\ & \text { W1 } \end{aligned}$		

Mark Scheme 2332 June 2006

Section A

Question	Full marks	Part marks		
$\mathbf{1}$	(a)	anticlockwise	W1	Clearly indicated

Section B

Question	Full marks		Part marks
12 (a)	unlikely	W1	intention
(b)	E	W1	intention
	I	W1	intention

Mark Scheme 2333 June 2006

Section A

Question	Full marks		Part marks
1 (a) (b) (c) (d)	$\begin{array}{\|ll} \hline 2460 & \text { o.e. } \\ 8 \cdot 64 & \text { o.e. } \\ 83 \cdot 5 & \\ 12 \cdot 4 & \\ \hline \end{array}$	$\begin{aligned} & \text { W1 } \\ & \text { W1 } \\ & \text { W2 } \\ & \text { W2 } \end{aligned}$	M1 for 16.7×5 attempted or figures 835 M1 for $49 \cdot 6 \div 4$ s.o.i. or figures 124
$\begin{aligned} & 2 \\ & \text { (a) } \\ & \text { (b) } \\ & \text { (c) } \end{aligned}$	$\begin{array}{\|l\|} \hline 20 \\ 9 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { W1 } \\ \mathrm{w} 1 \\ \mathrm{~W} 1 \end{array}$	accept embedded answers
3	168	W2	M1 for $840 \div 5$ s.o.i. or 8.4 or 84 seen or figures 168 , accept equivalent methods
4 (a) (b)	$\begin{aligned} & (3+5) \times 2+6 \\ & 3+5 \times(2+6) \end{aligned}$ he added before multiplying	W1 W1 W1	only correct brackets in either part accept any correct explanation
5	$4 \cdot 2$	W2	M1 for 6×700 s.o.i. or figures 42 SC1 for 4 or 0.7 seen allow trailing zeros at the least significant end
$6 \text { (a) }$ (b) (c) (i) (c) (ii)	$\begin{array}{\|l\|} \hline 0 \cdot 25 \\ 0 \cdot 5 \\ 30 \\ 64 \\ 15 \end{array}$	W1 W1 W1 W1 W1	
7	40.73	W4	M1 for attempt at $9.84+9.84$ (or 19.68 seen) M1 for adding 18.60 to their ' 19.68 ' seen at any stage (or 38.28 seen) $\sqrt{ }$ W1 for selecting an appropriate postage (or 2.45 seen)

Section B

8	linear vertical scale all bars correct	$\begin{aligned} & \text { W1 } \\ & \text { W2 } \end{aligned}$	heights closer to the nearest integer and bars of equal width W1 three correct heights only
9	$\begin{aligned} & \hline \mathrm{km} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { W1 } \\ & \text { W1 } \end{aligned}$	
$\begin{aligned} 10 & \text { (a) } \\ & \text { (b) } \end{aligned}$	yes + half of the tokens have a C arrow between quarter and half	W1 W1	allow any correct statement
$\begin{array}{lll} \hline 11 & \text { (a) } & \text { (i) } \\ & \text { (a) } & \text { (ii) } \\ & \text { (b) } \end{array}$	$\begin{array}{llllllll} -5 & 3 & -2 & -1 & 0 & 3 & 4 \\ -1 & & & & & \\ 5 \end{array}$	$\begin{array}{\|l\|} \hline \text { W1 } \\ \text { W1 } \\ \text { W1 } \end{array}$	ft their (a) if ordered
12 (a) (b) (i) (b) (ii)	$\begin{aligned} & 409 \cdot 5 \\ & 162 \\ & 66 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { W1 } \\ \text { W2 } \\ \text { W2 } \\ \hline \end{array}$	M1 for 27×6 seen or figures 162 M1 for $2 \times 6+2 \times 27$ seen
$13 \quad(a)$ (b) (i) (b) (ii)	Only 2 points plotted correctly ruled straight line $58-62$ 34-38	W1 W1 W1 W1	within one small square at least 6 cm long or ft their ruled line if points are wrong or ft their ruled line if points are wrong
14	D C	W2	W1 each answer
$15 \text { (a) }$ (b)	correct width (6 cm) correct height (3 cm) 64-70	W1 W1 W2	SC1 correct width and height in a right angled triangle (ft their diagram if W2 not scored in (a)) M1 for 6.4-7.0(cm)

Mark Scheme 2334 June 2006

Section A

Question	Full marks		Part marks
1 (a)	45	W1	only
(b)	7	W1	only
(c)	9	W1	only
2	two of: no (vertical) scale one/last/2003 bar wider 1st gap should be smaller than the gaps profits don't shoot up, there's a steady rise	W2	W1 each, maximum W2 acc clear equivalents
3 (a)	40 (km)	W1	
(b)	1.5 (hrs) oe	W2	W1 10:00 and 11:30 both soi (no contradictory extras) or $1 \cdot 30$, or $1: 30$ 1,5 etc
(c)	80 (km/hr)	W2	M1 $40 \div 0.5$ or equivalent
4 (a)	700	W1	
(b)	150	W1	
(c)	50	W1	
5 (a) (i)	$\begin{array}{\|l\|} \hline \frac{7}{10} \\ \hline \end{array}$	W1	Accept any equivalent fraction
(a) (ii)	70	W1	W0 70/100
(b)	0.076, 0.176, 0.7, 0.706, 0.76	W2	W1 4 correct or fully reversed
6	$\begin{array}{\|l\|} \hline 2432 \\ \text { with working } \end{array}$	W3	M1 Complete attempt at long multiplication \& W1 figs 1152 or 38 or 152 or 2432 seen or 4 correct rectangles (grid methods) or 1280 (correct), seen from 128×10 (note: W0 1280 only) or W1 answer only
7 (a)	52	W1	
	'opposite' or 'X' or 'cross'	W1	without contradiction
(b)	64	W1	
	isosceles	W1	
	'angles in a triangle' or 'triangle, 180'	W1	without contradiction

Section B

Question	Full marks		Part marks
8 (a)	-4, -2	W1	
(b) (i)	C and D correctly plotted	W1	both
(b) (ii)	32 (cm)	W2	or ft their square M1 ft: clear evidence of addition of all dimensions of their rectilinear shape or if 0 scored in (b)(ii) SC1 square correct and 16
9	1.75	W3	M1 $9 \times 4(\cdot) 25$ soi $\quad[=38(\cdot) 25]$ or 4-figure 2 dp number correctly subtracted from 40 $2 \times 20-$ their $9 \times 4(\cdot) 25$ or M2 correctly subtracted or W1 figs $\mathbf{1 7 5} \mathbf{(0)}$
10	13.9	W3	M2 Complete method One correct area: or W1 $16 \cdot 45,2 \cdot 55,9 \cdot 4,4 \cdot 5,10 \cdot 5,3 \cdot 4,6$
11 (a)	Triangle B correct	W1	intention
(b)	Triangle C correct	W1	if 0 scored in (a) and (b) SC1 both correct position \& orientation but labels B, C incorrect
12	One correct improved trial	W1	must be greater than [24, 30]
	One further improved trial	W1	
	35 and 41	W1	both
$\begin{array}{\|ll} \hline 13 & \text { (a) } \\ & \text { (b) } \end{array}$	$\begin{array}{\|l\|} \hline 32 \\ 91 \cdot 5(0) \end{array}$	$\begin{aligned} & \text { W2 } \\ & \text { W1 } \end{aligned}$	If 0 or 1 scored in total in (a) and (b), M1 in (a): 17 seen or $2 \times 8.5(0)+15$ soi or in (b): 76.5(0) seen or $9 \times 8.5(0)+15$ or figs 915 (0..)
(c)	$C=15+8.5 d$	W2	accept equivalents W1 $8.5 d$ or $d 8.5$ or $8.5 \times d$ seen or correct quantities, incorrect variables

Question	Full marks		Part marks	
14 (a)	7	W1		
(b)	3.75	W3	$\begin{array}{r} \text { M2 } \\ \text { or M1 } \\ \text { \& } M 1 \end{array}$	26 to 26.4 or figs 375 addition soi, implied by 25 to 35 division by 8 shown
(c)	$\frac{3}{8}$	W1		accept equivalents, correct forms only eg 0.375, 37.5\%, 37\%, 6/16

Mark Scheme 2335 June 2006

Section A

$\mathbf{7}$ (a)	Correct translation	$\mathbf{1}$			
(b)	Reflection in the line $y=1$	$\mathbf{2}$		M1	Reflection or check diagram for correct mirror line drawn (min 3cm long)

Section B

8 (a)	14	3		M1	Attempt to add - either addition seen or implied by answer in range 199 221
				M1	their total $\div 15$ dependent on $1^{\text {st }} \mathrm{M} 1$
(b)	Mean is distorted by two large values	1			
9 (a)	B	2		W1	D or views labelled $B C, B D, B D$ all given correct.
(b)		2			Accept any orientation
				M1 SC1	For extra square anywhere or reflection Right angled triangle in this position with other squares correct.
10 (a) (i)	204	4		W2	510
			or	M1	0.6×850 or attempt to work out $6 \times$ 10% (of 850) or 50% (of 850) $+10 \%$ (of 850) o.e.
			and	M1	'their 510' $\div 5$ o.e
			and	A1	f.t. $2 \times$ 'their 102'
					Alternative Method
				W2	340
			or	M1	$850 \div 5 \times 2$ o.e.
			and	M1	'their 340' $\times 0.6$
			and	A1	f.t. 'their 204'
(a) (ii)	36	2		M1	$522 \div 1450$ or $\frac{522}{1450}(\times 100)$ or figs 36
(b)	3000	1			
11 (a)	15	1			Accept embedded answers throughout
(b)	5	1			
(c)	7.5 or $7 \frac{1}{2}$ or $\frac{15}{2}$ o.e.	2		M1	$2 x=8+7$ or better or correct reversed flow diagram

$\mathbf{1 2}$ (a)	512	$\mathbf{2}$		M1	$8 \times 8 \times 8$ seen or 64x8
	cm^{3}	$\mathbf{1}$			must include a value (b) 384
		$\mathbf{3}$		M1	8×8 or 64 seen
				M1	6 seen

Mark Scheme 2336
June 2006

Section A

1
(a) Axes scaled consistently
[1]
Histogram
All heights correct
[1] Accuracy $\pm 2 \mathrm{~mm}$
Bars correctly positioned with no gaps
OR
Frequency polygon
Heights correct [1] Accuracy $\pm 2 \mathrm{~mm}$
Points plotted at mid intervals and ruled lines [1]
(b) $\frac{23}{60}$ i.s.w. (but not subtraction from 1)
or $0.38 \ldots$ or $38 \ldots . \ldots$
[2] W1 for 23 seen

2 (a) The train stops or equivalent
[1]
(b) Ruled line from York(1100) to London (13 15)

Allow $\pm 2 \mathrm{~mm}$ at each
end
[2] W1 for freehand line or W1 for one end correct OR
W1 for ruled line from London to York with both ends correct.

3	$0.43[\mathrm{p}]$	or $43[\mathrm{p}]$	$[4]$
		W3 for figs 215 seen	
	or		
		W2 for figs 228 seen or	
		W1 for figs 162 or figs 66	
seen			
		and	
		M1 for (their 215) $\div 5$	

$4 \quad(a)-8$
[2] W1 for $\left[(-2)^{2}=\right] 4$ or -12 seen
(b) Final answer $a(a+6)$
[1]
5
(a) $[x] 3$ or $\frac{3}{1}$
[1]
(b) $(0,2)$
[1]

6 (a) (i) Final answer $\frac{3}{20}$ o.e. or 0.15
(ii) Final answer $\frac{4}{5}$ o.e. or 0.8
(b) $\frac{21}{25}$ o.e. with one relevant correct change
[2]
W1 for one relevant correct change
[2] W1 for 35 seen
or
M1 for $360-(83+115+127)$
OR (exterior angle method).
W1 for two of 97, 65 and 53
seen or
M1 for $360-(97+65+53)$ f.t
[Angles in a] quadrilateral [= 360°]
[1] Exterior angles [= 360 ${ }^{\circ}$]
[Angles on a] straight line [$=180^{\circ}$]

Section B

8
(a) A
[1]
(b) D

9
(a) 4.6 o.e.
[1]
(b) 11.3
[2] W1 for figs 112[7...]
or figs 113 seen or
W1 for answer - 2.6 or
W1 for figs 2401 seen
$10 \quad$ (a) 35
(b) 5.5 or $5 \frac{1}{2}$ or $\frac{11}{2}$ i.s.w.
[1]
[2] M1 for $2 x=6+5$ or
W1 for answer $\frac{1}{2}$ or 0.5
(c) - 2
[3] W1 for $8 x+36$ seen and
M1 $8 x=20-36$ f.t.
OR
M1 for $2 x+9=5$ and
M1 for $2 x=5-9$ f.t.
11 (a) £10440
[3] $\quad \mathbf{M} 2$ for $\frac{100-28}{[100]} \times 14500$
implied by figs 1044 or
M1 for $\frac{28}{[100]} \times 14500$ implied
by 18560 or figs 406
(b) 26.25
[2] W1 for 8.75 or
M1 for $\frac{35}{1+3}(\times 3)$ implied by figs 262, 263, 2625

12 (a) (i) Angle CBA $=55$ to 59°
BC $=8.3$ to 8.7 cm (Ruled)
(ii) If the construction is correct:
14.6 to 15.6 km
[2] W1 for 7.3 to 7.8 seen or W1 for $31+$ their $A C$
If the construction is incorrect:
f.t. from their diagram
(b) 1 h 15 min
[3] W2 for 1.25 seen or for answer 1 hour 25 minutes or 75 minutes or M1 for $14 \div 11.2$ or figs 125
$13 \quad 20.4$ to 20.45
[2] M1 for $\pi \times 6.5$ or
W1 for answer 40.8 to 40.9

Mark Scheme 2337 June 2006

Section A

1	31, 37	2	1 for one omission and/or one extra
2	(a) $C=360+20 n$ final answer (b) 30	2 2	1 for $20 n$ seen M1 for $250=7 n+40$ or better or for $210 \div$ 7
3	(a) 0.1 o.e. (b) 300	$\begin{array}{\|l\|} \hline 2 \\ 2 \end{array}$	M1 for sum $=1$ s.o.i. M1 for $0.3 \times 1000, \frac{300}{1000}$ or 300 seen
4	(a) 7/12 or $14 / 24$ o.e. i.s.w. (b) $3 / 8$	2 3	M1 for at least one of 9/12, 18/24, 2/12 or 4/24 o.e. seen W2 for 9/24 o.e. i.s.w. or M1 for $9 / 4 \times 1 / 6$ o.e. and M1 for $3 / 4 \times 1 / 2$ or M1 ft $\frac{\text { their } 9 \times 1}{4 \times 6}$ correctly evaluated
5	both sets of correct arcs ruled perpendicular drawn from P	1 1	Ignore extra arcs tolerance 2° at line and line must pass within 1 mm of P and 1 mm of given line.
6	(a) 9 (b) 22 angle in semicircle[$=90^{\circ}$] [and angle sum of triangle $=180^{\circ}$]	$\begin{array}{\|l\|} \hline 2 \\ 1 \\ 1 \end{array}$	M1 for 360 / 40 o.e. If 90° is omitted, this is dependent on answer of 22°, or on 90° seen or used
7	(a) it is increasing o.e. (b) 90	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	0 if contradicted M1 for their $18 \div 12$ or 1.5 seen and M1 dep. for their 1.5×60 o.e. or M1 for their 18 in $1 / 5 \mathrm{hr}$ [M2 for their $18 \div 1 / 5$ o.e. or their 18×5 o.e.]

Section B

8	7.2	2	M1 for 2.4 seen or for $12 \times 3 / 5$ o.e.
9	(a) 6 (b) 7 points plotted, tolerance 2 mm smooth curve within 2 mm of at least 6 points (c) answers in range $-0.6 \text { to }-0.3 \text { and } 4.3 \text { to } 4.6$	1 P1 C1 $1+1$	If table blank, allow this mark for correct plot at 6 on graph correct or ft from table no ft for curve if extra turning points or flat top independent of graph
10	(a) $7: 8$ (b) 48 c.a.o. (c) 76.8 i.s.w.	$\begin{aligned} & 1 \\ & 2 \\ & 4 \end{aligned}$	allow 7 to 8 M1 for $120 / 5$ [$\times 2$] or 24 seen M1 for at least 3 of 15, 45, 75 etc seen M1 for attempt at sum of (freq \times their midpts) (in correct range) (at least 3 seen) [3840] M1 for their sum of (freq \times midpts) $\div 50$ [$3840 \div 50$] dep on attempt at $\sum f_{x}$ soi W3 for answer 61.8 or 91.8, otherwise allow last 2 Ms for endpoints used allow full marks for 77 after 3840 seen
11	(a)(i) 30 (a)(ii) $x>6.5$ (or $x>6 \frac{1}{2}$ or $x>\frac{13}{2}$) c.a.o. final ans. (b) $[x=] \frac{y-8}{4}$ or $\frac{y}{4}-2$ o.e. as final answer	2 3	M1 for $2 x=60$ or $x / 5=6$ W2 for 6.5, $6 \frac{1}{2}$ or $\frac{13}{2}$ seen or M2 for $x-3$ >3.5 or M1 for $2 x-6>7$ and $\mathbf{M 1}$ for $2 x>7+6$ or correct step ft after wrong first step seen M1 for $y-8=4 x$ or $\frac{y}{4}=x+\frac{8}{4}$ or better
12	(a) 4[.0] www (b) obtuse(or greater than 90°) with attempt to compare lengths.	3 1	M1 for $2.4^{2}+3.2^{2}$ or 16 www and M1 for sq. rt. of sum or difference of 2.4^{2} and 3.2^{2} answer must ft from their (a) and must have attempt at comparison of lengths. 0 if Pythagoras not attempted in (a)

Mark Scheme 2338
June 2006

Section A

Question	Full marks	Part marks
1 (a)	$\frac{1}{13}$ and $\frac{12}{13}$ in correct places on three pairs of branches	W1 for 1 complete correct pair of branches
(b)	$\frac{1}{169} \quad \text { W2 }$	M1 for $\frac{1}{13} \times$ 'their $\frac{1}{13}$ ' seen
2 (a)	$7 \mathrm{n}-3$ oe W2	M1 for 7n seen in linear expression
(b)	$x=\frac{y-6}{4} \text { or } x=\frac{y}{4}-\frac{3}{2}$ mark final answer	W2 for $x=\frac{ \pm y \pm 6}{ \pm 4}$ or M1 for $1^{\text {st }}$ correct step e.g $[y=] 4 x+6 \quad \text { or } \frac{y}{2}=2 x+3$ M1 for $2^{\text {nd }}$ correct step e.g $y-6=4 x$ or $\frac{y}{2}-3=2 x$ or ft their $1^{\text {st }}$ step M1 for $3^{\text {rd }}$ correct step ft their $1^{\text {st }} / 2^{\text {nd }}$ step N.B mark final answer for $3^{\text {rd }} \mathrm{M} 1$, Incorrect cancelling loses $3^{\text {rd }}$ M1
3	Area none of these length	1 for each correct answer
4	rotation, 90° [anticlockwise or positive] oe e.g 270° clockwise, $1 / 4$ turn clockwise centre (1,1) condone missing brackets	W2 for rotation 90° [anti-clockwise or positive] or rotation centre $(1,1)$ W1 for rotation or 90° [anti-clockwise or negative] or centre $(1,1)$, W0 if any second transformation mentioned If W0 awarded then M1 for clear final triangle in correct position
5	199.5, 200.5 Condone order reversed	W1 for 1 correct
6 (a)	3^{8} Final Answer W2	M1 for $3^{9} \div 3$ seen or $3^{3} \times 3^{5}$ or $3^{4} \times 3^{4}$ or 3^{8} seen in working
(b)	$\frac{7}{15} \text { indicated }$	
(c)	$0 \cdot \dot{5}$ Final Answer W1	

Question	Full marks	Part marks	
7	80π	W4	M3 for $2 \times \pi 4^{2}+6 \times 8 \pi$ or $2 \times 16 \pi+48 \pi \quad$ or M2 for $32 \pi \quad$ or M1 each for $[2 \times] \pi \times 4^{2}$ and $\pi \times 6 \times 8$ oe
		eg 16π or 48π	
		or SC3 Final Answer 240 to 251.4 or 224π or 64π from $16 \pi+48 \pi$	
		or for $2 \pi \times 8^{2}+\pi \times 16 \times 6$ SC1 SC1 for 96π as answer	

Section B

Question	Full marks	Part marks
8 (a)	£99.89 W4	M3 for 99.891...or 899.89... or 99.9[0] or M2 for 800×1.04^{2} (or better) soi or 865.28 . or 899.9[0] or 832×1.04 M1 for 800×1.04 soi or 832 or 896 or 96
$9 \quad$ (a)	$2.5 \times 10^{-7} \quad$ W2	M1 for figs 25 seen
(b)	0.32 W2	M1 for $1000 \mathrm{~mm}^{3}=1 \mathrm{~cm}^{3}$ soi
10 (a)	$\frac{1}{2} \times x \times(x-2) \times 2 x$ condone lack of brackets in above expression or $x \times(x-2) \times 2 x$ or $\frac{1}{2} \times x \times(x-2)$ Brackets MUST be used in both these two expressions $x^{2}(x-2) \text { or } x\left(x^{2}-2 x\right)$ Condone missing brackets if intention is clear	
(b) (i)	$\begin{aligned} & {\left[3^{3}-2 \times 3^{2}\right]=9 \text { and }} \\ & {\left[4^{3}-2 \times 4^{2}\right]=32 \text { or }} \end{aligned}$ allow any values between 3 and 4 that produce one outcome above and one below 20	Allow 3 and 4 with working crossed out and then replaced with a more accurate attempt
(b) (ii)	trial of 3.5 to give $18.3[75]$ $\mathbf{1}$ trial of 3.6 to give $20.7[36]$ $\mathbf{1}$ Allow outcomes rounded or truncated to 1 dp or better ans 3.6 cao independent $\mathbf{1}$	Or 3.5 and 3.6 with outcomes in (b)(i) after 0 SC1 for correct trial with x between 3.1 and 3.9 with outcomes clearly shown

Question	Full marks	Part marks
11 (a)	$5 x=10$ or $5 x=7+3 \quad$ M1 or complete long method $x=2, y=-3$	
(b)	$x^{2}-2 x-35$ cao ${ }^{\text {a }}$	M1 for 2 correct terms in 3-term final expression or 3 of $x^{2}-7 x+5 x-35$
(c) (i)	$(x-5)(x+5)$ ISW if W1 attempt to solve	
(c) (ii)	$[+] 5,-5$ or ± 5 W1	
12	31.2 to 31.3 W3	M2 for [h =] $200 \times \sin 9$ M1 for $\sin 9$ used with h and 200 A1 for 31 if M2 earned $\mathbf{S C 3}$ for $\sin 9=\frac{h}{200}$ followed by 31
13	A is better as median is higher average/median $\mathrm{A}=21$ to W 1 22 and or average $/$ median $B=17$ to 19	Must be median not just average unless readings given Readings may be on the diagram

> Mark Scheme 2339 June 2006

Section A

Question	Full marks	Part marks
1	Histogram W3	W1 Frequency density proportional to 15/40/120/85/65/40 W1 Axis scaled-dependent on frequency divided by their class width attempted at least twice. W1 Bars correct height and width.
2	Explanation W2	W1 $\angle A B C=93$ or $\angle A B D=87$ W1 Tangent and diameter meet at 90°
3	400 or 4×10^{2} 390 or 3.9×10^{2}	$\begin{array}{ll}\text { M1 } & \text { Digit } 4 \text { or } 10^{2} \text { or } 8 / 2 \\ \text { Or digits } 39\end{array}$
4 (a)	$y=\frac{36}{x^{2}}$ or equivalent \quad W2	M1 $9=\frac{k}{4}$ or 36 seen or $9=\frac{k}{2^{2}}$
(b)	6 and -6 Or Ft $\sqrt{\text { their } k}$$\quad$ W2	W1 One solution Condone $\sqrt{ }$ their k not evaluated
5	$\begin{array}{ll} \hline \frac{3}{8} \mathrm{nww} & \text { W3 } \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { M1 } & 3 \\ \text { M1 } & 8 \\ \hline \end{array}$
6 (a)	1 and 10 W1	
(b)	Graph W2	W1 5 given points plotted W1 Smooth cubic curve through any 5 points.
(c) (i)	$y=7 x$ W1	
(c) (ii)	$y=7 x$ drawn W1 $-2.8,0.3,2.5($ all $+/-0.1)$ W2	W1 1 correct solution Condone coordinate form Ft intersection of $\mathrm{y}=7 \mathrm{x}$ with their cubic curve SC1 1 solution from $y=7$ drawn intersecting with cubic curve
7	$\frac{5}{15} \text { I.S.W W4 }$	

Section B

Mark Scheme 2340 June 2006

Section A

Question	Correct answer	Mark	Part marks	
1 (a)	$\frac{8}{33}$	3	M2	$\frac{24}{99} \text { or } 24 r=99 \text { or }$
			M1	$100(r)=24 \cdot 24(\ldots)$
(b)	$28-10 \sqrt{3}$	2	M1	25 and ± 3 or 28 or $10 \sqrt{3}$ seen
2 (a)	$(x+5)(2 x-1)$	2	M1	$(x \pm 5)(2 x \pm 1)$
(b)	$\frac{x-5}{2 x-1}$, ft if M1 in (a) and (b)	2	M1	$(x+5)(x-5)$ or $\frac{x-5}{2 x-1}$ seen then spoilt
3 (a)	Y7 slower o.e.	1		e.g. Modal time for Y11 is smaller or Comparison of one group, etc.
	Y7 bigger range, o.e.	1		Comparison of spread
(b)	$\begin{aligned} & 0.25 \times 108=27(\mathrm{~b}) \text { and } \\ & 0.25 \times 92=23(\mathrm{~g}) \text { o.e. } \end{aligned}$	2	M1 or W1	25% of boys/108 and 25% of girls/92, o.e. or 54% of 50 and 46% of 50 . Stratified sample
4 (a)	$(x+3)^{2}-15$	3	M2	$\begin{aligned} & (x+3)^{2}+-15 \text { or }(x+3)^{2}-9 \pm \mathrm{k} \text { seen or } \\ & x^{2}+3 x+3 x+9-9 \text { or }(x-3)^{2}-15 \end{aligned}$
			M1	$(x+3)^{2}$ seen or $-6-a^{2}$ (a must be a constant and a^{2} evaluated correctly
(b)	- 15	1		f.t. (a) if of the form $(x+a)^{2}+b, b \neq 0$
5 (a) (i)	Translation 2 squares left	1		$\begin{aligned} & (0,0) \text { to }(-2,0) \\ & (2,4) \text { to }(0,4) \text { and }(-2,4) \text { to }(-4,4) \end{aligned}$
(a) (ii)	Translation 3 squares down	1		$\begin{aligned} & (0,0) \text { to }(0,-3) \\ & (2,4) \text { to }(2,1) \text { and }(-2,4) \text { to }(-2,1) \end{aligned}$
(b)	Translation $\binom{-2}{-3}$ o.e.	2	W1	Translation or $\binom{-2}{-3}$
6 (a) (i)	$\mathbf{r - s}$ or $\mathbf{- s + r}$	1		
(a) (ii)	$\frac{3}{4}(\mathbf{r}-\mathbf{s}) \text { oe }$	1		ft (i) involving \mathbf{r} and \mathbf{s}, must be a vector. Do not ignore incorrect subsequent working.
(b)	$\begin{aligned} & \frac{1}{4}(3 \boldsymbol{r}+\mathbf{s}) \text { or } \\ & \frac{3}{4} \mathbf{r}+\frac{1}{4} \mathbf{s} \end{aligned}$	2	M1	via $R: \mathbf{r}+\frac{1}{4}(\mathbf{s}-\mathbf{r})$ or $\mathrm{ft} \mathbf{r}-\frac{1}{4}(\mathbf{i})$ via S : $\mathbf{s}+\frac{3}{4}(\mathbf{r} \mathbf{- s})$ or ft $\mathbf{s}+$ (ii) or $\mathbf{s}+$ $\frac{3}{4}$ (i)

Section B

Question	Correct answer	Mark	Part marks	
7 (a)	2000	1		
(b)	$\begin{aligned} & 46596 \cdot \ldots, 46597,46600, \\ & 47000 \end{aligned}$	2	M1	(x) $1 \cdot 3^{12}$ or $23 \cdot 298$
8	$95^{\circ}+$ correct calculation	4	M2	$(\sin B=) \frac{6 \cdot 05 \sin 28}{2.85}$ or $0.99(65 \ldots)$ or
			M1	$\frac{\sin B}{6.05}=\frac{\sin 28}{2.85} \text { o.e. }$
			A2	$180-(84 \cdot 9$ to $85 \cdot 3)$ or
			A1	84.9 to $85 \cdot 3$
9	Ruled line of best fit drawn	1		Through origin ($\pm 2 \mathrm{~mm}$) \& between $(23 \cdot 5,60)$ and $(25 \cdot 5,60)$
	$k=2.35-2.55$	1		Can award if no line
10	6.89(...) or 6.9	5	M2	Sector $\frac{78}{360} \times \pi 6^{2}$ seen or 24.5(...) seen M1 $\frac{78}{360}$
			M1	Triangle $1 / 2 \times 6^{2} \sin 78$ or $17 \cdot 6(\ldots)$
			M1	Their sector - their triangle
	cm^{2}	1		Indep
11 (a)	$\begin{aligned} & (371+257+296+324+ \\ & 412) / 5 \end{aligned}$	1		Accept a worded description of the 5 values to be added and their total divided by 5 . eg Sat week $2+$ Tues week 3 etc...
(b)	Audiences peak at the weekends	1		
(c)	Remain fairly steady or			
	Attendances fall off half way through	1		

Question	Correct answer	Mark	Part marks			
$\mathbf{1 2}$	$x=5 \cdot 7$ or ${ }^{-} 7 \cdot 7$	7	M1	$x^{2}+(x+2)^{2}=93$		
	$y=7 \cdot 7$ or ${ }^{-} 5$		M1	$x^{2}+x^{2}+2 x+2 x+4=93$		
			A1	$2 x^{2}+4 x-89 \quad(=0)$		
			M1	$\frac{-4 \pm \sqrt{4^{2}-4 \times 2 x^{-} 89}}{2 \times 2} \quad$ M1 their		
quadratic					$]$	$\frac{(-4 \pm 26 \cdot 98)}{4}$
:---						

Mark Scheme 2341 June 2006

Section A

Section B

Question	Full marks		Part marks
11 (a)	neck curve \&/or shoulder horizontal only	W1	indication may be either /both sides of mirror line, or across it
	figure 1 \&/or adjacent spaces only	W1	
(b)	correct position shown	W1	back above left or front above right or back below right
12 (a) (i)	$\begin{aligned} & 1796,1896,1998,2179, \\ & 2184 \end{aligned}$	W2	condone decimal points, transfer errors M1 V FG M C N one error or fully reversed
(a) (ii)	1998	W1	accept Mazda \&/or MPV
(b) (i)	one thousand eight hundred (and) ninety six	W1	eighteen hundred and ninety six not eighteen ninety six
(b) (ii)	45	W1	
(b) (iii)	480	W3	```M2 figs 48 M1 16, or 72 \div4.5 seen & M1 their 16 * 30 seen W0 72 * 30```
13 (a)	$4 c+6 d$	W2	M1 4c or 6d (inc 4c6d) seen
(b)	$8 e+20$	W1	
14 (a)	correct position	W1	throughout: position clearly indicated
(b)	correct position	W1	mark positioning, not notation eg E in correct place, others blank
(c)	correct position	W1	in square or 4 corners, not edge or corner
(d)	correct position	W1	
15 (a)	bar drawn to 0.8	W1	$\pm 1 \mathrm{~mm}$
(b)	$5 \cdot 6$	W1	
	lead	W1	
	silica	W1	SC1 metal(s)
16 (a)	$\left(4 \cdot 1^{2}+1.79\right) \div \sqrt{9} \cdot 61=$	W2	no incorrect or contradictory M1 brackets 16.81 or 18.6 or 3.1 seen or $16+2 \div \sqrt{ } 9$ or $\sqrt{ } 10$ or 3
(b)	0.96	W2	$\begin{array}{ll} \hline \text { M1 } 8.39 \text { or } 8.74 \\ & \text { or figs } 95(99 \ldots) \text { or } 96 \\ \hline \end{array}$
17 (a)	-5	W1	acc equivalent, direction and quantity
(b)	7, 9, 11	W2	condone letters eg 7n 9n 11n condone extras if correct M1 any two correct in correct position SC1 5, 7, 9
18 (a)	11	W1	
(b)	marked correctly	W1	$\pm 1 \mathrm{~mm}$
(c)	102 to 103 inc	W2	M1 14 or 15 or 16 used (implied by 99 to 100, or 95)

Question	Full marks		Part marks	
19 (a)	$105 \cdot 4$ (0)	W3	M2 or M1	$18 \cdot 6(0)$ or 105 or 0.85×124 oe 0.15×124 oe or $142 \cdot 6(0)$ intention to find \% that combine to make 15% (or 85%) \& to combine these, eg list or spider diagram complete method, arithmetic errors
(b)	1-4(0), 140p	W3	$\begin{gathered} \text { or } \mathrm{ft} \\ \text { or M2 } \\ \text { or M1 } \end{gathered}$	$\begin{aligned} & \text { their }(\mathrm{a})-104 \text { for } \mathrm{W} 3 \\ & 104 \\ & 11 \text { or } 99 \\ & \text { or subtract their } 2 \text { values } \end{aligned}$
20 (a)	rectangle 5 by 2 drawn ruled $\pm 1 \mathrm{~mm}$	W2	$\begin{array}{r} \text { W1 } \\ \text { or M1 } \end{array}$	condone internal lines either dimension, ruled $\pm 1 \mathrm{~mm}$ intention to draw rectangle 5 by 2 (but outside tolerance and not ruled)
(b) (i)	4	W1		
(b) (ii)	50 to $50 \cdot 3$ ft (i)	W2		$\begin{aligned} & \text { 16 } \mathrm{m} \text { soi or } \mathrm{ft} \text { their }(\mathrm{b})(\mathrm{i}) \\ & \qquad \begin{array}{\|ccc} 2 & 8 & 16 \\ 4 \pi & 64 \pi & 256 \pi \\ 12 \cdot 6 & 201 & 804 \\ \hline \end{array} \end{aligned}$
21 (a)	176	W2		evidence on diagram or on list of values or 6
(b)		W3	$\begin{array}{r} \text { M1 } \\ \& \text { M1 } \end{array}$	do not penalise inverted diagrams use of 4 of stems 14 to 18 3 correct, 'ordered leafs' or 4 'leafs' correct but not ordered
(c)	any valid comment must be: true for this data (bod on stems) comparing M, F heights directly or by implication			comparing max, min, average, range or shape of chart, not sample size

Mark Scheme 2342
June 2006

Section A

1 Correct enlargement
2 W1 for 2 sides correct or W1 for correct use of wrong sf. tolerance \pm half a square

2 Axes scaled uniformly 1
EITHER HISTOGRAM
All heights correct 1
All bars of equal width with no gaps 1
OR FREQUENCY POLYGON
All heights correct 1
Midpoints used and joined with ruled lines, 1
1 condone joining last point to the origin.
3 (a) (i) 76
(ii) No + No two angles or sides equal 1
$3 \quad$ W1 for 50 seen and
M1 for
360-(105 + $65+$ their 50)
[Angles on a] straight line [add up to 180°]
[Angles in a] four sided shape [add up to 360°]

1
1
$4 \quad 68$
$4 \quad$ W3 for 92 seen OR M3 for 160 - (32+60)

OR

W2 for 60 seen or
W1 for 20 seen
and
W1 for 32 seen
and
M1 for
160 - (their 32 + their 60)

Alternative methods			
$\frac{17}{40}$	W3	42.5\%	W3
$\frac{23}{40}$ seen	W2	57.5\% seen	W2
or $\frac{8}{40}$ or $\frac{15}{40}$ seen	W1	20\% or 37.5\% seen	W1
and 1 - their $\frac{23}{40}$	M1	100 - their 57.5	M1
or 160 - their $\frac{23}{40}$ of 160	M1	or 160 - their 57.5% of 160	M1

5 (a) 74
2 W1 for $\frac{37}{50}$ or figs 74 seen M1 for 37×2
(b) (i) 456.4
3 Working must be seen
W2 for figs 4564 with working or
M1 for a complete method and
W1 for figs 1304, 489, 326,
168,448 or 84 seen
Answer only W1
(ii) $3 \frac{5}{6}$ o.e. or $3.8 \dot{3}$
$\left\{\operatorname{eg} 3 \frac{10}{12}\right\}$
(c) 120

2
3 W2 for $\frac{15}{6}+\frac{8}{6}$ oe or
$\frac{23}{6}$ oe or $3+\frac{3}{6}+\frac{2}{6}$ oe
or 3.83[3...]
or
M1 for $\frac{a+b}{6}$ o.e.
either a or b must be correct
or
W1 for 2.5 and 1.33 or better
W1 for 40 or 90 or 30 seen

6 (a) 20
(b) Final answer $[x=] \frac{y+3}{5}$ or $[x=] \frac{y}{5}+\frac{3}{5}$ or $[x=](y+3) \div 5$ or $[x=](y+3) / 5$

2 W1 for 25 seen
$2 \mathbf{W} \mathbf{1}$ for answer $[x=] \frac{ \pm y \pm 3}{ \pm 5}$
or $[x=] y+3 \div 5$ or
[$x=] y+3 / 5$ or
$\frac{x=y+3}{5}$
or
$\mathbf{M 1}$ for $5 x=y+3$ or
$\frac{y}{5}=x-\frac{3}{5}$
2 M1 for
$1-(0.25+0.05+0.15+0.4+0.1)$
(b) 50 [out of 200]

2 M1 for 0.25×200
or
w1 for $\frac{50}{200}$ as answer
8 (a) Final answer $16 x-13 \quad 2$ W1 for each or W1 for $6 x+2+10 x-15$ Accept 3 terms correct
(b) $(x-5)(x-2)$
$2 \mathbf{W} \mathbf{1}$ for $(x \pm 5)(x \pm 2)$
$9 \quad$ (a) $-1,0,1,2,3,4$
(b) $x=5$ and $y=-2$

3 W2 for 5 or 6 correct and maximum of 1 extra
or
W1 for 4 correct and maximum of 1 extra
or
W1 for $-3,0,3,6,9,12$
or
M1 for $\frac{-5}{3}<n \leq 4$
3 Dep. on M2
M1 for
Equation [2] $\times 2$
Accept two terms correct
AND
M1 for
Addition of equations
Dep. on first M1
Accept two terms correct

OR

M1 for
Equation [1] $\times 2$ and
Equation [2] $\times 3$
Accept two terms correct in each equation
AND
M1 for
Subtraction of equations
Dep. on first M1
Accept 2 terms correct

Alternative method

M1 for $3 x-2(8-2 x)=19$
M1dep for $3 x-16+4 x=19$
allow 1 error in each line
Answer only W1
$10 \quad$ (a) $\quad x \times x \times(x+3)$
(b) 112
(c) 4 points plotted to within 1 small square

Smooth curve within 1 small square of points
(d) 2.25 to 2.4

Section B

11 (a) 32, -64
(b) 7, 9,11
(c) $4 n-1$ oe

12
(a) (i) 121 to $125^{\circ} \quad 1$
(ii) 37 to 39
(b) 2 hours 45 minutes
(c) (i) 222
(ii) $\quad[-] 5$

2 W1 for each
Allow f.t. W1 for
$-2 \times$ their 32
2 SC1 for 5, 7, 9
W1 for two correct in correct positions.
Condone the inclusion of n
2 W1 for $4 n$ seen

1
$2 \quad \mathbf{W} 1$ for 7.5 to 7.7 seen
$3 \quad \mathbf{W} 2$ for 2.75 or 2 h 75 min or 3h 15 min seen
or
M1 for $187 \div 68$
2 M1 for 150×1.48 or
W1 for figs 222
3 W2 for 35 seen
or
M1 for $51.80 \div 1.48$
and
M1 for (their 35) - 30
Alternative method:
M1 for 51.80-30×1.48
and
M1 for 'their 7.40 ' $\div 1.48$
or
SC1 for answer 7.4[0]
132.5 or $2 \frac{1}{2}$ or $\frac{30}{12}$ oe, i.s.w

3 W2 for embedded answer
W1 for $12 x-3$ or
$4 x-1=9$ seen
and
M1 for $12 \mathrm{x}=27+3$ f.t or $4 \mathrm{x}=9+1$ f.t.

2 W1 for figs 95[9....] or
figs 96
W1 for 8.39 or 8.74 seen
(b) 1.25×10^{9}

2 W1 for figs 125 seen

15 (a) 28.5
$4 \quad$ W3 for answer 23.5 or 33.5
or 28 if 14.5 etc seen
or 29 if 15.5 etc seen
or
M3 for $\frac{\sum f t}{\sum f}$ with four of
$15,25,35,45,55$ used for t
or
W2 for 1710 seen or
$10 \times 15+27 \times 25+16 \times 35+6 \times 45+1 \times 55$
or
M2 for $\frac{\sum f t}{\sum f}$ with
t in range $10 \leq t \leq 20$ etc
or
M1 for $\sum f t$ with
t in range $10 \leq t \leq 20$ etc
or
W1 for four of
$15,25,35,45,55$
seen or used
(b) (i) 27 to 29

1
(ii) 12 to 14

2 W1 for 46 to 48 seen
16 (a) 105.4[0]
3 SC2 for 105 or
M2 for $124 \times \frac{85}{100}$
Or
M1 for $124 \times \frac{15}{100}$ or 18.6[0]
or 142.6[0]
(b) 950

3 M2 for $836 \div 0.88$
or
M1 for $88 \%=836$
$17 \quad$ (a) $\quad 3.69$ to 3.71
$3 \quad \mathrm{M} 2$ for 3.72
Or
$\mathbf{M} \mathbf{2}$ for $h=\frac{186}{\pi \times 4^{2}}$
or
M1 for $\pi \times 4^{2} \times h=186$
or
W1 for 50.2 to 50.3 seen
(b) 3999 or 3.999
$2 \quad$ W1 for figs 3999
or
M1 for $186 \times 21.5 \mathrm{~g}$
1 allow kg if attempt to
convert eg 3.999 kg

18 (a) 13.8 or 14
(b) 14.6 to 14.7
$4 \quad$ W3 for 13.7 to 13.9
or
M2 for $\sqrt{6.25^{2}+12.3^{2}}$
or
M1 for $6.25^{2}+12.3^{2}$
If trigonometry is used:
M1 for $\operatorname{Tan}^{-1} \frac{12.3}{6.25} \quad(=63.06)$
oe
and
M1dep for $\frac{12.3}{\sin 63.06}$ o.e.
After W0 allow W1 for any answer to 2 or 3 significant figures after Pythagoras or trig seen

3 W2 for answer 15.7 to 15.8 or 28.2 to 28.3
or
M2 for $12.3 \div \sin 57$
or
M1 for CD $\times \sin 57=12.3$
or
M1 for $\sin 57=\frac{12.3}{C D}$
alternative method:
M1 $B C=\frac{12.3}{\tan 57} \quad[=7.98 \ldots]$
and
M1dep $\sqrt{12.3^{2}+\text { their } 7.98^{2}}$
and

Mark Scheme 2343
June 2006

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
1 (a) \\
(b) \\
(c)
\end{tabular} \& \(2 n+3\) or equivalent
\[
16 x-13
\]
\[
(x-5)(x-2)
\] \& W2
w2
w2 \& \begin{tabular}{l}
M1 \(2 n\) \\
W1 16x or -13 or \(16 x+-13\) W1 \(6 x+2+10 x-15\) (3 terms) \\
isw \\
W1 (\(x \pm 5\)) \((x \pm 2)\) \\
M1 \(x-5\) and \(x-2\) shown in grid or without brackets
\end{tabular} \\
\hline \begin{tabular}{l}
(b) \\
(c)
\end{tabular} \& \[
\frac{1}{7}
\]
\[
\frac{8}{33} \text { isw }
\] \& W3

w1

w2 \& | W2 $\frac{15}{6}+\frac{8}{6}$ or $\frac{23}{6}$ or $3+\frac{3}{6}+\frac{2}{6}$ |
| :--- |
| or equivalent |
| M1 $\frac{a+b}{6}$ or equivalent |
| 6 with either a or b correct |
| ALT W3 3.83 |
| W2 3.83... |
| W1 2.5 and 1.33... |
| condone 0.142857 on answer line |
| M1 100r $=24.24 \ldots$ or |
| W1 $\frac{24}{99}$ or equivalent |

\hline 3 \& 200000 or equivalent (any) isw (accept 207500 or 207000) \& W3 \& | M1 8/4 or 8.28/4 or 8.3/4 or 2 or $8000 / 0.04$ or evidence digits $8 / 4$ |
| :--- |
| And |
| M1 100000 or equivalent (eg 10^{5}) |

\hline $$
4 \quad \text { (a) }
$$ \& \[

-1,0,1,2,3,4

\] \& W3 \& | W2 for 5 or 6 correct and 1 extra or 1 omission |
| :--- |
| W1 for 4 correct and 1 extra or $-3,0,3,6,9,12$ (all) |
| Or |
| M1 for $\frac{-5}{3}<n \leq 4$ |

\hline (b) \& | Multiplication of equation 2 by 2 Then Addition of eqn 1 and eqn 2 Or |
| :--- |
| Multiplication of equation 1 by 2 \& Multiplication of equation 2 by 3 Then subtraction of eqn 2 from eqn 1 $x=5 \text { and } y=-2$ | \& | M1 |
| :--- |
| M1 |
| A1 | \& | Condone 1 error Condone 1 error |
| :--- |
| M1 Condone 1 error |
| M1 Condone 1 error |
| Or M1 $3 x-2(8 \pm 2 x)=19$ and |
| M1 $3 x-16+4 x=19$ condone |
| 1 error (ft) |
| Answer only W1 |

\hline
\end{tabular}

(b) (c) (d)	$x \times x \times(x+3)$ 112 4 points plotted to within 1 graph square Smooth curve through 4 points 2.25 to 2.4	W2 W1 P1 C1 W1	M1 for use of $\mathrm{v}=\mathrm{lbh}$ $\text { eg } x \times x \times x+3 \text { or } x^{2} \times x+3$ Points within 1 square Not ruled Curve through their points within 1 square. No ft
$6 \quad(a)$ (b)	$(x=) \frac{y+3}{5} \text { or } \frac{y}{5}+\frac{3}{5} \text { or }(y+3) \div 5$ $(d=) \frac{8 c}{c-2} \text { or } \frac{-8 c}{2-c}$	W2 W4	M1 $5 x=y+3$ or $\frac{y}{5}=x-\frac{3}{5}$ or W1 $(x=) \frac{ \pm y \pm 3}{ \pm 5}$ or W1 $\mathrm{y}+3 \div 5$ or $\mathrm{y}+3 / 5$ or $3+\mathrm{y} / 5$ M1 cd - $3 c(=2 d+5 c)$ And M1 $c d-2 d=3 c+5 c$ ft their $1^{\text {st }}$ step (subtract 2d, add 3c allow 1 error if method clear) And M1 $d(c-2)=3 c+5 c$ ft their $2^{\text {nd }}$ step If M0 scored award W1 for $c d-3 c=2 d+5 c$ seen
7	$\angle B C A$ or $\angle B C A=63$ Triangle $A B C$ isosceles because tangents (from a point to a circle are equal.) $\angle B C A=<A D C$ alternate segment $\angle A D C=63$ $<A D C=63$	W1 W1 W1 1	or equivalent from no incorrect assumptions ft their <BCA
8	$\frac{1}{9} \text { or equivalent decimal (0.111) }$	W2	$\begin{aligned} & \text { M1 } 9 \text { or } \frac{1}{3} \text { or } \frac{1}{729} \text { or } \frac{1}{3^{2}} \text { condone }-9 \\ & \text { nww } \\ & \text { or } \mathbf{W 1} \frac{-1}{9} \end{aligned}$
9 (a) (b)	$\begin{array}{\|l\|} \hline 130 \\ 230 \\ \hline \end{array}$ Graph	W1 W1 W2	Ft 360 - their obtuse 130 (mark worst 2) One complete cycle $(0,1)$ to $(120,1)$ condone errors after 120. W1 Graph through $(0,1)$ and attempt to use horizontal stretch. Or graph with period 120, amplitude 3

\begin{tabular}{|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
\(4 x^{2}-2 x-30=0\) \\
or \(2 x^{2}-x-15=0\) \\
3 and \(-2.5(-5 / 2)\)
\end{tabular} \& W4

W3 \& | M1 2($4 x-5)+5(x+4)=(x+4)(4 x-5)$ |
| :--- |
| may be later |
| And |
| W1 $8 x-10+5 x+20$ |
| W1 $4 x^{2}+16 x-5 x-20$ |
| condone 1 error |
| And |
| W1 $4 x^{2}-2 x-30=0$ |
| ft their $2^{\text {nd }}$ step involving quadratic, dependent on M1 scored And then |
| M2 $(2 x+5)(x-3)$ or $(4 x+10)(x-3)$ $(2 x+5)(2 x-6)$ ft their $3^{\text {rd }}$ step |
| Or M1 $(2 x \pm 5)(x \pm 3)$ ft their 3rd step Alt M2 $\frac{1 \pm 11}{4}$ or $\frac{2 \pm 22}{8}$ |
| Or M1 $\frac{1 \pm \sqrt{ }(1+8 \times 15)}{4}$ or $\frac{2 \pm \sqrt{ }(4+16 \times 30)}{8}$ |
| condone 1 error |
| A1 3 and -2.5 |

\hline
\end{tabular}

Section B

$11 \text { (a) }$ (b)	$\begin{aligned} & 12.5 \% \\ & 202500 \times 1.125^{8} \\ & 519571 \end{aligned}$	W3 M1 W1	M2 1.125 or 112.5 or 0.125 M1 202500/180000 or 22500/180000 or Ft their (a) Condone either value $\times 1.125^{9}$ or $\times 1.125^{8}$ Or clear intent for $8 / 9$ years with first 3 evaluated. Condone 519500 to 519600
$12 \text { (a) }$	28.5	W4	W3 23.5 or 33.5 (SC3 for 29 if 15.5 etc seen and used, or 28 if 14.5 etc seen and used) M3 for $\frac{\sum \mathrm{ft}}{\sum \mathrm{f}}$ (their $\sum \mathrm{f}$ if shown) with 4 of 15/25/35/45/55 used for t Or W2 for 1710 seen or $\sum \mathrm{ft}$ with 4 midpoints used. Or M2 for $\sum_{\sum \mathrm{ft}}^{\mathrm{f}}$ with t in range $10 \leq t \leq 20$ etc (may be inconsistent) Or M1 for $\sum \mathrm{ft}$ with t in range $10 \leq \mathrm{t} \leq 20 \text { etc }$ (may be inconsistent) Or W1 for 4 of 15/25/35/45/55 seen or used.
(b) (i) (ii)	27 to 28 12 or 13	$\begin{array}{\|l\|} \hline \text { w1 } \\ \text { w2 } \end{array}$	W1 for 47 to 48 (or 12 to 13)
$13 \text { (a) }$	3.69 to 3.71	W3	M2 $\mathrm{h}=\frac{186}{\pi \times 4^{2}}$ (evidenced by 3.72) or M1 $\pi \times 4^{2 \times h}=186$ Or If M0, W1 50.2 to 50.3
(b)	3999	W2	M1 186×21.5 A1 or W1 4000

\begin{tabular}{|c|c|c|c|}
\hline 14 (a) \& \begin{tabular}{l}
13.8 or 14 (not 13.80) \\
14.6 to 14.7
\end{tabular} \& W4

W3 \& | W3 for 13.7 to 13.9 |
| :--- |
| $\mathbf{M} 2$ for $\sqrt{ }\left(6.25^{2}+12.3^{2}\right)$ |
| Or M1 $6.25^{2}+12.3^{2}$ |
| A1 13.7 to 13.9 |
| After A0 allow W1 for any answer to |
| 2 or 3 significant figures after |
| Pythagoras/Trig used. (10.6 or 11 from Pythag sub'n) |
| ALT |
| M1 <DAB $=\tan ^{-1}(12.3 / 6.25)$ |
| or 63.06 $\mathrm{Or} \angle \mathrm{ADB}=26.94$ |
| Then M1 AD $=12.3 /$ sin 63 |
| or $12.3 / \cos 26.9$ |
| M2 $12.3 \div \sin 57$ |
| Or M1 for $\sin 57=12.3 \div C D$ or $C D \sin 57=12.3$ |
| ALT M1 BC = 12.3/tan57 |
| and M1 $C D=\sqrt{ }\left(12.3^{2}+\right.$ their $\left.B C^{2}\right)$ |
| W2 grad 15.7 to 15.8 or rad 28.2 to 28.3 |

\hline | $15 \text { (a) }$ |
| :--- |
| (b) | \& Circle radius 4 centre $(0,0)$

\[
$$
\begin{aligned}
& x+y=2 \text { drawn } \\
& x=3.6 \text { to } 3.7 \quad y=-1.6 \text { to }-1.7 \\
& x=-1.6 \text { to }-1.7 \quad y=3.6 \text { to } 3.7
\end{aligned}
$$

\] \& | W2 |
| :--- |
| w1 |
| w1 |
| w1 | \& | W1 for freehand circle in 3 sectors to include intersection with axes or circle drawn with compasses using centre $(0,0)$ and any radius. |
| :--- |
| Ruled, cutting axes |
| or Ft from their attempt at circle and correct line |

\hline | $16 \text { (a) }$ |
| :--- |
| (b) | \& \[

$$
\begin{aligned}
& 210500(499) \text { to } 216500 \text { and } 209 \\
& 500 \text { to } 217500(499) \\
& 6000 \text { or } 6001 \\
& 8000 \text { or } 7999 \\
& 66
\end{aligned}
$$

\] \& | W1 |
| :--- |
| W1 |
| A1 |
| w2 | \& M1 two values from the 4 M1 $\frac{29}{217}$ or $.13 \ldots$ or equivalent A1 or W1 for 67 or 68

\hline | $17 \text { (a) }$ |
| :--- |
| (b) | \& | $(x-7)^{2}+11$ |
| :--- |
| 11 | \& | W3 |
| :--- |
| w1 | \& | M1 $(x-7)^{2}$ |
| :--- |
| And M1 60 - their (-7) ${ }^{2}$ |
| ft their (a) |

\hline
\end{tabular}

18 (a) (b)	0.064 or equivalent isw 0.352	W2 W3	M1 $0.4 \times 0.4 \times 0.4$ $\begin{aligned} & \text { M2 } 0.288 \text { or } 0.4^{2} \times 0.6 \times 3 \\ & \quad \text { or } 0.4^{2} \times 0.6 \times 2+0.4^{3} \text { or } 0.256 \end{aligned}$ Or M1 $0.4^{2} \times 0.6$ Award 2 in (b) for consistent use of 0.6 instead of 0.4 and vv . (Also 0.3 instead of 0.4 if clear) If M0, W1 for indication of 4 winning ways. SC2 0.648
$19 \text { (a) }$ (b)	$\begin{aligned} & \text { e.g. } \sin B O C=1.2 / 2.5 \\ & B O C=28.7 \text { or } 28.6 \\ & B O A=180-2 \times 28.7 \\ & 46.4 \text { to } 46.8 \end{aligned}$	M1 M1 A1 W4	Can be implied by 28.7 Verification method scores 1 or 2. $\text { M2 } A B=\frac{123}{360} \times \pi \times 5$ Or M1 AB= $\frac{123}{360} \pi \times 2.5$ Or M1 $\pi \times 5$ or 15.7 And M1 their $\mathrm{AB} \times 6+1.2 \times 6(\times 2)$ (Their AB must use π)

Mark Scheme 2345
June 2006

MARKING GUIDE This guide gives some of the many examples of evidence that candidates may produce. It indicates possible lines of development that may allow the award of each mark, depending on the supporting context.

Matchstick Patterns [Ao1]

		Strategy	Communication	Reasoning
1		- Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Counts and records the other matchstick patterns correctly (14, 26)	- Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Counts and records the other matchstick patterns correctly (14, 26)	- Candidates show that they understand a general statement by finding particular examples that match it. Correctly constructs a further, correct, matchstick pattern.
2		- Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and applying mathematics to practical contexts. Finds one more total from a correct matchstick pattern	- Candidates present information and results in a clear way, explaining the reasons for their presentation. Records drawings and results in an orderly manner.	- Candidates search for a pattern by trying out ideas of their own. Records three related results for one series of matchstick patterns.
3		- In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible. Systematically finds three or more related matchstick totals, linking these to the width of the pattern.	- Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams. Records drawings and results utilising tables and a minimum of text to annotate the work.	- Candidates make general statements of their own, based on evidence they have produced, and give an explanation of their reasoning. Makes a general statement about the results obtained. E.g. the number of matchstick in a "two high" series is $4 w+2, O R$ "The number of matches increases by 4 each time".
4		- Candidates carry through substantial tasks and solve quite complex problems by breaking them down into smaller, more manageable tasks. Provides an algebraic generalisation for one system of matchstick patterns.	- Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams. Records drawings and results utilising tables and a clear commentary that links and annotates the work.	- Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases. Tests the generalisation made in R3 on new data, showing the predicted result and the derived result from the associated diagram.

5		- Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions. Generates sufficient data to be able to generalise another pattern. Further patterns may be generalised but, if the same counting and "pattern spotting" techniques are employed the assessment stops here.	- Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made. C4 AND produces an algebraic formula into which values are substituted and the formula is evaluated.	- Candidates justify their generalisations or solutions, showing some insight into the mathematical structure of the situation being investigated. They appreciate the difference between mathematical explanation and experimental evidence. Explains WHY a formula works, relating the solution to the shape of the patterns. E.g. Uses the geometry of the pattern ... "Each vertical contains two matches and will always be one more vertical than the width because... " to reason out the formula.
6		- Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques. Applies an algebraic method to analyse the relationships within the patterns and, hence, generate further formulae. E.g., sets the height at h matches and the width as w, deriving a formula for the number of matches as $2 w+h(w+1)$. Solves the cube lattice case.	- Candidates convey mathematical meaning through consistent use of symbols. Uses algebraic manipulation, with clearly defined variables and logical reasoning, in pursuit of the formula(e) sought in S6.	- Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result. Considers a series of formulae with varying heights (for example) to determine a formula for patterns of any height and width, oe.
It is regarded as unlikely that candidates at Foundation/Intermediate tier will generate evidence to allow the award of 7 or 8 marks. However, it is the responsibility of the examiner to judge whether the work submitted justifies such an award.				
7		- Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry. The same techniques as S6 employed to research the number of matchsticks in 3D structures, such as lattices in the form of cuboids, or to explore triangular or tessellating arrays and make significant progress.	- Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument. Construction of formulae to give the total number of matchsticks in cuboid lattices using variables for length (I) width (w) and height (h), showing clear reasoning.	- Candidates' reports include mathematical justifications, explaining their solutions to problems involving a number of features or variables. Construction of formulae to give the total number of matchsticks in cuboid lattices using variables for length (I) width (w) and height (h), showing clear reasoning and not mere statement of cases.

8		- Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques. The candidate uses algebraic means only to explore their chosen S7 development.	- Candidates use mathematical language and symbols efficiently in presenting a concise reasoned argument. Clear concise algebraic reasoning for at least one development into 3D completely solved, or a tessellating lattice.	- Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid. Algebraic proof for the formula presented for the 58 case.

MARKING GUIDE This guide gives some of the many examples of evidence that candidates may produce. It indicates possible lines of development that may allow the award of each mark, depending on the supporting context.

Spiral Bound [Ao1]

	K FOR ACH RAND	Strategy	Communication	Reasoning
1		- Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Finds the length of any spiral, most likely to $(-3,3)$ [30].	- Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Records the working for the length of one spiral.	- Candidates show that they understand a general statement by finding particular examples that match it. Finds the correct length of the spiral to any point.
2		- Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and applying mathematics to practical contexts. Finds the correct length of a different portion of the spiral.	- Candidates present information and results in a clear way, explaining the reasons for their presentation. Sets out the work of S2 neatly with a clear drawing, lengths indicated and totals shown.	- Candidates search for a pattern by trying out ideas of their own. Finds three related results for lengths of spirals.
3		- In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible. Finds the length of any three related spirals. Eg to consecutive turning points on the spiral.	- Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams. Records drawings and results utilising tables and minimum text to annotate the work.	- Candidates make general statements of their own, based on evidence they have produced, and give an explanation of their reasoning. Makes a general statement that is correct for the results obtained. Eg The spiral is made up of pairs of consecutive whole numbers, the sum of horizontals are triangular numbers, $\frac{n(n+1)}{2}$ etc
4		- Candidates carry through substantial tasks and solve quite complex problems by breaking them down into smaller, more manageable tasks. Makes a correct general statement about the length of any part of the spiral. Eg the sum of n horizontal components are $\frac{n(n+1)}{2}$	- Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams. Records diagrams of spirals, tables of results and calculations in an orderly way. These are linked with a commentary that clearly explains the work that has been done.	- Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases. Tests the generalisation made in R3 on new data, showing the predicted result and the derived result from the associated diagram.

5		- Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions. Extends spiral systematically and records spiral lengths to related corners, breaking down lengths to component parts. Eg to points on odd numbered corners, $y=-x$, etc	- Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made. Following the award of C4, an algebraic formula is stated and a clear substitution into this is shown.	- Candidates justify their generalisations or solutions, showing some insight into the mathematical structure of the situation being investigated. They appreciate the difference between mathematical explanation and experimental evidence. Explains WHY a formula works, using the geometry of the pattern. Eg. Shows that the series of lengths may be rearranged to form two series of triangular numbers, because of the geometry of the spiral.
6		- Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques. Uses algebraic method to determine a formula for a further series of lengths to related corners. Eg as a pair of added triangular numbers or by applying difference method.	- Candidates convey mathematical meaning through consistent use of symbols. The algebraic method employed in the extension (S6 or better) utilises variables that are clearly defined and some manipulation is employed. This may be part of a "leading diagonal" method to determine a formula.	- Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result. Eg. Examines work on original spiral and extends this to a spiral in which the spaces are twice as large.
7		- Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry. Applies well-explained algebraic methods to explore all spiral lengths within one quadrant. May achieve such formula(e) in terms of coordinates.	- Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument. Algebraic methods used on [at least] the S6 development to convey clear meaning and make progress. The work is annotated and demonstrates clear thinking about the task.	- Candidates' reports include mathematical justifications, explaining their solutions to problems involving a number of features or variables. Provides thorough reasoning for why some results are valid for the S7 development, referring to the geometry of the spiral.
8		- Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques. Fully generalises given spiral by extending work to all four quadrants OR by constructing rectangular (or triangular) spirals and applies algebraic methods to derive further formulae.	- Candidates use mathematical language and symbols efficiently in presenting a concise reasoned argument. Algebraic methods used on [at least] the 57 development. The work is annotated, succinct and conveys clear meaning and understanding of the task.	- Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid. Clear algebraic reasoning for the complete S7 development and attempts to extend this reasoning to work in other quadrants or to formulae obtained within the new spiral(s) considered.

SPECIFY and PLAN [S]
This guide contains examples of some evidence candidates might produce in response to the task
Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.
2. Candidates must provide evidence of their plan being implemented.
3. If secondary data is provided it must be in sufficient quantity to allow sampling to take place.

			Minimum requirements		Examples
1		Candidates choose a simple well-defined problem. Their aims have some clarity. The appropriate data to collect are reasonably obvious. An overall plan is discernible and some attention is given to whether the plan will meet the aims. The structure of the report as a whole is loosely related to the aims.	Candidates show they understand a simple task. There is an implicit plan.	*	Attempts the question. Eg Records some data for African/European countries.
2					Identifies some relevant data and makes an extended attempt to answer the question. Eg Records some data for some African/European countries and draws graph(s).
3		Candidates choose a problem involving routine use of simple statistical techniques and set out reasonably clear aims. Consideration is given to the collection of data. Candidates describe an overall plan largely designed to meet the aims andstructure the project report so that results relating to some of the aims are brought out. Where appropriate, they use a sample of adequate size.	Candidates set out reasonably clear aims (or the purpose). Their planning is largely designed to meet the aims/purpose. - They use data appropriate to the problem.	*	Writes one relevant aim and produces a minimal plan to meet the aim. Eg Intent to use data to find mean incomes for chosen countries.
4					Writes one or more aims and produces a clear plan that will allow one aim to be met. Eg. Intends selecting data from some African/European countries, comparing GDPs and drawing comparative graphs.
5		Candidates consider a more complex problem. They choose appropriate data to collect and state their aims in statistical terms with the selection of an appropriate plan. Their plan is designed to meet the aims and is welldescribed. Candidates consider the practical problems of carrying out the survey or experiment. Where appropriate, they give reasons for choosing a particular sampling method. The project report is well structured so that the project can be seen as a whole.	Candidates consider a substantial problem stating their initial aims clearly at the beginning of the report. - Their plan is explicitly stated to meet those aims. - They choose an appropriate sample.	*	Writes two or more aims in general terms. A written plan that allows at least two aims to be tested. Relevant data is used. Eg. Intends to compare GDP with life expectancy, wealth with birth rate ... using appropriate graphs and calculations.
6					Writes one or more aim in statistical terms and constructs an efficient plan to test the aims. Data is carefully selected. Eg. As S5 but aims in the form"... showing negative correlation between GDP and death rate" with a clear structure drawing all components of the task together.
7		Candidates work on a problem requiring creative thinking and careful specification. They state their aims clearly in statistical terms and select and develop an appropriate plan to meet these aims giving reasons for their choice. They foresee and plan for practical problems in carrying out the survey or experiment. Where appropriate, they consider the nature and size of sample to be used and take steps to avoid bias. Where appropriate, they use techniques such as control groups, or pre-tests or questionnaires or data sheets, and refine these to enhance the project. The project report is well structured and the conclusions are related to the initial aims.	- Candidates work on a demanding problem. - They state their aims clearly in statistical terms and give valid reasons for their choice of planning. They explain and act upon limitations of their chosen sample (eg bias), where appropriate.		An overall structure incorporates individual tasks. Each task stated in statistical terms and carefully specified. The tasks are brought together within the overall hypothesis. Eg. Intends to show that life in Europe is better than in Africa. Explains how the data used will define "life" and "better".
8					S7 is expanded to involve justification for choice of data, possibly whole populations. Specific aims and components stated in correct statistical language. Clear justification, in statistical terms, for how each aim will be met. Methods justified and relevant to the tasks.

COLLECT, PROCESS and REPRESENT [C]

Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F

2. The mark awarded to a particular technique should reflect the quality of use and understanding as well as its position within the Level Indicators.
3. The inclusion of statistical techniques outside the National Curriculum does not necessarily justify the award of higher marks.
4. 'Diagrams' include tables, charts and graphs. At 5-6 marks the diagrams used should be appropriate. At 7-8 marks the range of diagrams should be appropriate to the problem chosen and the statistical strategy chosen.
5. 'Redundancy' implies unnecessary and/or inappropriate diagrams or calculations. This includes techniques that are not used for any conclusion.

Candidates collect data with limited relevance to the problem and plan.
The data are collected or recorded with little thought given to processing. Candidates use calculations of the simplest kind. The results are
frequently correct. Candidates present information and results in a clear and organised way. The data presentation is sometimes related to their overall plan.
Candidates collect data with some relevance to the problem and plan The data are collected or recorded with some consideration given to calculations involving techniques of at least the level detailed in the handling data paragraph of the grade description for grade F. The results are generally correct. Candidates show understanding of situations by describing them using statistical concepts, words and diagrams. They synthesise information presented in a variety of forms. Their writing explains and informs their use of diagrams, which are
usually related to their overall plan. They present their diagrams usually related to their overall plan. They present their diagrams correctly, with suitable scales and titles.
Candidates collect largely relevant and mainly reliable data. The data
Candidates use a range of more demanding, largely relevant calculations that include techniques of at least the level detailed in the handling data paragraph of the grade description for grade C . The results are generally correct and no obviously relevant calculation is omitted. There is little redundancy in calculation or presentation. Candidates convey statistical meaning through precise and consistent use of statistical concepts that is sustained throughout the work. They use appropriate diagrams for representing data and give a reason for
their choice of presentation, explaining features they have selected. Candidates collect reliable data relevant to the problem under consideration. They deal with practical problems such as non-response, missing data or ensuring secondary data are appropriate. Candidates the level detailed in the handling data paragraph of the grade description for grade A. These calculations are correct and no obviously relevant calculation is omitted. Numerical results are rounded appropriately. There is no redundancy in calculation or presentation.

Candidates use language and statistical concepts effectively in presenting a convincing reasoned argument. They use an appropriate
8

Minimum requirements
Examples
relevance to the problem
They utilise statistical techniques/diagrams (see note 1 above) to process and represent the data. - Their results are generally correct..

* Evidence haphazardly recorded from S1.
* One technique, (grade G) used. Eg bar chart, tally chart..
- Some organisation shown in the work
* Two techniques (one grade F) used. Eg Tabulated results, comparative bar chart to show incomes, mean incomes.
* Results contain few obvious errors.
* The results of C3 are linked with a commentary
* Grade E and D techniques used appropriately.
- Candidates collect/sample largely relevant data.
- They utilise appropriate calculations/techniques/ diagrams (see note 1 above) within the problem.
- Their results are generally correct..]
- Candidates collect/sample largely relevant data.
- They utilise appropriate and necessary calculations/techniques/ diagrams (see note 1 above) consistently within the problem.
- Their results are correct
[Some minor errors may be condoned provided they do not detract from the quality of the argument.]
* Two techniques (one grade C) used. Makes own hypothesis and plans to test this by Eg Scatter graph to link GDP to life expectancy (D), [type of correlation discussed (C)]
* At least 25 data items chosen.
* Results contain few obvious errors
* As C5 but with grade B techniques and little redundancy in their use.
- Statistical language used accurately
* At least S5 awarded.
* Statistical language used accurately and consistently.
* Three techniques (two at least grade B) used. Eg Compares life expectancies of two + countries with c curve, draws box and whisker plots and comments, scatter graphs interpreted.
* Presents multifaceted argument using data, grade A and B techniques and statistical language efficiently and effectively.

INTERPRET and DISCUSS [I]
Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F
2. The number of marks awarded at this strand is unlikely to exceed the mark at Strand 1 by more than 1.
3. The use of ICT is to be encouraged to allow candidates more time to analyse and interpret the data. (There is no requirement for the diagrams to be drawn by hand)

		Minimum requirements	Examples
1	Candidates comment on patterns in the data. They summarise the results they have obtained but make little attempt to relate the results to the initial problem.	Candidates comment on their data.	* Makes a comment based on the data. Eg. "I have found some income figures for African/European countries."
2			* Any summary or comparative comment, based on their results. Eg "People in Luxembourg are the wealthiest."
3	Candidates comment on patterns in the data and any exceptions. They summarise and give a reasonably correct interpretation of their graphs and calculations. They attempt to relate the summarised data to the initial problem, though some conclusions may be incorrect or irrelevant. They make some attempt to evaluate their strategy.	- Candidates summarise some of their data. - They make a statement based on their diagrams or calculations, which is relevant to the problem.	* Evidence of processing data. * Relevant comment made based on the processed data. Eg "Most of the European countries have a higher GDP than the African countries."
4			* 13 AND S3 * One comparison made within the task. * Summary of findings, related back to the aim.
5	Candidates comment on patterns in the data and suggest reasons for exceptions. They summarise and correctly interpret their graphs and calculations, relate the summarised data to the initial problem and draw appropriate inferences. Candidates use summary statistics to make relevant comparisons and show an informal appreciation that results may not be statistically significant. Where relevant, they allow for the nature of the sampling method in making inferences about the population. They evaluate the effectiveness of the overall strategy and make a simple assessment of limitations.	Candidates summarise and correctly interpret their diagrams or calculations. hey relate these interpretations back to the original problem. - They evaluate their strategy.	* Makes two comparisons of results within the context of their task Eg GDP and life expectancy for Europe and Africa AND GDPs of both continents. * Some evaluation of strategy Eg "I should have taken data from more countries", OR "The scale on my graphs was too small to see the patterns clearly."
6			* $\quad 15$ and ... * Evaluation is more sophisticated and includes comments on the limitations of their data and the implications of their findings. Eg Assesses how "current" the data is and discusses whether the results will be true for ALL inhabitants of the countries. * Reasons are beginning to be given for the evaluative statements. * Techniques are interpreted clearly.
7	Candidates comment on patterns and give plausible reasons for exceptions. They correctly summarise and interpret graphs and calculations. They make correct and detailed inferences from the data concerning the original problem using the vocabulary of probability. Candidates appreciate the significance of results they obtain. Where relevant, they allow for the nature and size of the sample and any possible bias in making inferences about the population. They evaluate the effectiveness of the overall strategy and recognise limitations of the work done, making suggestions for improvement. They comment constructively on the practical consequences of the work.	Candidates summarise and correctly interpret their results. They show an appreciation of the significance of these results. They recognise possible limitations in their strategy and suggest improvements (where appropriate)	* S6 awarded (no lower than S5) * A correct and detailed evaluation, in statistical terms, of their strategy and use of techniques is made. * Valid improvements are suggested (see generic criteria) and some reasons for suggestions will be given. * Most techniques are interpreted correctly using accurate statistical language and some are related to the task.
8			* 17 and... * Fully justifies improvements that may have been suggested and/or offers clear commentary showing an understanding of how the conclusions could be used (for example) by Aid agencies. * All techniques are interpreted correctly using accurate statistical language and all findings related to the task.

General Certificate of Secondary Education

(Mathematics C -Graduated Assessment) (1966)

June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	a^{*}	a	b	c	d	e	f	g	p	u
2331	Raw	50								27	13	0
	UMS	35								24	12	0
2332	Raw	50							36	20	12	0
	UMS	42							36	24	(18)	0
2333	Raw	50							30	15		0
	UMS	47							36	24		0
2334	Raw	50						37	21	13		0
	UMS	54						48	36	(30)		0
2335	Raw	50						27	14			0
	UMS	59						48	36			0
2336	Raw	50					27	13				0
	UMS	71					60	48				0
2337	Raw	50				30	15					0
	UMS	83				72	60					0
2338	Raw	50			26	13						0
	UMS	95			84	72						0
2339	Raw	50		28	13							0
	UMS	107		96	84							0
2340	Raw	50	31	14								0
	UMS	120	108	96								0

Notes
The above table shows the raw marks and the corresponding key uniform scores for each unit (module test) available in the June 2006 session.

Raw marks falling between two raw marks in the appropriate row above are converted, by a linear map, to a uniform score between the uniform scores that correspond to the two raw marks.

The grade shown in the above table as ' p ' indicates that the candidate has achieved at least the minimum raw mark necessary to access the uniform score scale for that unit but gained insufficient uniform marks to merit a grade ' g '. This avoids having to award such candidates a 'u' grade. Grade 'p' can only be awarded to candidates on 2331 (M1) and 2332 (M2). It is not a valid grade within GCSE Mathematics and will not be awarded to candidates when they aggregate for the full GCSE (1966).

General Certificate of Secondary Education

(Mathematics C - Graduated Assessment) (1966)
June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	a^{*}	a	b	c	d	e	f	g	u
2341	Raw	100					67	55	43	31	0
	UMS	239					200	160	120	80	0
2342	Raw	100			66	43	33	23			0
	UMS	319			280	240	200	160			0
2343	Raw	100	74	56	38	21					0
	UMS	400	360	320	280	240					0
2344	Raw	48	43	37	31	26	22	18	14	10	0
	UMS	160	144	128	112	96	80	64	48	32	0
2345	Raw	48	43	37	31	26	22	18	14	10	0
	UMS	160	144	128	112	96	80	64	48	32	0

Specification Aggregation Results

Foundation Tier

	A*	A	B	C	D	E	F	G
Overall Threshold Marks					388	308	228	148
Percentage in Grade					9.3	31.1	34.4	17.6
Cumulative Percentage in Grade					9.3	40.4	74.8	92.4

The total entry for the examination was 23920
Intermediate Tier

	A*	A	B	C	D	E	F	G
Overall Threshold Marks			548	468	388	308		
Percentage in Grade			15.6	41.3	26.2	11.4		
Cumulative Percentage in Grade			15.6	56.9	83.1	94.5		

The total entry for the examination was 32346
Higher Tier

	A*	A	B	C	D	E	F	G
Overall Threshold Marks	708	628	548	468				
Percentage in Grade	15.6	35.5	37.6	10.4				
Cumulative Percentage in Grade	15.6	51.1	88.7	99.1				

The total entry for the examination was 14999

Overall

	A*	A	B	C	D	E	F	G
Percentage in Grade	3.3	7.5	15.0	20.9	15.0	15.6	11.5	5.9
Cumulative Percentage in Grade	3.3	10.8	25.8	46.7	61.7	77.3	88.8	94.7

The total entry for the examination was 71265

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road
Cambridge
CB1 2EU

OCR Information Bureau

(General Qualifications)

Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

