GCSE

Mathematics B (MEI)

General Certificate of Secondary Education B294

Paper 4 Higher Tier

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

If answers clearly come from totally incorrect working, do not award the marks.

SECTION A

Question		Expected Answers	Marks	Notes
1	(a)	135°	2	M1 for 6×180 or 1080 or $180-360 / 8$ seen
	(b)(i)	$135+135$ soi by 270 seen Evidence of remainder considered	$\begin{aligned} & \hline \text { B1FT } \\ & \text { B1FT } \end{aligned}$	Ft dep on obtuse angle $\neq 120$ 360 is not divisible by 135 scores 2 SC1 for 135 is not divisible by 360
	(ii)	Square	1	
2		$\frac{2}{3} \text { and } \frac{1}{6} \text { only }$	2	B1 for 1 only or both right and 1 wrong
3	(a)	$\begin{aligned} & x+x+3+4 x+4 x-5=128 \\ & \text { oe } \end{aligned}$	2	B1 for any 2 of $x+3,4 x$ and $4 x-5$ seen
	(b)	13, 16, 52, 47	3	Condone wrong order M1 ft for simplifying to $a x+b=128$ A1 $x=13$
4	(a)	No, insufficient throws oe	1	
	(b)	450	3	M2 for 30/200 $\times 3000$ oe Or M1 for $30 / 200$ or 1 step in equivalent ratio method eg 100: 15
5	(a)	0.1 oe	2	M1 for $0.3+0.6$ oe seen
	(b)	0.09 oe	2	M1 for 0.3×0.3 oe
6	(a)	$1.32(2) \times 10^{9}$	1	
	(b)	1.195 (or 1.19 or 1.2) $\times 10^{9}$	3	B2 for figs 1.195 or 1.19 or 1.2 or M1 for $1322000000-127000000$ or 0.127×10^{9} or 13.22×10^{8}

Question		Expected Answers	Marks	Notes
7	(a)(i)	t^{8}	1	
	(ii)	$9 x^{-3} \text { or } \frac{9}{x^{3}} \text { WWW }$	2	B1 for $18 x^{2}$ seen or $9 x^{2} / x^{5}$ or $3 x^{2} \times 3 x^{-5}$ or ans k / x^{3} or $k x^{-3}$ SC1 for $9 x^{-2}$ or $9 / x^{2}$
	(b)	8/9 WWW	3	B1 for 8 WWW + B1 for $/ 9$ or $\times 1 / 9$ WWW
	(c)	$\frac{15+2 \sqrt{3}}{3}$	3	B2 for $\frac{a+b \sqrt{3}}{c}$ with two of a, b, c or M1 for $\times \sqrt{ } 3 / \sqrt{ } 3$
8	(a)	$\begin{aligned} & x=-1 \text { drawn } \\ & y=2 x+1 \text { drawn } \\ & 2 x+3 y=12 \text { drawn } \end{aligned}$ Correct region Indication of $x=-1$ and $y=2 x+$ 1 included and $2 x+3 y=12$ not included	$\begin{gathered} \hline 1 \\ 1 \\ 2 \\ \text { 1FT } \\ 1 \end{gathered}$	B1 for line with negative gradient through $(6,0)$ or $(0,4)$ Ft dep on lines with correct gradient sign and $x=k$ eg $2 x+3 y=12$ dotted line, others full
	(b)	- 2	1	
9		$\begin{aligned} & \hline \mathrm{AP}=\mathrm{AQ} \text { (same radius oe) } \\ & \text { and } \mathrm{PR}=\mathrm{QR} \text { (same radius } \\ & \text { oe) } \\ & \mathrm{AR} \text { is common oe } \\ & \triangle \mathrm{APR} \equiv \triangle \mathrm{AQR} \text { (SSS) } \\ & \therefore \angle \mathrm{PAR}=\angle \mathrm{QAR} \text { oe } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Condone 'given' Condone 'given' Or AR = AR This mark dep on the three statements with no others (but may omit reasons)
10		$\begin{aligned} & 1 \frac{1}{2} \mathbf{a} \text { oe } \\ & \mathbf{a}-\mathbf{b} \text { oe } \\ & -\mathbf{b}+4 \mathbf{a} \text { oe } \\ & -3 \mathbf{a}+2 b \text { oe } \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\mathbf{B 1}$ for $\mathbf{- b}+k \mathbf{a}, \mathrm{k} \neq 0$ or $\mathbf{b}-4 \mathbf{a}$ B1 for $-k \mathbf{a}+2 \mathbf{b}, k+v e, k \neq 0$ or $3 \mathbf{a}-2 \mathbf{b}$

SECTION B

Question		Expected Answers	Marks	Notes
11	(a)	$n=50-4 d$ oe	2	B1 for 4d n/4 seen
	(b)	Correct line or line of points or step function starting at $(0,50)$ or $(0,46)$	2	Ignore to right of $n=12$ B1 any line or line of points or step function going down in 4 s
	(c)	$12<x \leq 13$	1	
12	(a)	20-30	1	Acept 'to' $20<x<30$ etc
	(b)	Two from James' mode (average) higher oe Becky's spread less oe Becky's is positively skew and James' isn't AND Comparison of one interval OR Range is the same for both	1 +1	Accept eg, iqr, sd bigger Do not accept James' is more even ie cannot have both the last two to score 2
	(c)(i) (ii)	Limited types of people to choose from or that he does choose or general statement about randomness Arrival in group/at same time restricts choice or general statement about randomness	1 1	eg age, friends year group etc eg not varied, not random eg likely to live close (together) eg everyone is not equally likely to be selected
13	(a)	$\begin{aligned} & \text { Reflection } \\ & \qquad x=-1 \text { oe } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b)	$(-5,3),(1,3),(1,6)$	3	Give B2 for two correct vertices SC1 for enlargement centre $(4,0)$ sf k, $\mathrm{k} \neq 1$ or any enlargement sf 3
14	(a)	(£) 6400 or 6450	4	M2 for 9460×0.88^{3} oe or M1 for 9460×0.88 oe A1 for 6446 to 6447 + SC1 for seeing rounding of their answer to nearest 50 or 100
	(b)	(£) 10750	3	$\begin{aligned} & \hline \text { M2 for } 9460 \div 0.88 \text { oe } \\ & \text { or M1 for } 88 \%=9460 \end{aligned}$

Question		Expected Answers	Marks	Notes
15	(a)	$x(x-9)$ oe	1	
	(b)(i)	$(x=) 5 y-\mathrm{a} \mathrm{oe}$	2	M1 for $5 \times y=x+a$ or $y-\frac{a}{5}=\frac{x}{5}$
	(ii)	$\begin{gathered} x y-a x=-a b \text { oe } \\ x(y-a)=-a b \\ (x=)=a b \\ y-a \end{gathered}$	M1 M1 FT A1FT	
16	(a)	$\begin{aligned} & 378.3(33 \ldots) \text { or } 378 \\ & 363.6 \text { to } 363.7 \text { or } 364 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 for ($405+336+350) / 3$
	(b)	7 points plotted at correct height in middle of interval (FSTFSTF)	$\begin{gathered} \hline \text { B2 FT } \\ \text { B1 } \end{gathered}$	B1 FT for 5 or 6 pts correct
	(c)	down then up	1	Must be about trend over weeks not within week
17	(a)	135 (N)	2	M1 for 9 soi by eg $9 v^{2}$
	(b)	C	1	
18		$\begin{aligned} & \mathrm{AB}=\sqrt{ }\left(195^{2}+350^{2}-2 \times 195 \times\right. \\ & 350 \times \cos 115) \\ & 467-467.2 \\ & (195+350-\text { their } 467.13) \div 1.2 \\ & \text { oe } \\ & 64.8-65(\mathrm{~s}) \end{aligned}$	M2 A1 M1 A1	or M1 for clear attempt at cosine rule
19		$\begin{aligned} & x^{2}+(x+2)^{2}=5 \\ & 2 x^{2}+4 x-1=0 \end{aligned}$ substitution in formula or reaching (2) $[x+1]^{2}=k$ $x=-2.22, \quad x=0.22$ $y=-0.22, \quad y=2.22$	$\begin{gathered} \text { M1 } \\ \text { A2 } \\ \text { M1 FT } \\ \text { A1 + A1 } \\ \text { A1 FT } \end{gathered}$	or A 1 for $x^{2}+4 x+4$ allow 1 sign error ft from their 3 term quadratic or $\frac{-2 \pm \sqrt{ } 6}{2}$ ft their x values (both) +2

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

