OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education MATHEMATICS C (Graduated Assessment)

MODULE M10 - SECTION B
Wednesday 28 JUNE 2006
Morning
30 minutes
Candidates answer on the question paper.
Additional materials:
Geometrical instruments
Tracing paper (optional)
Scientific or graphical calculator
Candidate Name \square

Centre Number

Candidate Number

TIME 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this Section is 25 .
- Section B starts with question 7 .
- Use the π button on your calculator or take π to be 3.142 unless the question says otherwise.

FOR EXAMINER'S USE
Section B

Formulae Sheet

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$

Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

7 The population of bacteria present in a colony is increasing.
After t hours the population is given by

$$
p=2000 \times 1 \cdot 3^{t} .
$$

(a) How many bacteria were present when $t=0$?
\qquad
(a)
(b) How many bacteria were present after 12 hours?
(b)

8 ABC represents a children's slide.

The angle between the steps, AB , and the slide, BC , is obtuse.
Show, by calculation, that this angle is 95°, to the nearest degree.

9 A driver accelerated a car from a standing start.
The times, t seconds, taken to travel different distances, d metres, were recorded.
It is known that d and t are connected by the equation $d=k t^{2}$. The values of d against t^{2} are plotted on this grid.

Find an approximate value for k.

10 The diagram shows a circle with centre O and radius 6 cm .

Not to scale

Find the area of the shaded segment.
Give the units of your answer.

11 This table shows the audiences for a 3-week run of a play at a theatre.

	Tuesday	Wednesday	Thursday	Friday	Saturday
Week 1	270	318	315	400	380
Week 2	294	328	345	423	371
Week 3	257	296	324	412	415

These data have been plotted on the grid along with the 5-day moving averages.

(a) One of the moving averages has been marked A .

Show how this point has been calculated.
(b) Comment on the daily variation.
\qquad
\qquad
\qquad
(c) Describe what the moving averages show about the audiences during the 3 -week run.
\qquad
\qquad
\qquad

12 Solve, algebraically, these simultaneous equations. Give your answers correct to one decimal place.

$$
x^{2}+y^{2}=93
$$

$$
y=x+2
$$

$\mathrm{x}=$ \qquad $y=$ \qquad
$x=$ \qquad $y=$ \qquad

