

GENERAL CERTIFICATE OF SECONDARY EDUCATION MATHEMATICS B

J567/03

Paper 3 (Higher Tier)

Candidates answer on the Question Paper

OCR Supplied Materials:

None

Other Materials Required:

- · Geometrical instruments
- Tracing paper (optional)

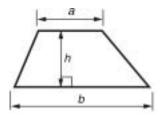
Duration: 1 hour 45 minutes

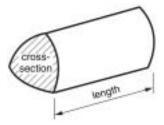
Candidate Forename				Candidate Surname				
Centre Numbe	er				Candidate Nur	mber		

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer
- Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.
- Answer all the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES


- The number of marks is given in brackets [] at the end of each question or part question.
- Your Quality of Written Communication is assessed in questions marked with an asterisk (*).
- The total number of marks for this paper is 100.
- This document consists of 24 pages. Any blank pages are indicated.

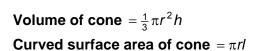

OCR is an exempt Charity SPECIMEN

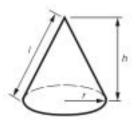
Formulae Sheet: Higher Tier

Area of trapezium = $\frac{1}{2}(a+b) h$

Volume of prism = (area of cross-section) × length

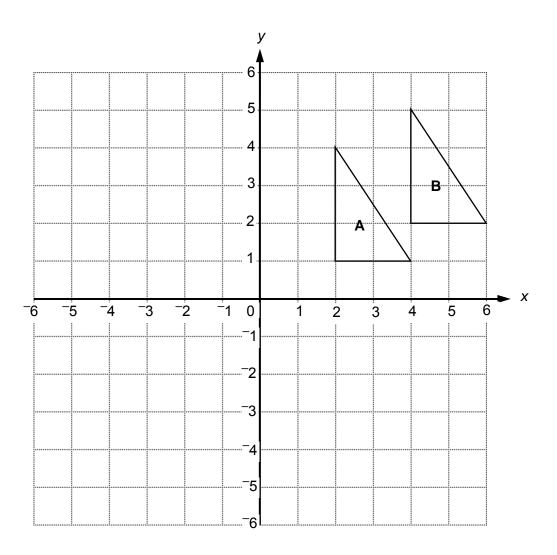
In any triangle ABC


Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$


Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

Area of triangle =
$$\frac{1}{2}ab\sin C$$

Volume of sphere $=\frac{4}{3}\pi r^3$ Surface area of sphere $=4\pi r^2$


The Quadratic Equation

The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

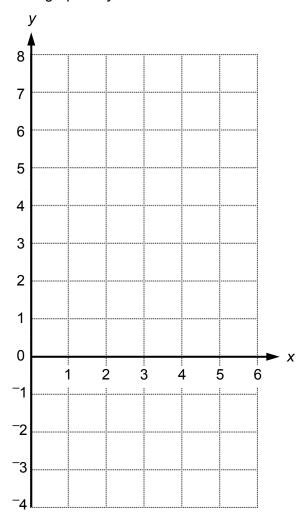
PLEASE DO NOT WRITE ON THIS PAGE

1

(a) Rotate triangle **A** by 90° clockwise about the origin. Label the image **C**.

[3]

(b) Describe fully the single transformation that maps triangle A onto triangle B.


_ [2]

2 (a) Complete this table for y = 7 - 2x.

Х	0	2	4
У	7		

[1]

(b) Draw the graph of y = 7 - 2x.

[2]

(c) Use your graph to find the value of x when y = 0.

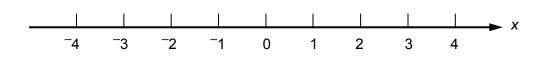
(c) x = [1]

3 *

Sunidra estimates that she needs $1\frac{1}{2}$ litres of milk each day. Milk is sold in 2, 4 and 6 pint bottles, as shown above. Sunidra wants to buy enough milk to last for a week.

Advise Sunidra which bottles of milk she should buy for the whole week.

[6]


1	(a) Pearrange	each of these	formulae to	make h	the subject
4	(a) Realiange	each of these	ioiiiiulae lo	make n	the Subject.

(i)
$$P = 3h - 5$$

(a)(i)
$$T = 2(h + w)$$

(b) Solve this inequality and represent your solution on the number line.

$$6x \ge 2x - 8$$

[3]

5	(a)	Estimate	the	answer	to	this	calculation.
J	(a,	Louinate	uic	answei	w	นเมื	calculation.

$$\frac{17.5\times3.8}{0.483}$$

(b) Explain how you can tell that the following answer must be wrong.

$$(4.1 \times 10^7) \times (4.8 \times 10^{15}) = 1.968 \times 10^{22}$$

6 A bag contains only red, green, blue and yellow counters. A counter is taken from the bag at random. Some probabilities for this are shown in the table.

Colour	Red	Green	Blue	Yellow
Probability	0.25	0.15		0.4

(a)	Find the pr	obability tha	t the counte	r is green o	r yellow.	
(b)	Find the pr	obability of t	aking a blue	e counter.	(a)	[1]
(2)	i ind the pr	obasimty of t	aning a blue	, deamer.		
					(b)	[2]

7 Abbie is making a lottery machine for her school. It contains five balls, numbered from 1 to 5. It has to work so that each ball has an equal probability of being selected. She tests the machine by using it 50 times. Here are her results.

Number	Relative Frequency
1	0.12
2	0.28
3	0.20
4	0.24
5	0.16

(a)	If Abbie	repeated t	his test	, would	she	get the	same	results	;?
	Explain	your answ	er.						

		[1]
		נייו
(b)	Make two comments about the results of Abbie's test.	
	1	
	2	
		[2]

8 (a) Calculate the interior angle of a regular pentagon.	
	(a)° [2
(b) Use your answer to part (a) to explain why regular p	pentagons do not tessellate.
	[1]
	[i1.
9 Here are the first four terms of a sequence.	
7 13 19	25
(a) Explain why 286 cannot be in this sequence.	
	[1]
(b) Write an expression for the <i>n</i> th term of this sequence	e.
	(b)[2

10	As a pr	oduct of prime factors,	
		$24 = 2 \times 2 \times 2 \times 3$.	
	(a) Write	e 40 as a product of prime factors.	
		(a)	[2]
	(b) (i)	Work out the highest common factor (HCF) of 24 and 40.	
		(b)(i)	[2]
	(ii)	Work out the lowest common multiple (LCM) of 24 and 40.	
		(ii)	[2]

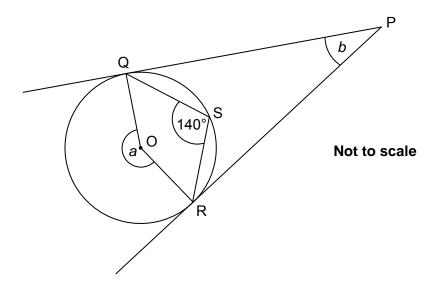
11 A garage displays this sign.

Sale 15% off all car prices

(a) The original price of one car is £8640.

Calculate its sale price.

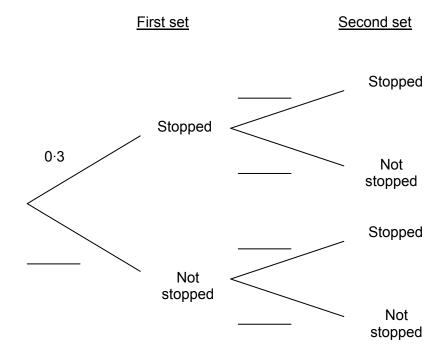
(a)	£	[3]
(a)	<u>ــــــــــــــــــــــــــــــــــــ</u>	[၁]


(b) Hidetoshi sees this sign on a different car at the garage.

was £12 800 now reduced by £2000

Does the offer on this car match the 15% sale at the garage?

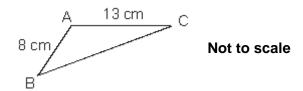
_____[3]


12 In this diagram, O is the centre of the circle.PQ and PR are tangents.S is a point on the circumference of the circle.Angle QSR = 140°.

Calculate angles a and b.

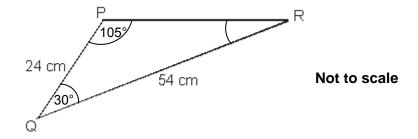
a =	0
b =	° [3]

- 13 There are two sets of traffic lights on Dwayne's journey home. The probability that he is stopped at the first set of lights is 0·3. The probability that he is stopped at the second set of lights is 0·4. These probabilities are independent.
 - (a) Complete the tree diagram to represent this information.



(b) What is the probability that Dwayne is **not** stopped at either set of lights?

(b) _____[2]


[2]

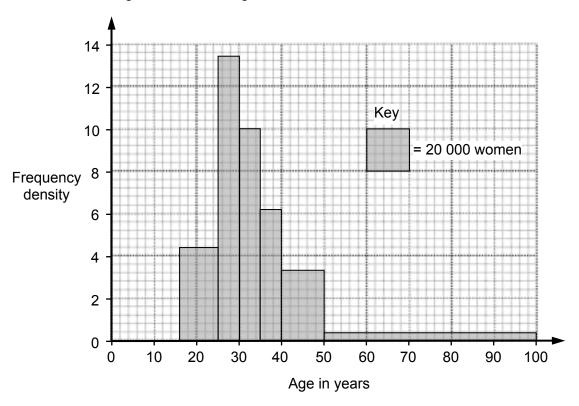
14 Triangle ABC is the logo for *Linsdell's Laundry*.

Linsdell's Laundry wants to print copies of this logo, as well as an enlarged version to go on the side of their van.

The enlarged version is triangle PQR below.

They need to tell the printers the measurements of **all** the sides and angles of both logos.

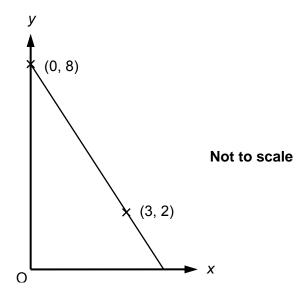
Show clearly what information *Linsdell's Laundry* should give to the printers.


[7]

15 In 2006 there were approximately 240 000 marriages in England and Wales.

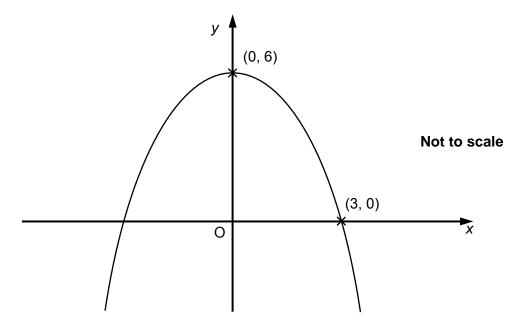
This table shows the age distribution for the **men** who married in 2006 in England and Wales.

Age (n years)	Frequency (thousands)
16 ≤ <i>n</i> < 25	21
25 ≤ <i>n</i> < 30	57
30 ≤ <i>n</i> < 35	56
35 ≤ <i>n</i> < 40	37
40 ≤ <i>n</i> < 50	40
50 ≤ <i>n</i> <100	29


This histogram shows the age distribution for the women who married in 2006.

Use the table and the histogram to decide whether these statements are true, or false, or whether there is not enough information to decide.

(a) The oldest woman wa	as 99 when she married.		
Tick (✓) the correct b	OX.		
True	False	Not enough information	
Explain your answer.			
			[1]
(b) About half the womer Tick (✓) the correct b	n were aged between 25 and ox.	l 35 when they married.	
True	False	Not enough information	
Explain your answer.			
			[2]
	n men aged under 25, and n men aged 50 and over.		
True	False	Not enough information	
Explain your answer.			
			[2]


16 A line goes through the points (0, 8) and (3, 2).

Find the equation of this line.

_____[3]

17 This is a sketch of the function y = f(x), which is symmetrical about the y-axis.

Using the same axes, sketch the graph of the function y = f(x - 2), showing the coordinates of the points where the new graph crosses the *x*-axis.

[3]

18 Solve.

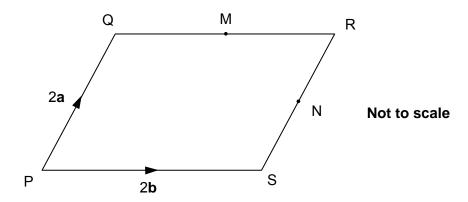
$$\frac{3x+7}{4} + \frac{x-1}{2} = 15$$

19 Bishopfield School has students from Year 7 to Year 13. Nada is conducting a survey about leisure activities at the school. She decides to interview a representative stratified sample of 40 students.

In Year 7 to Year 9 there are 450 students in total. In Year 10 and Year 11 there are 350 students in total. In Year 12 and Year 13 there are 200 students in total.

How many students should Nada interview from Year 12 and Year 13?

[2]


20 The expression $\left(\frac{a^4}{b^2}\right)^{\frac{1}{2}} \times a^5$ can be simplified to $a^x b^y$ where x and y are integrated as $a^x b^y = a^x b^y = a^x$	gers.
---	-------

Find the values of *x* and *y*.

21 PQRS is a parallelogram.

M is the midpoint of QR and N is the midpoint of RS.

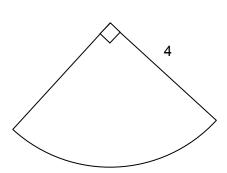
$$\overrightarrow{PQ} = 2\mathbf{a}, \overrightarrow{PS} = 2\mathbf{b}.$$

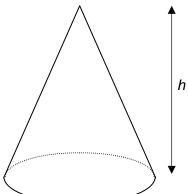
- (a) Find, in terms of a and b,
 - (i) \overrightarrow{QS} ,

(a)(i)
$$\overrightarrow{QS} =$$
_____[1]

(ii) \overrightarrow{MN} .

(ii)
$$\overrightarrow{MN} =$$
_____[1]


(b) What is the relationship between the line segments QS and MN? Use vectors to justify your answer.


_____[2

22 (a)	Write	$x^2 + 10x - 12$	in the form $(x+a)^2$	+ b.	
				(a)	[3]
(b)) Simpli	fy.			
	$\frac{x}{2}$	$\frac{x^2 - 25}{2x + 10}$			
				(b)	[3]

TURN OVER FOR QUESTION 23

23 The sector below is the net for the curved surface of the cone. All lengths are in centimetres.

(a) Calculate *h*, the height of the cone. Give your answer in exact form.

(a)	\	cm	[5]	ı
14			L_{Λ}	L

(b) A mathematically similar sector has radius 8 cm.

Find the height of the cone that can be made from this sector.

(b)_____cm [2]

Copyright Acknowledgements:

Q2 Pints of milk © www.istockphoto.com

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS B

J567/03

Paper 3 (Higher Tier)

Specimen Mark Scheme

The maximum mark for this Paper is **100**.

© OCR 2010 SPECIMEN Turn over

SP (SLM) T12103

1	(a) Correct rotation to triangle with vertices (1, -2), (4, -2), (1, -4)	3	B2 for rotation 90° anticlockwise about origin OR B1 for rotation 90° clockwise about incorrect centre
	(b) Translation [2] [1]	1	Accept "2 right 1 up"
2	(a) 3 and $^-$ 1	1	Both correct
	(b) Points correctly plotted Ruled line through (0, 7) and (4, ⁻ 1)	1 1	ft their (a) Correct line only
	(c) 3·4 - 3·6	1	

3* Complete correct calculation to find $18\frac{3}{8}$ pints required, and rounds up to

20. Indicates with correct and clear language that as the bottles have the same unit cost it does not matter which combination is chosen, and gives at least one combination for 20 pints.

Correct method but incomplete or containing a minor error - but if followed without errors, would lead to $\frac{147}{8}$ or $18\frac{3}{8}$. Provides a brief comment saying that it does not matter which combination is chosen but without a clear reason. Gives a combination for *their* answer.

Correctly converts both mixed numbers to improper fractions, or correctly multiplies one of the mixed numbers by 7 and attempts to multiply the result by the other fraction. Weak comment concerning the price of the bottles.

No relevant calculations or comments.

6-5 For the lower mark, there may be one minor slip in the arithmetic at any stage, or weaker explanation.

Examples of combinations:

6, 6, 6, 2

6. 6. 4. 4

6, 6, 2, 2, 2, 2

6. 4. 4. 4. 2

6, 4, 4, 2, 2, 2

6, 2, 2, 2, 2, 2, 2

4, 4, 2, 2, 2, 2, 2, 2

2, 2, 2, 2, 2, 2, 2, 2, 2

Example of working:

 $1\frac{1}{2} = \frac{3}{2}$ and $1\frac{3}{4} = \frac{7}{4}$

 $\frac{3}{2} \times \frac{7}{4} = \frac{21}{8}$

 $\frac{21}{8} \times 7 \text{ (days)} = \frac{147}{8}$

 $18\frac{3}{8}$

4-3 For the lower mark, more than one error is present in the working, **or** comment is missing or has several errors in spelling, punctuation and grammar, **or** no combination for *their* answer.

For the lower mark, as 2 but with errors in the conversion or in the multiplication, or limited comment which may have poor spelling, punctuation and grammar.

0

		1	
4	(a)(i) $h = \frac{P+5}{3}$ oe	2	M1 $h = \frac{P-5}{3}$ or $h = \frac{P}{3} - 5$
	(ii) $h = \frac{T}{2} - w$ oe	2	M1 $h = \frac{T - w}{2}$ or $h = \frac{T}{2} + w$ oe
	(b) $x \ge -2$ and -2	3	M2 $x \ge -2$ without correct diagram OR M1 $6x - 2x \ge -8$ or better B1 ft <i>their</i> inequality correctly represented on the number line
5	(a) $\frac{20\times4}{0.5}=160$	2	M1 Two of the three numbers correctly rounded to 1sf
	(b) Roughly 20 × 10 ²²	1	Condone 16 × 10 ²²
6	(a) 0·55	1	
	(b) 0·2	2	M1 for $1 - (0.25 + 0.15 + 0.4)$
7	(a) She is [extremely] unlikely to get the same result [because of a large number of combinations]	1	Accept any correct statement including 'she will not get the same results'
	(b) Not very close together, or not close to 0·2, or '2' occurs twice more than '1'	1	Accept any correct statement
	Too few trials to be sure, or she needs to do more trials oe	1	Accept any correct statement 'More numbered balls' is not enough
8	(a) 108°	2	M1 180° – (360° ÷ 5) Accept any correct method
	(b) 108° does not divide exactly into 360°	1	Allow any equivalent correct statement
9	(a) All terms will be odd	1	Accept any valid statement
	(b) 6 <i>n</i> + 1	2	M1 6 <i>n</i> seen

10	(a) 2 × 2 × 2 × 5 or 2 ³ (×) 5	2	M1 for attempt at factor tree/ladder or correct factor pair or better seen Or SC1 for 2, 2, 2, 5 identified but not as product
	(b)(i) 8 cao	2	B1 for 2 × 2 × 2 oe or answer of 2 or 4
	(ii) 120 cao	2	B1 for 2 × 2 × 2 × 3 × 5 oe or a multiple of 120 Or M1 for listing multiples of 24 AND 40 After 0,0 in (b) Award SC2 in (b)(ii) for reversed answers
11	(a) 8640 × 0·15 (oe) or 1296	M1	
	8640 – 'their 1296'	M1	M1 1 – 0·15 or 0·85
	7344	A1	M1 8640 × 0·85
	(b) Yes, as it is [just] over 15 with correct working	3	M1 Attempt to find 15% of 12800, eg 1280 and attempt to halve
	Or No, it is over 15 with correct		B1 1920 seen
	working		B1 2000 > 1920 and conclusion
			After 0, SC1 for figs 192 seen
			Accept any equivalent method.
12	a = 280°	1	
	b = 100°	2	M1 ∠PQO = ∠PRO = 90°
			A1 ft 360° – (90° + 90° + 80°), or 360° – (90° +90°) + (360° – <i>their a</i>)
13	(a) Tree diagram complete	2	M1 first or second set correct entries
	(b) 0·42	2	M1 0·7 × 0·6 or ft <i>their</i> tree diagram
14	Finding PR:		
	8:24 oe seen or used	B1	
	$13 \times \frac{24}{8}$	M1	
	Finding BC: $54 \times \frac{18}{24}$	M1	
	Showing information: 45° given as missing angle PR = 39 BC = 18 Complete list of required information, or completed labelled sketch, or missing information completed on given diagrams	B1 A1 A1 B1	Dependent on first M1 earned Dependent on second M1 earned

15 (a) Not enough information – oldest woman could be anywhere in the 50 to 99/100 interval 1 Do not accept "she was 100" oe (b) True - about 12 half squares so 120 000 women 2 M1 allow for True with inadequate (but not wrong) justification (c) False - for age 50 to 100, women about 20 000, men 29 000 2 M1 for true or false and 16 to 25, women about 40 000, men 21 000 seen 16 y = "2x + 8 3 M2 "2x OR M1 for \$\frac{6}{2}\$ or (m) = 2 AND W1 for +8 in equation 17 Graph translated right (5, 0) marked (1, 0) marked 1 SC2 for graph translated left and (5, 0) and (1, 0) shown or SC1 for graph translated left and either (5, 0) or (1, 0) shown 18 11 www 4 M3 5x = 60 - 7 + 2 OR M2 3x + 7 + 2(x - 1) = 4 × 15 OR M1 Multiplication by 4 or 8 19 8 2 M1 \frac{40}{1000} × 200 \text{ oe} 20 x = 7, y = "1 3 M2 \frac{a^2}{b} OR M1 their \frac{a^2}{b} × a^7 \text{ evaluated, or } \frac{a^2}{b} 21 (a)(i) "2a + 2b 1 1 (ii) b - a 1 1 (b) QS parallel to MN and double the length because QS = 2(b - a) = 2MN M1 QS parallel to MN and double the length, or for one statement with QS = 2 (b - a) AND M1 (x + 5)² seen (b) \frac{x - 5}{2} 3 M1 (x - 5)(x + 5) AND M1 (x + 5)				
120 000 women not wrong) justification (c) False - for age 50 to 100, women about 20 000, men 29 000 2 M1 for frue or false and 16 to 25, women about 40 000, men 21 000 seen 16 $y = -2x + 8$ 3 $M2 - 2x$ OR M1 for $\frac{6}{2}$ or (m) = 2 AND W1 for +8 in equation 1 SC2 for graph translated left and (5, 0) and (1, 0) shown or SC1 for graph translated left and either (-5, 0) or (1, 0) shown 18 11 www 4 M3 $5x = 60 - 7 + 2$ OR M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7$, $y = -1$ 3 M2 $\frac{a^7}{b}$ OR W1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR W1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR W1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR W1 (i) b - a 21 (a)(i) $-2a + 2b$ 1 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 20 Or one statement with QS = $2(b - a)$ 20 Or one statement with QS = $2(b - a)$ 3 22 (a) $(x + 5)^2 - 37$ 3 3 M2 $x^2 + 5x + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen (b) $\frac{x - 5}{2}$ 3 M1 $(x - 5)(x + 5)$ AND	15	woman could be anywhere in the 50	1	Do not accept "she was 100" oe
Second			2	
OR M1 for $\frac{6}{2}$ or (m) = 2 AND W1 for +8 in equation 17 Graph translated right (5, 0) marked (71, 0) marked 1 or SC2 for graph translated left and (5, 0) and (1, 0) shown or SC1 for graph translated left and either (75, 0) or (1, 0) shown 18 11 www 4 M3 $5x = 60 - 7 + 2$ OR M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $-2a + 2b$ 1 (ii) $-2a + 2b$ 1 (iii) $-2a + 2b$ 1 (ii) $-2a + 2b$ 1 (iii) $-2a + $			2	
AND W1 for +8 in equation 17 Graph translated right (5, 0) marked 1 (71, 0) marked 1 (75, 0) and (1, 0) shown or SC1 for graph translated left and either (75, 0) or (1, 0) shown 18 11 www 4 M3 $5x = 60 - 7 + 2$ OR M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR (ii) $\mathbf{b} - \mathbf{a}$ 1 (b) QS parallel to MN and double the length because QS = $2(\mathbf{b} - \mathbf{a}) = 2MN$ 2 M1 QS parallel to MN and double the length, or for one statement with QS = $2(\mathbf{b} - \mathbf{a})$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen 3 M1 $(x - 5)(x + 5)$ AND	16	y = -2x + 8	3	
W1 for +8 in equation				M1 for $\frac{6}{2}$ or (m) = 2
17 Graph translated right (5,0) marked (71,0) marked (71,0) marked (71,0) marked (71,0) marked (71,0) marked (71,0) marked (75,0) and (1,0) shown or SC1 for graph translated left and either (75,0) or (1,0) shown (75,0)				AND
				W1 for +8 in equation
The second color of the	17	Graph translated right	1	SC2 for graph translated left and
SC1 for graph translated left and either ($(5, 0)$) or $(1, 0)$ shown 18 11 www 4 M3 $5x = 60 - 7 + 2$ OR M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $-2a + 2b$ 1 1 (ii) $b - a$ 1 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 2 M1 QS parallel to MN and double the length, or for one statement with QS = $2(b - a)$ 22 (a) $(x + 5)^2 - 37$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen M1 $(x - 5)(x + 5)$ AND				(⁻ 5, 0) and (1, 0) shown
18		(⁻ 1, 0) marked	1	
18 11 www 4 M3 $5x = 60 - 7 + 2$ OR M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $-2a + 2b$ 1 (ii) $b - a$ 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 2 M1 QS parallel to MN and double the length, or for one statement with QS = 2 (b - a) (b) $\frac{x - 5}{2}$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen M1 $(x - 5)(x + 5)$ AND				
OR M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $-2a + 2b$ 1 (ii) $b - a$ 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 2 M1 QS parallel to MN and double the length, or for one statement with QS = $2(b - a) = 2MN$ 22 (a) $(x + 5)^2 - 37$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen M1 $(x + 5)^2$ seen M1 $(x - 5)(x + 5)$ AND	40	44	4	, , , , ,
M2 $3x + 7 + 2(x - 1) = 4 \times 15$ OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 1 (ii) b - a 1 1 (b) QS parallel to MN and double the length because QS = 2(b - a) = 2MN 2 (b - a) 2 (b - a) 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen M1 $(x + 5)^2$ Seen M1 $(x + 5)^2$ Seen M1 $(x - 5)(x + 5)$ AND	18	11 www	4	
OR M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $-2a + 2b$ 1 (ii) b - a 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 22 (a) $(x + 5)^2 - 37$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen (b) $\frac{x - 5}{2}$ 3 M1 $(x - 5)(x + 5)$ AND				
M1 Multiplication by 4 or 8 19 8 2 M1 $\frac{40}{1000} \times 200$ oe 20 $x = 7, y = -1$ 3 M2 $\frac{a^7}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $-2a + 2b$ 1 (ii) b - a 1 (b) QS parallel to MN and double the length because QS = 2(b - a) = 2MN 2 M1 QS parallel to MN and double the length, or for one statement with QS = 2 (b - a) 22 (a) $(x + 5)^2 - 37$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen M1 $(x + 5)^2$ seen M2 $(x + 5)^2 - 37$ 3 M1 $(x - 5)(x + 5)$ AND				, ,
20 $x = 7, y = -1$				
20 $x = 7, y = 1$ 3 $M2 \frac{1}{b}$ OR M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $^-2a + 2b$ 1 (ii) $b - a$ 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 2 M1 QS parallel to MN and double the length, or for one statement with QS = $2(b - a)$ 22 (a) $(x + 5)^2 - 37$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen (b) $\frac{x - 5}{2}$ 3 M1 $(x - 5)(x + 5)$ AND	19	8	2	M1 $\frac{40}{1000} \times 200$ oe
M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$ 21 (a)(i) $^-2a + 2b$ (ii) $b - a$ 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 2 M1 QS parallel to MN and double the length, or for one statement with QS = $2(b - a)$ 22 (a) $(x + 5)^2 - 37$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen (b) $\frac{x - 5}{2}$ 3 M1 $(x - 5)(x + 5)$ AND	20	x = 7, y = -1	3	M2 —
21 (a)(i) $^{-}2a + 2b$ 1 (ii) $b - a$ 1 (b) QS parallel to MN and double the length because QS = $2(b - a) = 2MN$ 2 (a) $(x + 5)^{2} - 37$ 3 (b) $\frac{x - 5}{2}$ 3 (c) $\frac{x - 5}{2}$ 3 (d) $\frac{x - 5}{2}$ 3 (e) $\frac{x - 5}{2}$ 3 (f) $\frac{x - 5}{2}$ 3 (g) $\frac{x - 5}{2}$ 3 (h) $\frac{x - 5}{2}$ 4 (h) $\frac{x - 5}{2}$ 5 (h) $\frac{x - 5}{2}$ 6 (h) $\frac{x - 5}{2}$ 6 (h) $\frac{x - 5}{2}$ 7 (h) $\frac{x - 5}{2}$ 8 (h) $x -$				OR
(ii) $\mathbf{b} - \mathbf{a}$ (b) QS parallel to MN and double the length because QS = $2(\mathbf{b} - \mathbf{a}) = 2$ MN 2 M1 QS parallel to MN and double the length, or for one statement with QS = $2(\mathbf{b} - \mathbf{a})$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen (b) $\frac{x - 5}{2}$ 3 M1 $(x - 5)(x + 5)$ AND				M1 their $\frac{a^2}{b} \times a^7$ evaluated, or $\frac{a^2}{b}$
(b) QS parallel to MN and double the length because QS = $2(\mathbf{b} - \mathbf{a}) = 2$ MN 2 Parallel to MN and double the length, or for one statement with QS = $2(\mathbf{b} - \mathbf{a})$ 3 M2 $x^2 + 5x + 5x + 25$ OR M1 $(x + 5)^2$ seen 3 M1 $(x - 5)(x + 5)$ AND	21	(a)(i) ⁻ 2a + 2b	1	
length because QS = $2(\mathbf{b} - \mathbf{a}) = 2MN$ length, or for one statement with QS = $2(\mathbf{b} - \mathbf{a})$		(ii) b – a	1	
OR M1 $(x + 5)^2$ seen (b) $\frac{x-5}{2}$ 3 M1 $(x-5)(x+5)$ AND			2	length, or for one statement with QS = 2
(b) $\frac{x-5}{2}$ M1 $(x+5)^2$ seen M1 $(x+5)^2$ seen AND	22	(a) $(x + 5)^2 - 37$	3	
(b) $\frac{x-5}{2}$ 3 M1 $(x-5)(x+5)$ AND				
$\frac{\mathbf{b}}{2}$ AND		a x - 5	3	
M1 $2(x+5)$		(b) <u>2</u>		
				M1 $2(x+5)$

23	(a) Slant height of cone = 4	B1	Accept /= 4
	Arc length = $4 \times 2\pi \times \frac{1}{4}$ [= 2π]	M1	
	Radius of cone = 1 (from $\frac{2\pi}{2\pi}$)	B1	
	Use of Pythagoras' theorem	M1	$h^2 + 1^2 = 4^2$ or better
	$h = \sqrt{15}$	A 1	
	(b) Scale factor 2	M1	
	$2\sqrt{15}$ cao	A 1	

Paper Total: 100 marks

Assessment Objectives and Functional Elements Grid

GCSE MATHEMATICS B

J567/03

Mathematics B Paper 3 (Higher Tier)

	Topic	Context	Ref	AO1	AO2	AO3	Functional
1	Transformations		HIG6	5			
2	Draw straight-line graph		HIA4	4			
3	Calculations with mixed numbers	Milk	HBN2			6	6
4	Change subject of formulae; solve inequality		HBA2 HBA3	7			
5	Estimate answer to calculation		HBN5 HSN3	3			
6	Mutually exclusive probability	Counters	HIS1		3		
7	Relative frequency	Lottery machine	HBS1		3		
8	Angle in pentagon; tessellating		HBG3	3			
9	Sequence		HBA1	3			
10	Prime factors, HCF, LCM		HBN6	6			
11	Percentages	Selling cars	HBN4		6		3
12	Geometrical calculation		HSG1	3			
13	Probability with tree diagram	Traffic lights	HSS1		4		2
14	Similar triangles	Company logo	HSG5		7		7
15	Interpreting table and histogram	Marriage statistics	HGS2 HGS3		5		5
16	Find equation of line		HSA7	3			
17	Transforming graph		HGA6	3			
18	Algebraic fraction equation		HSA1	4			
19	Stratified sampling	School	HGS4		2		2
20	Laws of indices		HGN1	3			
21	Vectors	Parallelogram	HGG5	2		2	
22	Completing the square; simplifying		HGA2, HSA2	6			
23	Mensuration of sectors and cones		HGG4			7	
	TOTAL			55	30	15	25

Paper Total: 100 marks