GCSE

Mathematics B (MEI)

General Certificate of Secondary Education

Unit B293: Paper 3 (Higher - Modular)

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Section A

1	(a) (b)	17 50	2 2	M1 $\frac{51}{300}$ soi M1 divide 300 by 6 or $250: 50$	
2	(a) (b)	Either odd or even $5 n$ could be odd or even and therefore so could $5 n+1$ oe Always even Multiple of 2	2 2	B1 for 'either odd or even' with incomplete reason B1 for 'always even' with incomplete reason	Accept the sub of two values to give an odd answer and an even answer for B2 oe eg an even number (or 2) \times any number is even 1 example, odd and 1 even is incomplete
3		$\begin{aligned} & 700 \times 0.05 \text { oe } \\ & £ 35 \\ & \text { So an increase of } £ 40 \text { is better. } \end{aligned}$	M1 A1 A1	35 or 735 implies M1A1	M0 for no working seen
4		Sight of 0.8 or 0.6 or 0.5 \qquad $0.48 \text { or } 0.5 \text { or } 0.4$ Correct ans from their approximation	M1 A1 A1	Soi by 0.48 dep on M1A1	
5		$\begin{aligned} & x=28^{\circ} \\ & \text { Exterior angle of triangle } \\ & \quad=\text { sum of interior opposite angles oe } \\ & y=114^{\circ} \\ & \text { (Co-)interior or allied angles or } \\ & \text { corresponding angles } \\ & \hline \end{aligned}$	B1 B1 B1 B1		Or equivalent - ie angles on a straight line Then angle sum of triangle (=180)

6	(a) (b)	2 Multiplying to equalise coefficients Add or subtract appropriately $\begin{aligned} & x=3 \\ & y=-2 \end{aligned}$	3 M1 M1 A1 A1	M1 for $6 x+15=27$ or $2 x+5=9$ M1 for resolving to $a x=b$ If 0 scored, SC1 for $x=3, y=-2$ without algebraic support,	Resolution of brackets
7		2.2	4	M1 for ratio of sides attempted A1 for $\frac{x}{5}=\frac{(3.5-2.4)}{(3.5-1)}$ oe M1 (dep on $1^{\text {st }} \mathrm{M} 1$) for correct method of solution. If 0 scored $\mathbf{S C 1}$ for 1.1 seen.	Or equivalent Accept "Length of beam is double height to vertex", so new beam will be $1.1 \times 2=2.2$
8	(a) (b)	$\frac{23}{200}$ oe Jake We would expect roughly equal numbers for each number, but 23 is too low (or 51 is too high)	1 B1	eg 0.115, ISW an attempt to change form of the answer or to round answer B1 for Jake with incomplete reason	
9	(a) (b)	$x(x-2)$ $\frac{x-3}{x}$ WWW final answer	1 3	M1 for attempt to factorise top A1 top correct and ft their (a)	$(x \pm 2)(x \pm 3)$ or $(x \pm 1)(x \pm 6)$

Section B

10	(a) (b)	Fred: 73 Jo: 57 Any 2 of: Fred higher average Fred wider spread Fred more trees/more apples/data/ tree with max apples oe	B1 B1 $1+1$		Must be a comparison Average can be median or mean
11	(a) (b)	0.6 oe 57.75	2 4	ISW an attempt to change form of the answer, $\mathbf{M 1}$ for $\frac{16+13+7}{60}$ M2 for $52.5 \times 24+57.5 \times 16+\ldots$ soi by 3465 Or M1 for above with other consistent value in interval +M1 (dep on at least M1) for $\div 60$	Accept their 60 if they clearly add $24+16+13+7$
12	(a) (b)	Mark at approx $(1.3,2)$ Trials to show root in range [1.3, 1.4] Trials to show root in range [1.32, 1.33] Trial to find which end - 1.32	1 M1 A1 A1	Within half a square	$\begin{aligned} & \mathrm{f}(1.3)=1.897<2, \mathrm{f}(1.4)=2.344>2 \\ & \mathrm{f}(1.32)=1.98<2, \mathrm{f}(1.33)=2.02>2 \\ & \mathrm{f}(1.325)>2 \end{aligned}$
13		50	3	M1 for $\frac{D C+40}{2} \times 70$ oe M1 for equating their area to 3150	Equiv method M1 for $3150-70 \times 40$ M1 for $\frac{350}{70} \times 2$

B29		Mark Scheme			January 2011
14		$24.6{ }^{\circ}$ ignore subsequent rounding	3	M2 for $\sin ^{-1} \frac{25}{60}$ oe Or $\mathbf{M 1}$ for $\sin \theta=\frac{25}{60}$ oe If 0 scored, $\mathbf{S C 1}$ for $65.4,65$ or 66	following $\mathrm{M} 1, \sin ^{-1}$ can be implied by angle between 24 and 25 Accept 25 following
15	(a) (b) (c)	$\begin{aligned} & (8,4,2) \\ & 9.16 \text { to } 9.17(\mathrm{~km}) \\ & X \text { in correct position at midpoint of DE } \end{aligned}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	M2 for attempt at 3-D Pythagoras or 2 applications of 2-D Pythagoras M1 for attempt at 2-D Pythagoras	
16	(a) (b)	4 (6) 786 Scale consistent with labelling	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	B1 for one error B1 one error	eg labelling 2, 4, 6, scale 10 cm or 0.2, 0.4, 0.6 scale 1 cm
17	(a) (b)	$c=3, d=1$ 1	3 1	M1 Attempt to complete square A1 for either $c=3$ or $d=1$ Or B1 for $x^{2}-2 c x+c^{2}+d$ $+\mathbf{B 1}$ for $c=3+\mathbf{B} \mathbf{1}$ for $d=1$ ft their d	i.e. $(x-3)^{2}+$ anything
18		11 WWW	3	M1 for 1450 or 125 seen m1 for $\frac{\text { small } 1500}{\text { large } 120}$	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

