SPECIMEN

GENERAL CERTIFICATE OF SECONDARY EDUCATION
MATHEMATICS B
Foundation Tier

MODULAR PAPER - SECTION A

Candidate Name \square

Centre Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem, even if you get the answer wrong.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks in this section is 36 .

WARNING
You are not allowed to use a calculator in Section A of this paper.

For Examiner's Use

Section A	
Section B	
Total	

This document consists of $\mathbf{1 3}$ printed pages.

FORMULAE SHEET

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=($ area of cross-section $) \times$ length

1 (a) Write
(i) 0.3 as a fraction,
(a) (i)
(ii) 40% as a decimal,
(ii)
(iii) $\frac{1}{4}$ as a decimal.
(b) Write $\frac{10}{12}$ in its simplest form.
(iii)
(b)

2 (a) What percentage of this symmetrical shape is shaded?

(a)
(b) Shade $\frac{3}{8}$ of the grid below.

3 Amy has 24 square tiles.
She uses all the tiles to make a rectangle as shown.

Draw two other different rectangles that Amy could make using 24 tiles each time.

4 Nikesh calculates his pay per day using the following formula.

$$
\text { Total pay }=\text { rate per hour } \times \text { number of hours }+ \text { bonus }
$$

He earns $£ 5.00$ per hour.
He receives a bonus of $£ 2.50$ if he works more than 8 hours.
Find his total pay when he works
(a) 7 hours,
\qquad
(a) $£$
(b) 9 hours.
(b) $£$

5 (a) Fill in these boxes.
(i) $\square+15=19$
(a) (i)
(ii) $\square-15=19$
(ii)
(b) Here is a number machine.

Work out
(i) the output when the input is 16,
(b) (i)
(ii) the input when the output is 9 .
(ii)

6 These solids are made from one-centimetre cubes.
There are no hidden cubes.
Write down the volume of each solid.
(a)

(a) \qquad cm^{3} [1]
(b)

(b)
$\mathrm{cm}^{3}[1]$
$7 \quad$ How many stamps costing 30 p can be bought with $£ 5$? How much change will there be?
\qquad
Change

8

In this question, n stands for an odd number.
Which of the above describes the following expressions?
Give a reason for each answer.
(a) $2 n$
......................................
Reason \qquad
\qquad
(b) $3 n+1$
\qquad
Reason \qquad

9 A group of 90 motorists were surveyed about the type of fuel their cars used. The results are shown in the table.

Fuel type	Unleaded	Diesel	Gas	LRP
Number of motorists	50	20	12	8

(a) Draw a pie chart to represent these data.

(b) The 90 motorists were chosen by asking the first 90 drivers entering a multi-storey car park at a shopping centre one weekday morning.

Explain why these 90 motorists may not be a representative sample of all motorists.
\qquad
\qquad
\qquad

GREAT HOLIDAY SALE

> All prices for adults reduced by 20%
> Child sale prices are $\frac{1}{3}$ of
> adult sale prices

The normal cost of a holiday was $£ 300$ for one adult.
Calculate the sale price of this holiday for
(a) one adult,
\qquad
(b) one child.
(b) $£$

OXFORD CAMBRIDGE AND RSA EXAMINATIONS
General Certificate of Secondary Education MATHEMATICS B

MODULAR PAPER 1 - SECTION A
Specimen Mark Scheme
The maximum mark for this paper is 36 .

Section A					
1	(a)(i) (ii) (iii) (iv)	$\begin{aligned} & \frac{3}{10} \\ & 0.4 \\ & 0.25 \\ & \frac{5}{6} \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	4	
	(a) (b)	$\begin{aligned} & 70 \% \\ & \text { Correct shading (} 6 \text { boxes) } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
3		One different Second different	$\begin{aligned} & \mathbf{B 1} \\ & \mathbf{B 1} \end{aligned}$	2	Must be something other than 4×6 i.e. could be $1 \times 24,2 \times 12,3 \times 8$
4	(a) (b)	$£ 35.00$ Add $£ 2.50$ $£ 47.50$	$\begin{array}{\|l} \hline \text { B1 } \\ \hline \text { B1 } \\ \text { B1 } \end{array}$	3	
5	(a)(i)	4	B1		
	$\begin{aligned} & \text { (ii) } \\ & \text { (b)(i) } \\ & \text { (ii) } \end{aligned}$	$\begin{aligned} & 34 \\ & 5 \\ & \times 3=27 \\ & +1=28 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \\ & \mathbf{B 1} \end{aligned}$	5	
6	(a) (b)	${ }_{2}^{5}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	2	
7		16×30 $=480$ So 16 stamps $£ 5 \quad £ 4.80$ $=20 \mathrm{p}$	M1 A1 M1 A1	4	Attempt to divide 30p into $£ 5$ Units correct
8	(a) (b)	Appropriate explanation Because whatever n, when you multiply by 2 you get an even number Always even Because, since n is odd, $3 n$ will be odd so adding 1 makes it even	B1 B1 B1	3	Eg ‘Always even’

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& (a) \& \begin{tabular}{l}
Attempt to divide 360 by 90 to get 4 Multiply each value by 4 \\
Angles: \(200^{\circ}\), \(80^{\circ}, 48^{\circ}, 32^{\circ}\) \\
Correct pie chart \\
The motorists are all likely to be shoppers who do not work and so this is not representative as there are many types
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{M} 1 \\
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1 \\
\& \mathrm{~A} 1 \\
\& \mathrm{~B} 1 \\
\& \mathrm{~B} 1
\end{aligned}
\] \& 4

2 \& | Follow through their angles only if they add up to 360° |
| :--- |
| All one type There are many types |

\hline 10 \& (a) \& $$
\begin{aligned}
& 300 \times 0.8 \\
& =£ 240 \\
& \frac{1}{3} \text { of either ans to (i) or } £ 300 \\
& =\frac{1}{3} \times 240=80
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{M} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{~A} 1 \\
& \mathrm{M} 1 \\
& \mathrm{~A} 1
\end{aligned}
$$
\] \& 5 \& Attempt to find 20% or 80% Either $80=100-20$ or find 20% and subtract from $£ 300$

\hline
\end{tabular}

Section A Total 36

Assessment Objectives Grid

Question	AO2	AO3	AO4	Total
$\mathbf{1}$	4	0	0	$\mathbf{4}$
2	2	0	0	2
3	2	0	0	2
4	3	0	0	3
5	5	0	0	5
6	0	2	0	2
7	4	0	0	4
$\mathbf{9}$	3	0	0	3
$\mathbf{1 0}$	5	0	6	$\mathbf{6}$
Totals	28	2	6	5

