RECOGNISING ACHIEVEMENT

GCSE

Mathematics B (MEI)

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Subject-Specific Marking Instructions

1. $\quad \mathbf{M}$ marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are awarded for a correct final answer or a correct intermediate stage.
SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ${ }^{\prime} 5^{2}+7^{2}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point
- \quad eg 237000, 2.37, 2.370, 0.00237 would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- \quad seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the
(i) mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.
(ii) If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
(iii) If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation x next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Section A

Question			Answer	Marks	Part marks and guidance	
			1 1 7 5 3 7 8 9	2 1FT	B1 if one error Key can be any correct number; strict ft	Stem in reverse order is OK $10,20,30$ etc in stem is one error. Unordered is one error.
2	(a)	(i)	$x(x-16)$	1		
		(ii)	$(x-4)(x+4)$	1		
	(b)		$x^{4}-7 x^{3}$	2	B1 for one term correct	
3	(a)		8	2	M1 for substituting into formula	
	(b)		64	2	M1 for multiplying their (a) by 8	
4	(a)		64(\%) nfww	2	M1 for $\frac{96}{150}(\times 100)$ or 0.64 Or: Attempt to get correct answer by breaking down into percentages	Complete method, arithmetic errors only
	(b)		No, with correct arithmetic justification	3	M1 for $\frac{96}{240}(\times 100) \quad$ A1 for 0.4 or 40% Or: M1 for 96 said yes and 240-96 didn't A1 for144 didn't A1ft for YES or NO	Justification is 0.4 or 40% or $96<120$ oe For M mark subtraction needed Justification will be $96<144$

Question			Answer	Marks	Part marks and guidance	
5	(a)		$3 \frac{9}{10}$	3	M1 for lcm(10) seen A1 for $\frac{9}{10}$ seen oe	
	(b)		$3 \frac{1}{2}$	3	M1 for attempt to turn into improper fractions A1 for $\frac{5}{2}$ and $\frac{7}{5}$ seen	
6	(a)		11	3	M1 Multiply out or collect A1 $3 x-12=21$ or $x-4=7$	
	(b)		24	2	M1 Multiply out or collect giving $\frac{x}{4}=6$ or $x-4=20$	
7	(a)		72	3	M1 for evidence of frequency density, ie half middle values or double last M1 (dep) Add	SC2 for 720 nfww
	(b)		$\frac{5}{18}$ oe	2	M1 20 - their (a)	$\frac{200}{720} \text { is } \mathrm{OK}$
8	(a)	(i)	$\frac{1}{8} \text { or } 0.125$	1		
		(ii)	1	1		
	(b)		8	1		Accept 10^{8}
	(c)		4.9×10^{-4}	1		

Section A Total: 36

Section B

Question		Answer	Marks	Part marks and guidance	
9		Constant speed at beginning or end slows down then speeds up Then slows down	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept acceleration for speeds up and deceleration for slows down oe	
10	(a)	18.85 isw	2	M1 for substitution in formula	Accept 18.8(4) but not 18.9
	(b)	28.27	2	M1 for substitution into formula	Accept 28.3 but not 28.2
11	(a)	284	1		
	(b)	$C=\frac{5}{9}(F-32)$	3	M1 $F-32=\frac{9}{5} C \text { or } 5 F=9 C+160$ M1 $9 C=5 F-160 \text { or } 9 C=5(F-32)$ SC1 for $\frac{5}{9} F$ or $k F-32$	Accept $C=\frac{F-32}{\frac{9}{5}}$ or $C=\frac{F-32}{1.8} 3$ marks Or: SC2 $C=\frac{F+32}{\frac{9}{5}} \text { or } C=F-32 \div \frac{9}{5} \text { or } C=\frac{5 F}{9}-32$
	(c)	175 or 177 or 176. (6....)	1		
12	(a)	499	1		
	(b)	203.7	4	M1 Use of midpoints 50.5, 150.5 etc M1 for sum of $x f$, 4242, 15351, etc A1 for sum: 73330 soi	SC M1 Use of midpoints 50, 150 etc M1 for sum of $x f$, 4200, 15300, etc A1 for sum: 73150 (A0 ans) (SC3 for 203 nfww)
	(c)	Because we do not know exact values and so use midpoint	1	Reference to both required. "Midpoint" must be seen)	

Question		Answer	Marks	Part marks and guidance	
	(d)	Mean up (or total up or more per day oe) Range up (maximum number up oe)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		
13		$\begin{aligned} & \mathrm{AC}=520 \\ & \text { Seth: } \frac{520}{1000} \times \frac{60}{2}=15.6 \\ & \text { Ruth: } \frac{680}{1000} \times \frac{60}{3}=13.6 \end{aligned}$ So Ruth by 2 minutes	2 4	M1 for Pythagoras soi M1 for working out time A1 for one of the times (in hrs or mins) A1 for other time (in hrs or mins) Accept 2.04 or better	le dist/speed - ignore units Accept 0.226 hrs or better This statement must be seen
14	(a)	Choose numbers $n-2, n-1, n, n+1, n+2$ Add to give $5 n$ Therefore is a multiple of 5	3	M1 for choosing correct set and adding A1. May need justification by factorisation or explanation.	Allow any sequence of 5 consec numbers, eg $n, n+1$, etc Leading to correct conclusion
	(b)	Any correct example eg $1+2+3+4=10$ which is not a multiple of 4 .	1	Must include words "and this is not a multiple of 4 " oe	Eg $4 n-2$ is not a multiple of 4 is ok
15	(a)	$\begin{aligned} & \text { Major arc }=2 \pi \times 21 \times \frac{300}{360}=35 \pi(=109.95) \\ & 2 \pi r=35 \pi \Rightarrow r=\frac{35 \pi}{2 \pi}=17.5 \end{aligned}$	3	M1 major arc M1 formula to find r	Allow arithmetic calculation that results in 17.50 or 17.51 to 4 sf

Question	Answer	Marks	Part marks and guidance	
(b)	$\begin{aligned} & \text { Height of cone is given by } h^{2}=21^{2}-r^{2} \\ & \qquad=134.75 \\ & \Rightarrow h=11.61 \\ & \Rightarrow V=\frac{1}{3} \pi r^{2} h=3722.79=3723 \text { or } 3730 \end{aligned}$	3	M1 for use of Pythagoras to find h M1 for volume using $r=17.5$ and their h from Pythagoras or 21	

Section B Total: 36

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

