GENERAL CERTIFICATE OF SECONDARY EDUCATION MATHEMATICS B
Paper 3 (Higher Tier)

Candidates answer on the Question Paper
OCR Supplied Materials:
None
Other Materials Required:

- Geometrical instruments
- Tracing paper (optional)

SPECIMEN

Duration: 1 hour 45 minutes

Candidate		Candidate Forename	Surname

Centre Number						Candidate Number				

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is $\mathbf{1 0 0}$.
- This document consists of $\mathbf{2 4}$ pages. Any blank pages are indicated.

Formulae Sheet: Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$
Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

(a) Rotate triangle A by 90° clockwise about the origin. Label the image \mathbf{C}.
(b) Describe fully the single transformation that maps triangle \mathbf{A} onto triangle \mathbf{B}.

2 (a) Complete this table for $y=7-2 x$.

x	0	2	4
y	7		

(b) Draw the graph of $y=7-2 x$.

(c) Use your graph to find the value of x when $y=0$.
(c) $x=$

3 *

$$
1 \text { litre }=1 \frac{3}{4} \text { pints }
$$

4 pints

2 pints	4 pints	6 pints
$£ 0.70$	$£ 1.40$	$£ 2.10$

£1-40

6 pints

£2•10

Sunidra estimates that she needs $1 \frac{1}{2}$ litres of milk each day.
Milk is sold in 2, 4 and 6 pint bottles, as shown above.
Sunidra wants to buy enough milk to last for a week.
Advise Sunidra which bottles of milk she should buy for the whole week.

4 (a) Rearrange each of these formulae to make h the subject.
(i) $P=3 h-5$
(ii) $T=2(h+w)$
(a)(i) \qquad [2]
(ii)
(b) Solve this inequality and represent your solution on the number line.

$$
6 x \geq 2 x-8
$$

5 (a) Estimate the answer to this calculation.

$$
\frac{17.5 \times 3.8}{0.483}
$$

(a)
[2]
(b) Explain how you can tell that the following answer must be wrong.

$$
\left(4 \cdot 1 \times 10^{7}\right) \times\left(4.8 \times 10^{15}\right)=1.968 \times 10^{22}
$$

6 A bag contains only red, green, blue and yellow counters.
A counter is taken from the bag at random.
Some probabilities for this are shown in the table.

Colour	Red	Green	Blue	Yellow
Probability	0.25	0.15		0.4

(a) Find the probability that the counter is green or yellow.
(a) \qquad
(b) Find the probability of taking a blue counter.
(b)

7 Abbie is making a lottery machine for her school. It contains five balls, numbered from 1 to 5 .
It has to work so that each ball has an equal probability of being selected. She tests the machine by using it 50 times.
Here are her results.

Number	Relative Frequency
1	0.12
2	0.28
3	0.20
4	0.24
5	0.16

(a) If Abbie repeated this test, would she get the same results?

Explain your answer.
\qquad
\qquad
(b) Make two comments about the results of Abbie's test.

1 \qquad
\qquad

2 \qquad
\qquad

8 (a) Calculate the interior angle of a regular pentagon.
(a)
(b) Use your answer to part (a) to explain why regular pentagons do not tessellate.
\qquad
\qquad

9 Here are the first four terms of a sequence.

$$
\begin{array}{llll}
7 & 13 & 19 & 25
\end{array}
$$

(a) Explain why 286 cannot be in this sequence.
\qquad
(b) Write an expression for the nth term of this sequence.

10 As a product of prime factors,

$$
24=2 \times 2 \times 2 \times 3
$$

(a) Write 40 as a product of prime factors.
(a)
(b) (i) Work out the highest common factor (HCF) of 24 and 40.
(b)(i) \qquad [2]
(ii) Work out the lowest common multiple (LCM) of 24 and 40.
(ii)

11 A garage displays this sign.
Sale
15% off all
car prices
(a) The original price of one car is $£ 8640$.

Calculate its sale price.
(a) $£$
(b) Hidetoshi sees this sign on a different car at the garage.

Does the offer on this car match the 15% sale at the garage?

12 In this diagram, O is the centre of the circle.
$P Q$ and $P R$ are tangents.
S is a point on the circumference of the circle.
Angle QSR $=140^{\circ}$.

Calculate angles a and b.
$a=$ \qquad
$b=$ \qquad

13 There are two sets of traffic lights on Dwayne's journey home.
The probability that he is stopped at the first set of lights is 0.3 .
The probability that he is stopped at the second set of lights is 0.4 . These probabilities are independent.
(a) Complete the tree diagram to represent this information.

First set

(b) What is the probability that Dwayne is not stopped at either set of lights?
(b)

14 Triangle ABC is the logo for Linsdell's Laundry.

Not to scale

Linsdell's Laundry wants to print copies of this logo, as well as an enlarged version to go on the side of their van.
The enlarged version is triangle PQR below.

Not to scale

They need to tell the printers the measurements of all the sides and angles of both logos.
Show clearly what information Linsdell's Laundry should give to the printers.

15 In 2006 there were approximately 240000 marriages in England and Wales.
This table shows the age distribution for the men who married in 2006 in England and Wales.

Age (n years)	Frequency (thousands)
$16 \leq n<25$	21
$25 \leq n<30$	57
$30 \leq n<35$	56
$35 \leq n<40$	37
$40 \leq n<50$	40
$50 \leq n<100$	29

This histogram shows the age distribution for the women who married in 2006

Use the table and the histogram to decide whether these statements are true, or false, or whether there is not enough information to decide.
(a) The oldest woman was 99 when she married.

Tick (\checkmark) the correct box.

| True | | False | |
| :--- | :--- | :--- | :--- | :--- |\quad| Not enough
 information |
| :--- | :--- |

Explain your answer.
\qquad
\qquad
(b) About half the women were aged between 25 and 35 when they married.

Tick (\checkmark) the correct box.

| True | | \begin{tabular}{ll}
\hline
\end{tabular}\quadFalse |
| :--- | :--- | :--- | :--- |

Explain your answer.
\qquad
\qquad
(c) When they married, there were

- more women than men aged under 25 , and
- more women than men aged 50 and over.

Tick (\checkmark) the correct box.

True	

False	

Not enough information	

Explain your answer.
\qquad
\qquad

16 A line goes through the points $(0,8)$ and $(3,2)$.

Find the equation of this line.

17 This is a sketch of the function $y=\mathrm{f}(x)$, which is symmetrical about the y-axis.

Using the same axes, sketch the graph of the function $y=\mathrm{f}(x-2)$, showing the coordinates of the points where the new graph crosses the x-axis.

18 Solve.

$$
\frac{3 x+7}{4}+\frac{x-1}{2}=15
$$

19 Bishopfield School has students from Year 7 to Year 13.
Nada is conducting a survey about leisure activities at the school.
She decides to interview a representative stratified sample of 40 students.
In Year 7 to Year 9 there are 450 students in total.
In Year 10 and Year 11 there are 350 students in total.
In Year 12 and Year 13 there are 200 students in total.
How many students should Nada interview from Year 12 and Year 13?

20 The expression $\left(\frac{a^{4}}{b^{2}}\right)^{\frac{1}{2}} \times a^{5}$ can be simplified to $a^{x} b^{y}$ where x and y are integers.
Find the values of x and y.
$x=$ \qquad $y=$

21 PQRS is a parallelogram.
M is the midpoint of $Q R$ and N is the midpoint of RS.
$\overrightarrow{P Q}=2 a, \overrightarrow{P S}=2 b$.

(a) Find, in terms of \mathbf{a} and \mathbf{b},
(i) $\overrightarrow{Q S}$,
(a)(i) $\overrightarrow{Q S}=$
(ii) $\overrightarrow{\mathrm{MN}}$.
(ii) $\overrightarrow{M N}=$
(b) What is the relationship between the line segments QS and MN?

Use vectors to justify your answer.
\qquad
\qquad
\qquad

22 (a) Write $x^{2}+10 x-12$ in the form $(x+a)^{2}+b$.
(a)
(b) Simplify.

$$
\frac{x^{2}-25}{2 x+10}
$$

(b)

24

23 The sector below is the net for the curved surface of the cone.
All lengths are in centimetres.

(a) Calculate h, the height of the cone. Give your answer in exact form.
(a) \qquad cm [5]
(b) A mathematically similar sector has radius 8 cm .

Find the height of the cone that can be made from this sector.
(b)

Copyright Acknowledgements:

Q2 Pints of milk © www.istockphoto.com
Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

General Certificate of Secondary Education

MATHEMATICS B

J567/03
Paper 3 (Higher Tier)
Specimen Mark Scheme
The maximum mark for this Paper is 100.

1	(a) Correct rotation to triangle with vertices ($1,-2$), (4, -2), (1, -4)	3	B2 for rotation 90° anticlockwise about origin OR B1 for rotation 90° clockwise about incorrect centre
	(b) Translation $\left[\begin{array}{l} 2 \\ 1 \end{array}\right]$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept "2 right 1 up"
2	(a) 3 and -1	1	Both correct
	(b) Points correctly plotted Ruled line through $(0,7)$ and $\left(4,{ }^{-1}\right)$	1	ft their (a) Correct line only
	(c) 3-4-3.6	1	

3^{*}	Complete correct calculation to find $18 \frac{3}{8}$ pints required, and rounds up to 20. Indicates with correct and clear language that as the bottles have the same unit cost it does not matter which combination is chosen, and gives at least one combination for 20		For the lower mark, there may be one minor slip in the arithmetic at any stage, or weaker explanation. pints.
		Examples of combinations:	
		$6,6,2,2,4$	

4	(a)(i) $h=\frac{P+5}{3}$ oe	2	M1 $h=\frac{P-5}{3}$ or $h=\frac{P}{3}-5$
	(ii) $h=\frac{T}{2}-w$ oe	2	M1 $h=\frac{T-w}{2}$ or $h=\frac{T}{2}+w$ oe
	(b) $x \geq-2$ and	3	M2 $x \geq-2$ without correct diagram OR M1 $6 x-2 x \geq-8$ or better B1 ft their inequality correctly represented on the number line
5	(a) $\frac{20 \times 4}{0.5}=160$	2	M1 Two of the three numbers correctly rounded to 1sf
	(b) Roughly 20×10^{22}	1	Condone 16×10^{22}
6	(a) 0.55	1	
	(b) 0.2	2	M1 for 1 - (0.25 + 0.15 + 0.4)
7	(a) She is [extremely] unlikely to get the same result [because of a large number of combinations]	1	Accept any correct statement including 'she will not get the same results'
	(b) Not very close together, or not close to $0 \cdot 2$, or ' 2 ' occurs twice more than ' 1 ' Too few trials to be sure, or she needs to do more trials oe	1 1	Accept any correct statement Accept any correct statement 'More numbered balls' is not enough
8	(a) 108°	2	M1 180° - $\left(360^{\circ} \div 5\right)$ Accept any correct method
	(b) 108° does not divide exactly into 360°	1	Allow any equivalent correct statement
9	(a) All terms will be odd	1	Accept any valid statement
	(b) $6 n+1$	2	M1 $6 n$ seen

10	(a) $2 \times 2 \times 2 \times 5$ or $2^{3}(\times) 5$	2	M1 for attempt at factor tree/ladder or correct factor pair or better seen Or SC1 for 2, 2, 2, 5 identified but not as product
	(b)(i) 8 cao	2	B1 for $2 \times 2 \times 2$ oe or answer of 2 or 4
	(ii) 120 cao	2	B1 for $2 \times 2 \times 2 \times 3 \times 5$ oe or a multiple of 120 Or M1 for listing multiples of 24 AND 40 After 0,0 in (b) Award SC2 in (b)(ii) for reversed answers
11	(a) 8640×0.15 (oe) or 1296 8640 - 'their 1296' 7344	M1 M1 A1	M1 $1-0.15$ or 0.85 M1 8640×0.85
	(b) Yes, as it is [just] over 15 with correct working Or No, it is over 15 with correct working	3	M1 Attempt to find 15% of 12800 , eg 1280 and attempt to halve B1 1920 seen B1 2000 > 1920 and conclusion After 0, SC1 for figs 192 seen Accept any equivalent method.
12	$\begin{aligned} & a=280^{\circ} \\ & b=100^{\circ} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { M1 } \angle \mathrm{PQO}=\angle \mathrm{PRO}=90^{\circ} \\ & \text { A1 } \mathrm{ft} 360^{\circ}-\left(90^{\circ}+90^{\circ}+80^{\circ}\right) \text {, or } 360^{\circ}- \\ & \left(90^{\circ}+90^{\circ}\right)+\left(360^{\circ}-\text { their a }\right) \end{aligned}$
13	(a) Tree diagram complete	2	M1 first or second set correct entries
	(b) 0.42	2	M1 0.7×0.6 or ft their tree diagram
14	Finding PR: $8: 24$ oe seen or used $13 \times \frac{24}{8}$ Finding BC: $54 \times \frac{18}{24}$ Showing information: 45° given as missing angle $P R=39$ $B C=18$ Complete list of required information, or completed labelled sketch, or missing information completed on given diagrams	B1 M1 M1 B1 A1 A1 B1	Dependent on first M1 earned Dependent on second M1 earned

15	(a) Not enough information - oldest woman could be anywhere in the 50 to 99/100 interval	1	Do not accept "she was 100" oe
	(b) True - about 12 half squares so 120000 women	2	M1 allow for True with inadequate (but not wrong) justification
	(c) False - for age 50 to 100, women about 20 000, men 29000	2	M1 for true or false and 16 to 25 , women about 40000 , men 21000 seen
16	$y=-2 x+8$	3	M2 ${ }^{-2 x}$ OR M1 for $\frac{6}{2}$ or $(m)=2$ AND W1 for +8 in equation
17	Graph translated right $(5,0)$ marked $(-1,0)$ marked	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	SC2 for graph translated left and $(-5,0)$ and $(1,0)$ shown or SC1 for graph translated left and either $(-5,0)$ or $(1,0)$ shown
18	11 www	4	M3 $5 x=60-7+2$ OR M2 $3 x+7+2(x-1)=4 \times 15$ OR M1 Multiplication by 4 or 8
19	8	2	M1 $\frac{40}{1000} \times 200$ oe
20	$x=7, y=-1$	3	$\text { M2 } \frac{a^{7}}{b}$ OR M1 their $\frac{a^{2}}{b} \times a^{7}$ evaluated, or $\frac{a^{2}}{b}$
21	(a)(i) $-2 a+2 b$	1	
	(ii) $\mathrm{b}-\mathrm{a}$	1	
	(b) QS parallel to MN and double the length because QS $=2(\mathbf{b}-\mathbf{a})=2 \mathrm{MN}$	2	M1 QS parallel to MN and double the length, or for one statement with QS $=2$ $(b-a)$
22	(a) $(x+5)^{2}-37$	3	$\begin{aligned} & \text { M2 } x^{2}+5 x+5 x+25 \\ & \text { OR } \\ & \text { M1 }(x+5)^{2} \text { seen } \end{aligned}$
	(b) $\frac{x-5}{2}$	3	$\begin{aligned} & \text { M1 }(x-5)(x+5) \\ & \text { AND } \\ & \text { M1 } 2(x+5) \end{aligned}$

23	(a) Slant height of cone $=4$ Arc length $=4 \times 2 \pi \times \frac{1}{4}[=2 \pi]$ Radius of cone $=1\left(\right.$ from $\frac{2 \pi}{2 \pi}$)	B1	Accept I $=4$
Use of Pythagoras' theorem	B1		
$h=\sqrt{15}$	M1	$h^{2}+1^{2}=4^{2}$ or better	
	A1		
(b) Scale factor 2	M1		
$2 \sqrt{15}$ cao	A1		

Paper Total: 100 marks

Assessment Objectives and Functional Elements Grid

GCSE MATHEMATICS B
J567/03
Mathematics B Paper 3 (Higher Tier)

	Topic	Context	Ref	AO1	AO2	AO3	Functional
1	Transformations		HIG6	5			
2	Draw straight-line graph		HIA4	4			
3	Calculations with mixed numbers	Milk	HBN2			6	6
4	Change subject of formulae; solve inequalit		HBA2 HBA3	7			
5	Estimate answer to calculation		HBN5 HSN3	3			
6	Mutually exclusive probability	Counters	HIS1		3		
7	Relative frequency	Lottery machine	HBS1		3		
8	Angle in pentagon; tessellating		HBG3	3			
9	Sequence		HBA1	3			
10	Prime factors, HCF, LCM	HBN6	6				
11	Percentages	Selling cars	HBN4		6		3
12	Geometrical calculation	HSG1	3				
13	Probability with tree diagram	Traffic lights	HSS1		4		2
14	Similar triangles	Company logo	HSG5		7		7
15	Interpreting table and histogram	Marriage statistics	HGS2 HGS3		5		5
16	Find equation of line		HSA7	3			
17	Transforming graph		HGA6	3			
18	Algebraic fraction equation		HSA1	4			
19	Stratified sampling	School	HGS4		2		2
20	Laws of indices	HGN1	3				
21	Vectors	Parallelogram	HGG5	2		2	
22	Completing the square; simplifying	HGA2,	6				
23	Mensuration of sectors and cones	HSA2			7		
	TOTAL	HGG4	$\mathbf{3 0}$	$\mathbf{1 5}$	$\mathbf{2 5}$		

Paper Total: 100 marks

