OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

MATHEMATICS C

 (Graduated Assessment)

Morning
30 minutes

Candidate Name

Candidates answer on the question paper. Additional materials:

Geometrical instruments
Tracing paper (optional)
MODULE M6 - SECTION A
Wednesday 28 JUNE 2006

Traper

Formula Sheet

Area of trapezium $=\frac{1}{2}(a+b) h$

1 During one month, 60 babies were born in a Blackburn hospital. Their weights are summarised in the table below.

Weight $(w \mathrm{~kg})$	$1<w \leqslant 2$	$2<w \leqslant 3$	$3<w \leqslant 4$	$4<w \leqslant 5$	$5<w \leqslant 6$
Frequency	3	12	22	20	3

(a) Draw a frequency diagram to represent this information.

Weight ($w \mathrm{~kg}$)
(b) One of these babies was picked at random.

What is the probability that it weighed more than 4 kg ?
(b)

2 This graph represents the journey of a train from London to York.

(a) Describe what happens at 0930 .
\qquad
(b) A second train travels non-stop from York to London.

It leaves York at 1100.
It arrives in London at 1315.
Add a line to the graph to represent this journey.

3 Paul bought 1.5 kg of apples, 0.5 kg of carrots and 5 kg of potatoes.
The apples cost $£ 1.08$ per kilogram.
The carrots cost $£ 1.32$ per kilogram.
He spent a total of $£ 4 \cdot 43$.
Calculate the cost of 1 kg of potatoes.
$£$ \qquad
\qquad

4 (a) Find the value of $a^{2}+6 a$ when $a=-2$.
(a)
(b) Factorise.

$$
a^{2}+6 a
$$

(b)

Shape B is an enlargement of Shape A.
Complete these statements for this enlargement.
(a) The scale factor is
(b) The centre of enlargement is (. ..)
(a) Work out.
(i) $\frac{3}{5} \times \frac{1}{4}$
(a)(i) \qquad
(ii) $\frac{1}{5} \div \frac{1}{4}$
(ii)
(b) Which of the following fractions is closest to 85% ?
$\frac{38}{50}$
$\frac{9}{10}$
$\frac{21}{25}$
$\frac{4}{5}$

Show clearly how you decide.
(b)

Work out anglex.

Give reasons for your answer.

$\mathrm{x}=$ \qquad - because
\qquad
\qquad
\qquad
\qquad

