

1968/2313A

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS B (MEI)

PAPER 1 SECTION A HIGHER TIER

Specimen Paper 2003

Additional materials:

Geometrical instruments Tracing paper (optional).

Candidates answer on the question paper.

Calculators are **not** allowed.

TIME 45 minutes.

Candidate Name

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem, even if you get the answer wrong.

YOU ARE NOT ALLOWEDTO USE A CALCULATOR IN THIS PAPER.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use Only					
Section A					
Section B					
TOTAL					

FORMULAE SHEET: HIGHER TIER

Volume of prism = (area of cross section) × length

Volume of sphere $= \frac{4}{3}\pi r^3$ **Surface area of sphere** $= 4\pi r^2$

In any triangle ABC

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Area of triangle = $\frac{1}{2}ab \sin C$

The Quadratic Equation

The solution of
$$ax^2 + bx + c = 0$$
 where $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

1 (a) Solve the following.

$$5(2x+7)=11+4x$$

atics I	B (MEI)	3		© OCF
		Answer	(c)	[1]
(c)	7 ⁰			
		Answer	(b)	[1]
(b)	5 ⁻²			
		Answer	(a)	[1]
(a)	$64^{\frac{1}{3}}$			
Calc	ulate the following.			
		Answer(ii)		[2]
	(ii) $(5c^3d)^2$			
		Answer	(b) (i)	[1]
	(i) $a^2 \times a^5$			
(b)	Simplify the following.			
		Answer	(a) $x =$	[3]

2

3 Solve $14 + n > 5n - 9$ v	where <i>n</i> is an integer.
-----------------------------	-------------------------------

		Answer	[2]
4	(a)	Jim says 'Prime numbers are always odd.' Explain what a prime number is and prove that Jim is wrong.	
		Answer (a)	_
			[2]
	(b)	A number is <i>perfect</i> if the sum of all its factors is equal to twice the number. Show that 28 is <i>perfect</i> .	
		Answer (b)	_
			[2]
5	A lir	the <i>l</i> has equation $y = 6 + 2x$.	
	(a)	Make x the subject of the equation.	
		Answer (a)	[2]
	(b)	State the gradient of line l .	
		Answer (b)	[1]
	(c)	Find the equation of the line parallel to l which passes through (3, 10).	
		Answer (c)	[2]

6	(a)	In this Identi Write	s question fy the are down the	a x, y ea amo e lette	y, z are long the form of your of the form of your	engths llowin choice	s. g fori	nulae.				
		A 1	τxyz^2	В	$\frac{3xy}{z}$	C	$\frac{xyz}{x+y}$	2 Fz	D	$\pi z \sqrt{x^2 + y^2}$		
						Ans	wer	<i>(a)</i>				[1]
	(b)	Cone Cone Calcu	X has a v Y is an ei late the v	olumo nlarge olumo	e of 100cr ement of C e of cone	n ³ . Cone X Y.	C by s	cale fact	or 2.			LJ
						Ansi	wer	(<i>b</i>)			cm ³	[2]
7	Solve x^2 +	by factor $4x - 2$	torising. $1 = 0$									

Answer x = [3]

8 Jo notes the recorded mileage shown on 120 used cars for sale one weekend. The table shows the data.

Recorded mileage	$0 < x \le 20$	$20 < x \le 40$	$40 \!\!<\!\! x \!\leq\! 50$	$50 < x \le 60$	$60 < x \le 100$
(x thousand miles)					
Frequency	9	20	24	31	36

(a) Complete the histogram to show these data.

(b) Which is the modal class?

Answer (b) [1]

[3]

6

9 Look at these four graphs.

Write down the letter of the graph that represents the following.

(a) $y = x^3$

		Answer	<i>(a)</i>	 [1]
(b)	$y = x^2$			
		Answer	<i>(b)</i>	 [1]
(c)	$y = \frac{1}{x}$			
		Answer	(<i>c</i>)	[1]

7

 A factory uses two machines to fill cartons with washing powder. The cartons are labelled "Minimum contents 1.5kg." The mean mass delivered per carton by each machine is 1.515kg. The median for machine A is 1.510kg, for machine B 1.520kg. Checks show that some cartons contain less than 1.5kg. Which machine is likely to have filled them? Explain your reasoning.

Answer

[3]

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS B (MEI) PAPER 1 SECTION A HIGHER TIER

MARK SCHEME

Specimen Paper 2003

1968/2313A

1	(a)		10x + 35 = 11 + 4x	M1	
			6x = -24	M1	
			x = -4	AI	
	(b)	(i)	a'	B1	
		(ii)	$25c^6d^2$	B2	B1 for $25c^6$ or $25 d^2$
2	(a)		4	B1	
	(b)		1/25, Accept 0.04	B1	
	(c)		1	B1	
3			23 > 4n	B1	
			0, 1, 2, 3, 4, 5	B1	
4	(a)		Numbers with (exactly) 2 factors	M1	Accept 'can only be divided by 1
			Counterexample: 2 is prime and is not odd	A1	
	(b)		1 + 2 + 4 + 7 + 14 + 28 (=56) = 2 x 28	B2	B1 for 1 + 2 + 4 + 7 + 14 + 28
5	(a)		$y - 6 = 2x; x = \frac{1}{2}y - 3$ oe	M1	
			2	A1	
	(b)		2	B1	
	(c)		y = 2x + 4 oe	B1	
				B1	
6	(a)		D	B1	
	(b)		2 x 2 x 2;	M1	
			800	A1	
7			(x-3)(x+7)	M2	M1 for $(x \ 3)(x \ 7)$
			3 or -7	A1	
8	(a)		Used correct widths, labelled vert. axis, and second block of height 1.0	B1	
			Other blocks of height 2.4, 3.1, 0.9	B2	B1 for 2 correct
	(b)		50 000 to 60 000	B1	Accept 50 to 60
9	(a)		С	B1	
	(b)		D	B1	
	(c)		А	B1	
10			For A:		
			More than $\frac{1}{2}$ the cartons contain less than mean	M1	
			So cartons containing less than mean are	M1	
			So light cartons are likely to come from B	A1	

SECTION A