GCSE

Mathematics B (MEI)

General Certificate of Secondary Education

Unit B294: Paper 4 (Higher - Terminal)

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

If answers clearly come from totally incorrect working, do not award the marks
Section A

1	(a)	two of 0.4 or $0.5,690$ or 700 , and 30 or 28 seen 280 or 350 or 345 or 276 or 23 Conclusion e.g about 10 so 10.49...	M1 A1 A1	accept 350	
	(b)	10.5	1ft	ft figs 105 with appropriate dp for their (a)	
2	(a)	Correct diagram with compass arcs at B	3	B2 for correct, but no compass arcs B1 for AD and DC correct	
	(b)	Perpendicular bisector of BD with arcs Circle centre A radius 6.5 cm Correct line segment	$\begin{gathered} 2 \\ 1 \\ 1 \mathrm{ft} \end{gathered}$	$\pm 2 \mathrm{~mm}, \pm 1^{\circ}$ B1 without arcs $\pm 2 \mathrm{~mm}$ compass drawn ft from reasonable attempts at correct loci	
3	(a)	Rectangle (1, 2), (3, 2), $(3,3),(1,3)$	2	SC1 enlargement sf 2 centre $(0,0)$ SC1 sf $\frac{1}{2}$ with wrong centre.	
	(b)	Rectangle (4, - 3), (8, -3), (8, -1), (4, -1)	2	SC1 for x-movement or y-movement correct	
4	(a)	5^{8}	2	B1 for 5^{11} or $5^{1} \times 5^{7}$ or $5^{4} \times 5^{4}$ seen	
	(b)	5^{-1}	1		
	(c)	$5^{\frac{3}{2}}$	1	Accept $5^{\frac{11}{2}}$ or $5^{1.5}$	

5		$\begin{aligned} & 3 x+5(x+2)=126 \text { or better } \\ & x=14.50 \end{aligned}$	2 B3	M1 for $5(x+2)$ M1ft for $3 x+5 x+10(=126)$ or $126-10$ seen ft their $a x+b(x+2)$ + M1ft for $8 x=126-10$ or their $116 / 8$	
6	(a)	$\frac{6}{9}$ and 2nd card probabilities $\frac{x}{8}$ $\frac{2}{8}, \frac{6}{8}, \frac{3}{8}, \frac{5}{8}$	1 1		
	(b)	$\frac{6}{2} \text { ое сао }$	3	M2 ft for $1-\frac{3}{9} \times$ their $\frac{2}{8}$ oe M1 ft $\frac{3}{9} \times$ their $\frac{2}{8}$	Their $3 / 9 \times 6 / 8+6 / 9 \times 3 / 8+6 / 9 \times 5 / 8$ Or two of their $3 / 9 \times 6 / 8,6 / 9 \times 3 / 8,6 / 9 \times 5 / 8$
7	(a)	(8), 23, 43, 60, 74, (80)	1		
	(b)	Plotting 5 or 6 pts at $3,3.25,3.5$ etc joined by st lines or curve	$\begin{gathered} 1 \\ 1 \mathrm{ft} \end{gathered}$	$\pm 1 / 2$ small square ft dep on cumulative graph (ignore to left of $t=3)$	$1 / 2$ small squae of pts
	(c)	(i) graph read off at cf $=40$ (ii) their 3.75 - their graph read off at $\mathrm{cf}=20$	1 ft 2 ft	strict ft from their cumulative graph strict ft from their cumulative graph M1 for clear read offs at 20 and 60	In (c) if no joins only eligible for M1
	(d)	On average train slower oe Train more consistent oe	$\begin{aligned} & 1 \mathrm{ft} \\ & 1 \mathrm{ft} \end{aligned}$	SC1 ft for train greater median oe and road greater iqr oe with no interpretation	BOD for eg wider range more constant, smaller distribution

8	(a)	```AO = BO and CO = DO \angleAOC= \angleBOD (Vert) Opposite angles + conclusion + SAS```	1 1 1	Condone angles at O equal	
	(b)	$\angle \mathrm{ACO}=\angle \mathrm{BDO}$ or $\angle \mathrm{CAO}=\angle \mathrm{DBO}$ Alternate angles + conclusion	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept single letter angles Accept Z angles	
9	(a)	graph through (-2, 0), $(0,8)$ and $(2,0)$	1	ignore outside $-2 \leq x \leq 2$	
	(b)	graph through (-1, 0), (0, 4) and (1, 0)	1	ignore outside $-1 \leq x \leq 1$	
	(c)	graph through (0, 0), $(2,4)$ and $(4,0)$	1	ignore outside $0 \leq x \leq 4$	
10	(a)	23	2	M1 for $5^{2}-(\sqrt{ } 2)^{2}$ or $5^{2}-5 \sqrt{ } 2+5 \sqrt{ } 2-\sqrt{ } 2 \sqrt{ } 2$	allow 1 error
	(b)	$18+11 \sqrt{ } 3$	3	B2 for $18+k \sqrt{ } 3$ or $k+11 \sqrt{ } 3$ or M1 for $6+3 \sqrt{ } 3+8 \sqrt{ } 3+4 \sqrt{ } 3 \sqrt{ } 3$	allow 1 error

Section B

11	(a)	Plotting 6 points		$\pm \frac{1}{2}$ small square $\mathbf{B 1}$ for at least 3 correct	
	(b)	line drawn	1	between 0.6 and $1.4, \mathrm{H}=80$ and 145 and 155 at $A=11$ and some points on either side	
	(c)	H value read off at age 7	1ft	strict $\mathrm{ft} \pm \frac{1}{2}$ small square, dep on ruled straight line with positive gradient	
	(d)	No, too far out of range of data oe	1	Accept 'graph/points/table/data doesn't go that far Or 'change of rate of growth'	Not 'line'
12	(a)	-40	1		
	(b)	(i) $-4,32,(68), 104$ (ii) Correct ruled line	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	B1ft for 3 of their points plotted	
	(c)	10 ± 2	1		
13	(a)	$x=1.8$ oe	2	M1 for $7 x-2 x=9$	
	(b)	$3 x^{3}-15 x$	2	B1 for $3 x^{3}-k x$ or $k x^{3}-15 x, \mathrm{k} \neq 0$	

14	(a)	£8	3	M2 for $320 \times .025$ oe or M1 for 320×0.175 oe or 320×0.15 oe	Soi by 56 or 48
	(b)	$£ 646.25$	5	M2 for $632.5 \div 1.15$ oe or M1 for $115 \%=632.50$ M2 for their 550×1.175 oe Or M1 for their 550×0.175 oe	
15	(a)	$2 n+1$	2	B1 for $2 n$ seen	
	(b)	(i) $\frac{1}{2 n+1}$ (ii) $\frac{1}{2(n+1)+1}$ (iii) $\frac{2}{(2 n+1)(2 n+3)}$ (iv) $\frac{2}{2703}$ oe	1 ft 1 3 1	ft 1/ their (a), but must be $f(n)$ Accept just looking at denominator M1 for common denominator $(2 n+1)(2 n+3)$ A1 for $2 n+3-(2 n+1)$	Accept $4 n^{2}+8 n+3$ Accept separate fractions Condone omission of brackets for A1

16	(a)	$13^{2}+11^{2} \pm 2 \times 13 \times 11 \cos 63$ completion to 12.66 with no errors	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		
	(b)	$B O C=126$ and Angle at centre $=2 \times$ angle at circumf. ON bisects $\angle \mathrm{BOC}$ oe	1 1	Accept $126 \div 2=63$	
	(c)	7.10 (cm)	4	B1 for $\mathrm{BN}=6.33$ + M2 for 6.33 / $\sin 63$ or M1 for $\sin 63=r / 6.33$	B1 for 27° (if going on to use Sine Rule) M2 for $12.66 \sin 27 / \sin 126$ Or M1 for $12.66 / \sin 126=r / \sin 27$ oe
	(d)	$55.4-55.5\left(\mathrm{~cm}^{2}\right)$	3 ft	ft $126 / 360 \times \pi \times$ their 7.10^{2} M2 for $126 / 360 \times \pi \times$ their 7.10^{2} M1 for $126 / 360$ seen Or SC1 for 27.7 (cm^{2})	
17	(a)	$\begin{aligned} & 2 \pi x+2 y=34 \\ & 6 x+2 y=34 \text { and conclusion } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		Must be clear 3 has come from π
	(b)	$\begin{aligned} & y=17-3 x \\ & 3 x^{2}+2 x(17-3 x)=75 \\ & 3 x^{2}-34 x+75 \\ & (3 x-25)(x-3) \\ & \\ & x=3 \end{aligned}$ rejection of $25 / 3$ because y is -ve $y=8$	1 ft 1 ft A1 M1 ft A1 A1 A1 ft	making x (or y) the subject of (b) subst in (a) attempt to factorise their 3 term quadratic (2 terms correct) or substitute in formula (only sign errors) ft substituting their x into their (b)	Accept y becoming -ve without comment

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

