Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education
MATHEMATICS B (MEI)
PAPER 2 SECTION B
1968/2316B

HIGHER TIER

Specimen Paper 2003
Additional materials: Electronic calculator
Geometrical instruments
Tracing paper (optional).

Candidates answer on the question paper.
TIME 45 minutes.

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem, even if you get the answer wrong.

You are expected to use an electronic calculator for this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Unless otherwise instructed in the question, take π to be 3.142 or use the π button on your calculator.
- \quad Section B begins with question 12.

For Examiner's Use Only	
Section B	
TOTAL	

FORMULAE SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r 1$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, are given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

12 The number 1800 can be written as $2^{p} \times 3^{q} \times 5^{r}$ where p, q and r are integers. Calculate the values of p, q and r.

$$
\text { Answer } \quad p=
$$

\qquad $q=$ \qquad $r=$ \qquad

13 The table shows the population and area, in square kilometres, of some countries.

Country	Population	Area
Norway	4.10×10^{6}	3.24×10^{5}
Portugal	9.70×10^{6}	9.21×10^{4}
Spain	3.68×10^{7}	5.05×10^{5}

(a) Find the combined area of Spain and Portugal.

Give your answer in standard form.

Answer (a) $\quad \mathrm{km}^{2}$
(b) Calculate the population density of Norway.

Give your answer in number of people per square kilometre.

14 Evaluate the following, rounding your answers to three significant figures.
(a) $\frac{1}{3}+\frac{2}{5}+\frac{3}{7}+\frac{4}{9}$
\qquad
Answer (a)
(b) $\frac{4.3 \times 5.3^{2}}{12.5+17.3}$

Answer (b) \qquad
(c) $\sqrt[3]{\frac{300}{4 \pi}}$

Answer (c)

15 Use trial and improvement to find the positive root of the equation $x^{3}+5 x=10$. Show all your trials and give your answer to one decimal place.

16 Jack buys a television for £246.75 including VAT at $17 \frac{1}{2} \%$.
Find the price excluding VAT.

Answer £

17 The following is the usual "straight edge and compasses" procedure used to bisect angle ABC. It is illustrated in the diagram.

1. Draw an arc centred on B; the radius used is unimportant; this arc cuts AB at P and BC at Q .
2. Using a radius which is more than half of PQ draw two arcs, one centred at P and the other centred at Q : these two arcs meet at R .
3. Draw the straight line BR.

(a) Prove that triangles PBR and QBR are congruent.

Answer (a)
\qquad
\qquad
\qquad
(b) Complete the proof that BR bisects angle ABC .

Answer (b) \qquad
\qquad
\qquad

18 Solve this equation.

$$
\frac{3 x-5}{4}+\frac{12-11 x}{6}=4
$$

$$
\text { Answer } \quad x=
$$

19 In this question assume that exactly 85% of our trains arrive on time.
(a) Jack and Jill each catch a train.

Assuming the trains' arrival times are independent, calculate the probability that
(i) both trains arrive on time,

Answer (a)(i)
(ii) one train arrives on time but not the other.

Answer
(ii)
(b) Describe a situation where assuming trains' arrival times are independent
(i) is reasonable,

$$
\text { Answer }(b)(i)
$$

\qquad
\qquad
(ii) is not reasonable.

Answer (ii) \qquad
\qquad
\qquad
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
P is a point on $A B$ such that $A P=2 P B$.
Write $\overrightarrow{A P}$ in terms of \mathbf{a} and \mathbf{b}.

Answer $\quad \overrightarrow{A P}$ \qquad

21 Make r the subject of the equation $3(r-4)=s(7-2 r)$.

$$
\text { Answer } \quad r=
$$

22 The diagram shows a bicycle frame made of tubes.
Tubes BC and AD are parallel.
Angle $\mathrm{AED}=65^{\circ}$, angle $\mathrm{BAD}=70^{\circ}, \mathrm{AB}=59.0 \mathrm{~cm}$, and $\mathrm{AE}=\mathrm{DE}=57.6 \mathrm{~cm}$.

Calculate the total length of the four tubes used to construct ABCD.
Explain your work and give your answer to a reasonable degree of accuracy.

RECOGNISING ACHIEVEMENT
Oxford Cambridge and RSA Examinations
General Certificate of Secondary Education
MATHEMATICS B (MEI)PAPER 2 SECTION B1968/2316B
MARK SCHEME
Specimen Paper 2003

SECTION B

20	$\overrightarrow{A B}=\mathbf{b}-\mathbf{a}$	M1
	Uses thirds	M1
	$\overrightarrow{A P}=\frac{2}{3}(\mathbf{b}-\mathbf{a})$	A1
21	$3 r-12=7 s-2 r s$	M1
	$3 r+2 r s=7 s+12$	M1
	$r(3+2 s)=7 s+12$	M1
	$r=(7 s+12) /(3+2 s)$	A1
22	$\mathrm{AD}^{2}=57.6^{2}+57.6^{2}-2 \times 57.6 \times 57.6$	M1
		M1
	3831. ...	A1
	AD $=61.896 \ldots$	
	Some explanation or diagram to create triangle ABD^{\prime} or $56.896 \ldots$ seen	M1
	$\left(\mathrm{BD}^{\prime}\right)^{2}=59.0^{2}+56.9^{2}-$	M1
	$2 \times 59.0 \times 56.9 \cos 70$	M1
	$=4422 . \ldots$	A1
	$\mathrm{BD}^{\prime}=66.49 \ldots$	M1
	Attempt at $66.5+61.9+59.0+5.0$	A1
	192.4	

