## OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

## MATHEMATICS C

 (Graduated Assessment)

1966/2338B

Candidate Name $\square$

Centre Number

Candidate Number

|  |  |  |  |
| :--- | :--- | :--- | :--- |

## TIME 30 minutes

## INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.


## INFORMATION FOR CANDIDATES

- You are expected to use a calculator in Section B of this paper.
- The number of marks is given in brackets [ ] at the end of each question or part question.
- The total number of marks for this Section is 25 .
- Section B starts with question 8 .
- Use the $\pi$ button on your calculator or take $\pi$ to be 3.142 unless the question says otherwise.

FOR EXAMINER'S USE
Section B

## Formulae Sheet

## Area of trapezium $=\frac{1}{2}(a+b) h$



Volume of prism $=($ area of cross-section $) \times$ length


PLEASE DO NOT WRITE ON THIS PAGE

8 Calculate the total compound interest earned on $£ 800$, invested for 3 years at $4 \%$ per year.
Give the interest to the nearest penny.
$£$


9 (a) The mass of a gold ring is $4.825 \times 10^{-3} \mathrm{~kg}$.
The density of gold is $1.93 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$.
Use volume $=\frac{\text { mass }}{\text { density }}$ to calculate the volume of gold in the ring.


Give your answer in standard form.
(a) $\qquad$ $m^{3}[2]$
(b) The volume of another ring is 320 cubic millimetres.

Change $320 \mathrm{~mm}^{3}$ into cubic centimetres.
(b) ...........................cm ${ }^{3}$ [2]



In this question all measurements are in centimetres.
The cross section of a triangular prism is a triangle with base $x$ and perpendicular height $(x-2)$. The prism has length $2 x$.
(a) Show algebraically that the volume, $V$, of the prism, in terms of $x$, is given by

$$
V=x^{3}-2 x^{2} .
$$

$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) The volume of the prism is $20 \mathrm{~cm}^{3}$ which gives this equation

$$
x^{3}-2 x^{2}=20 .
$$

(i) Show that one solution of this equation lies between 3 and 4 .
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Use trial and improvement to find this solution correct to 1 decimal place. Show all your trials and their outcomes.
(ii)

11 (a) Solve, algebraically, these simultaneous equations.

$$
\begin{aligned}
& 3 x+y=3 \\
& 2 x-y=7
\end{aligned}
$$

(a) $x=$ $\qquad$

$$
\begin{equation*}
y=. \tag{2}
\end{equation*}
$$

(b) Expand and simplify.

$$
(x-7)(x+5)
$$

(b)
(c) (i) Factorise.

$$
x^{2}-25
$$

(ii) Hence solve this equation.

$$
x^{2}-25=0
$$

12


Not to scale

A ramp with triangular cross section makes an angle of $9^{\circ}$ to the horizontal. The ramp is 200 cm long.
Calculate the height, $h$, of the ramp.


13


These cumulative frequency graphs show the distributions of marks scored in a mathematics examination in two schools, A and B.

Use readings from the graphs to explain your answer to the following question.
In which school was the performance of the pupils better on average?
$\qquad$ because $\qquad$
$\qquad$

## BLANK PAGE

## PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

