GCSE

Mathematics B (MEI) (Two Tier)

General Certificate of Secondary Education GCSE J519

Mark Schemes for the Units

January 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Mathematics B MEI Two Tier (J519)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
B291 (Foundation - Modular) Paper 1 1
B292 (Foundation - Modular) Paper 2 5
B293 (Higher - Modular) Paper 3 9
B294 (Higher - Modular) Paper 4 13
List of Abbreviations 17
Grade Thresholds 18

Mark Scheme

B291 (Foundation - Modular) Paper 1

If answers clearly come from totally incorrect working, do not award the marks.

1	(a)	30000000	1	
	(b)	(i) 8490 (ii) 8500	1 1	
2	(a)	(i) $\frac{3}{4}$ (ii) 2 rectangles shaded	1 1	
	(b)	Rings round $\frac{2}{8}, \frac{10}{40}$	2	B1 for one correctly ringed + no extras, or two right + one extra
3		chord, sector radius centre circumference	1 1 1 1	
4		9:45 oe	3	B2 for $2 \frac{1}{4}, 2 \mathrm{~h} 15 \mathrm{~m}$ seen or $7.30+1 \mathrm{~h} 45+30 \mathrm{~m}$, or better or all correct with one arithmetic error SC2 for 9:10, 9.30 or 10.00 B1 for $1 \frac{3}{4}$ or 1 h 45 m seen or 135 m SC1 for $1 \mathrm{~h} 40,2 \mathrm{~h}, 2 \mathrm{~h} 30$ or $9: 05$, seen or $7.30+3 \times 35+2 \times 15$ oe
5	(a)	(i) $(x=) 3$ (ii) $(y=) 9$	1	
	(b)	28	2	B1 for 12 or 16 seen
	(c)	-12	1	
6	(a)	Fifty thousand, 50 thousand, 50000	1	
	(b)	4	1	
	(c)	$\begin{aligned} & \text { (i) } 40 \\ & \text { (ii) } 48 \end{aligned}$	1	

	(d)	$250 \times 60 \times 50$ 750000 \mathbf{m}^{3}	M1 A1 B1	figs 75
	(e)	$70 \times \frac{8}{5}$ 112	M1 A1	Or list of equivalents as far as 70
$\mathbf{7}$	(a)	Suitable labels indication of numbers	$\mathbf{1}$	Must have list of at least 2 types of vehicles tally and/or frequency oe
	(b)	Leading question oe	$\mathbf{1}$	
(c)	Vary location Vary time	$\mathbf{1}$		
$\mathbf{8}$	(a)	$n=\frac{m+3}{5}$ oe	$\mathbf{2}$	$\mathbf{M 1}$ for $m+3=5 n$ or $\quad \frac{m}{5}=n-\frac{3}{5}$
$\mathbf{n C 1}$ for $n=\frac{m-3}{5} \quad$ or $m+3 \div 5$ or				
$m+\frac{3}{5}$				

SECTION B

9	(a)	$\begin{array}{lll} \hline 4 \\ 20 \\ \ddots & & \\ 6 & \ddots & \ddots \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	FT from key where possible
	(b)	mode 8 median 7	$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \end{aligned}$	If B0 earned for median, B1 for 3567788814
10	(a)	(i) 24 (ii) 20	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b)	7	1	
11		$\begin{aligned} & 6 \text { bulbs } \\ & 10 \mathrm{p} \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	M1 for $10 \div 1.65$ oe
12	(a)	C	1	or 0.5
	(b)	E Suitable explanation.	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	or 1
13	(a)	(i) 23.1 (ii) 35.8	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	(b)	(i) 7921 (ii) 3.9 cao (iii) 8 cao	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
14	(a)	11	1	
	(b)	1	1	
	(c)	2	2	M1 for +1 or $\div 4$ soi SC1 for 2.75
15	(a)	$-3,1$	1	
	(b)	Points plotted Line drawn	$\begin{gathered} 1 \mathrm{ft} \\ 1 \end{gathered}$	
	(c)	Correct line	1	

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \mathbf{1 6} & & \begin{array}{l}\text { ldea of area, soi } \\
25(\pi) \text { or 100 or } 78 \text { to } 79 \\
56.25(\pi) \text { or } 225 \text { or } 176 \text { to } 177 \\
\begin{array}{l}\text { Supporting words or numerical } \\
\text { evidence. }\end{array}\end{array} & \begin{array}{l}\text { M1 } \\
\text { A1 } \\
\text { A1 }\end{array}
$$ \& A1 A1 A1\left(\frac{15}{10}\right)^{2}=2.25>2

A1 So good value\end{array}\right\}\)| A1 |
| :--- |

B292 (Foundation - Modular) Paper 2

If answers clearly come from totally incorrect working, do not award the marks.
SECTION A

1		$\begin{aligned} & \text { Europe } \\ & 35 \\ & 220 \\ & 293 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \mathrm{ft} \end{gathered}$	
2	(a) (b) (c)	$\begin{aligned} & 50 \\ & \frac{1}{4} \text { oe } \\ & 0.75 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
3	(a) (b)	Train A 2 hr 02 min 150	$\begin{gathered} 1+1 \\ 2 \end{gathered}$	If Zero, M1 for any correct train time seen M1 for $300 \div 2$
4	(a) (b) (c) (d)	$\begin{aligned} & \frac{3}{4} \\ & 1 \frac{3}{4} \text { isw } \\ & 2000 \times 14 \\ & 28000 \\ & 27 \end{aligned}$	1 1 M1 A1 2	accept any from 2000/2300 $\times 10 / 14 / 15$... .with matching correct answer $\mathbf{M 1}$ for 30×0.9 oe or for ' 10% is 3^{\prime}
5	(a) (b) (c) (d)	$\begin{aligned} & 20 \\ & 50 \\ & 1 \\ & 70 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	M1 for $7 \times(9+1)$ SC1 for ' $7 \times(6+1)=49$ ' seen

6	(a) (b)	$\begin{aligned} & \hline \frac{1}{5} \\ & 0.6 \text { oe } \end{aligned}$	3	M2 $\frac{40}{200}$ oe fraction, decimal or percent M1 for any/200, or 40/(x>160)
7	(a) (b) (c)	$\text { (3.40) } 3.804 .20 \text { (4.60) } 5.00$ Points correctly plotted discrete data	$\begin{gathered} 2 \\ 2 \mathrm{ft} \\ 1 \end{gathered}$	M1 for 2 correct (allow ft) $+/-1 \mathrm{~mm}$ B1 for 4 points correct. eg 'Can't have 1.5 toppings' or 'Can't have $£ 4$ charged'
8	(a) (b) (c) (d) (e)	$\begin{aligned} & \hline \text { diagram } \\ & 3 \\ & 1,(2), 3,4,5 \\ & \text { 'goes up by } 1 \text { each time' } \\ & 11 \\ & n-1 \text { oe } \end{aligned}$	$\begin{gathered} \hline 1 \\ 1 \mathrm{ft} \\ 2 \\ \\ 1 \\ 1 \\ 1 \end{gathered}$	ft from correct 2 by n diagram ($n \neq 2,3$) M1 for 3 correct, or for another correct diagram seen or $c=n-1$ in words
9*	(a) (b) (c) (d) (e)	8.8 and 7.6 plot points. +/-1mm accuracy (strong) positive (correlation) ruled, single line drawn (from their graph)	1 2 1 1 dep 1	cao Give B1 for 3 or 4 correct line through ($6.7,5.4$ to 5.8); line must have at least 4 points above (or on) and below (or on) it; line must extend over x - range of points. dep at least 1 mark for (b) dep straight line with positive gradient
10*	(a) (b)	correct arrow $x<6 \text { isw }$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	accept $x>-2$ M1 for $2 x<12$
11*		$x=5$	3	M1 for $5 x+3=4 x+8$ then $\mathbf{M 1}$ for $5 x$ - their ' $4 x$ ' or 8 - their ' 3 ' on one side of equation

SECTION B

12	(a) (b) (c)	point marked freehand parallel freehand perpendicular			$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	+/- 2 mm
13	(a) (b) (c)	Parallelogram Rectangle Trapezium			$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	
14	(a) (b) (c) (d) (e) (f)	mediu could sm med \lg $\mathrm{v} \lg$ Add fr if its16 correc 4 equa (their) Mediu	edium or 11 111111 1111 11 ncy colum lled axes th bars ect heights	arge 2 7 5 2	$\begin{gathered} \hline 1 \\ 1 \\ 2 \\ 2 \\ \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \mathrm{ft} \\ 1 \end{gathered}$	M1 for just 1 column, or for 1 error accept reversed axes ignore gaps or their absence accept freehand accept '53-63'
15	(a) (b)	6800			3 2	M1 for $10 \times 8 \times 5$ (=400) M1 dep for $\times 17$ if at least one of first M1's products done M1 for $1012 \div$ (their) 400 SC1 for $1012 \div$ (40 or 6800)
16		2800			3	M1 for $2500 \times 3 \times 4$ M1dep for $\div 100(=300)$ if $x 4$ seen ALT M2 for 300 www M1 for 'their 4\% of 2500' x 3 Or for 12% seen

17	(a) (b)	small 4 lots cost $£ 7.92$ soi 10.85 (miles/litre) soi 10.41 (miles/litre) soi Car A.	$\begin{gathered} 1 \\ 1 \\ \text { indep } \end{gathered}$ M2 A1	ALT: $7.95 \div 4=1.987$.. or both of '100 $\div 1.98=50.50 . .1 / 400 \div 7.95=50.31^{\prime}$ all seen, or equiv comparison. M1 for one unitary calculation seen.
18*	(a) (b)	```\(48^{\circ}\) ba.... alternate angles ... (angles on a) straight line```	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	condone ' T ' and 'S' condone Z angles
19*	(a) (b) (c)	Rotation through 90° anti-clockwise about origin correct translation correct reflection	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	M1 for any translation correct in x or y direction M1 for any reflection in $x=k$
20	(a) (b)	$\begin{aligned} & \hline 1600 \\ & 1.25 \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 3 \end{aligned}$	M1 for $2400 \div 1.5$ M1 for 3000 (g) seen www M1 for (their) $3000 \div 2400$
21*	(a) (b) (c)	$-3 \ldots 5$ 5+ points plotted correctly smooth parabolic curve through points $x=4.2$	$\begin{gathered} \hline 1 \\ \mathbf{1 f t} \\ \mathbf{1} \\ 1 \end{gathered}$	$\text { to }+/-1 \mathrm{~mm}$ allow 4.1 to 4.3
22	(a) (b)	$\begin{aligned} & 60600000 \\ & 5400 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	

B293 (Higher - Modular) Paper 3

If answers clearly come from totally incorrect working, do not award the marks.

SECTION A

1	(a)	$\text { (i) } \frac{5}{12}$	2	M1 for sight of LCM
		(ii) $\frac{1}{6}$	2	M1 for sight of 4 in denominator and not in numerator $\text { (soi by } \frac{2}{12} \text {) }$
	(b)	$\begin{aligned} & \approx \frac{20 \times 30}{300} \\ & \approx 2 \end{aligned}$	M1 A1	For sight of at least two numbers rounded correctly
2	(a)	Suitable labels indication of numbers	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Must have list of at least 2 types of vehicles tally and/or frequency oe
	(b)	Leading question oe	1	
	(c)	Vary location vary time	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
3	(a)	1 9 9 2 0 1 2 3 3 5 6 7 7 7 8 9 3 1 1 3 4 7 4 1 Key 1\| 9 means 19	3	B1 for correct branches B1 for leaves in correct order B1 Correct key
	(b)	27	1	
4	(a)	$\Rightarrow n=\frac{m+3}{5} \text { oe }$	2	M1 for $m+3=5 n$ or $\frac{m}{5}=n-\frac{3}{5}$ $\mathbf{S C} \mathbf{1}$ for $n=\frac{m-3}{5}$ or $m+3 \div 5$ or $m+\frac{3}{5}$
	(b)	p^{8}	1	
	(c)	($x=$) $\frac{17}{2}$ or $8 \frac{1}{2}$ or 8.5	3	M1 for attempt to clear fractions (eg $2 x-5$ $=3 \times 4$) M1 for collecting terms

5		3.6 www	3	$\mathbf{M 1} \frac{Q R}{6}=\frac{4.8}{8}=0.6$ A1 $Q R=0.6 \times 6$ Or: M1 sf $\frac{6}{8}: \quad$ A1 $4.8 \times \frac{6}{8}$
6	(a)	$(n-1)+n+(n+1)=3 n$ So is always a multiple of 3	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	
	(b)	$\text { (i) } \begin{aligned} & (n-1)^{2}+n^{2}+(n+1)^{2} \\ & =n^{2}-2 n+1+n^{2}+n^{2}+ \\ & 2 n+1 \\ & =3 n^{2}+2 \end{aligned}$	M1 A1 A1	Multiply at least one bracket At least one bracket correctly multiplied
		(ii) $3 n^{2}$ is a multiple of 3 . So $3 n^{2}+2$ is always 2 more than a multiple . So no.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	MOAO if no explanation Or: B1 one correct counter-example B1 Conclusion
7	(a)	$(x+2)^{2}-11$	2	B1 $(x+2)^{2}$ seen
	(b)	(i) -11 (ii) $x=-2 \pm \sqrt{11}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 $(x+2)^{2}=11 \mathrm{ft}$ Or: Substitute in correct formula

SECTION B

	(c)	$-1.9,0.3,1.5$	$\mathbf{2}$	$\mathbf{B 1}$ for 2 correct		
$\mathbf{1 6}$	(a)	14.59	$\mathbf{2}$	$\mathbf{M 1}$ sub in correct formula		
	(b)	(i) 58.4				
(ii) $151-152$					$\quad \mathbf{1}$	Allow $4 \times$ their (a) $\mathbf{f t}$
:---						

B294 (Higher - Modular) Paper 4

SECTION A

1	(a)	Triangle ACD with arcs Triangle ABC with arcs	$\begin{gathered} 2 \\ \mathrm{ft} 2 \end{gathered}$	$\pm 2 \mathrm{~mm}$ throughout B1 for triangle ACD without arcs ft B1 for triangle ABC without arcs
	(b)	Angle bisector of $\angle \mathrm{D}$ with arcs	ft 2	$\pm 2^{\circ} \mathrm{ft}$ from part (a) B1 for angle bisector no arcs
2	(a)	8.8 and 7.6	1	cao
	(b)	plot points. +/-1mm accuracy	2	Give B1 for 3, 4 correct
	(c)	(strong) positive (correlation)	1	
	(d)	ruled, single line drawn	1dep	line through (6.7, 5.4 to 5.8); line must have at least 4 points above (or on) and below (or on) it; line must extend over x - range of points. dep at least 1 mark for (b)
	(e)	(from their graph)	1	dep straight line with positive gradient
3	(a)	correct arrow	1	$\operatorname{accept} x>-2$
	(b)	$x<6$	2	M1 for $2 x<12$
4	(a)	30	2	B1 for $2 \times 3 \times 5$ or SC1 for 6 or 10 or 15
	(b)	2700	2	B1 for $2^{2} \times 3^{3} \times 5^{2}$ or SC1 for 2700k
5		$x=5$	3	M1 for $5 x+3=4 x+8$ then M1 for $5 x$ - their ' $4 x$ ' or 8 - their ' 3 ' on one side of equation
6	(a)	1.5×10^{4}	2	M1 for $4.5 \times 10^{9} \div 3 \times 10^{5}$ soi by figs 1.5
	(b)	4.35×10^{9}	2	B1 for figs 4.35
7	(a)	(i) $\mathrm{R}-\mathrm{R} R$ -	2	B1 for 4 correct
		(ii) (prime) factors other than 2 and 5	1	accept alternative eg 3 and 7 are factors
	(b)	$\frac{72}{99} \text { or } \frac{24}{33} \text { or } \frac{8}{11}$	2	M1 100r $=72.7272 \ldots \ldots$. oe

8	(a)	Women older oe Women greater spread oe	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	
	(b)	18 www	3	M1 for 20×1.4 to 1.6 M1 for $\quad-20 \times 0.6$
	(c)	26 www	2	B1 for 25-27
9	(a)	$\frac{4}{7} \mathbf{a}+\frac{3}{7} \mathbf{b}$	3	$\begin{aligned} & \text { M2 for } \mathbf{a}+\frac{3}{7}(\mathbf{b}-\mathbf{a}) \text { or } \mathbf{b}+\frac{4}{7}(\mathbf{a}-\mathbf{b}) \\ & \text { M1 } \frac{3}{7} \text { or } \frac{4}{7} \text { seen } \end{aligned}$
	(b)	$\mathbf{a}+\frac{n}{n+1}(\mathbf{b}-\mathbf{a})$ oe	3	M1 for $\frac{n}{n+1}$ or $\frac{1}{n+1}$ $+\mathbf{M 1}$ for $\mathbf{a}+\left(\right.$ their $\left.\frac{n}{n+1}\right)(\mathbf{b}-\mathbf{a})$ or $\mathbf{b}+\left(\right.$ their $\left.\frac{1}{n+1}\right)(\mathbf{a}-\mathbf{b})$
10	(a)	x^{3} www	2	B1 for $x^{2.5}$ oe or $\sqrt{x^{6}}$ or $(\sqrt{ } \mathrm{x})^{6}$ seen
	(b)	$\begin{aligned} & y(c x+d)=a x+b \\ & c x y-a x=b-d y \\ & x(c y-a)=b-d y \\ & x=\frac{b-d y}{c y-a} \text { oe } \end{aligned}$	$\begin{gathered} 1 \\ \text { M1 } \\ \text { M1 } \\ 1 \end{gathered}$	mark on intention attempt to multiply brackets and isolate x terms factorising isolated x terms

SECTION B

11	(a)	Rotation through 90° anti-clockwise about origin	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \end{aligned}$	
	(b)	correct translation	2	M1 for any translation correct in x or y direction
	(c)	correct reflection	2	M1 for any reflection in $x=k$
	(d)	$\begin{aligned} & \binom{k}{5} \\ & x=\frac{1}{2} k+3 \end{aligned}$	M1 A1	SC1 for $\binom{-4}{k} \begin{array}{r}\text { following reflection in } \\ y=-1 \text { in (c) }\end{array}$
12	(a)	b, a alternate angles angles on a straight line	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	condone 'T' and 'S' condone Z angles
	(b)	(i) $2 p$	1	
	(b)	(ii) 180 - their (i) oe	ft 1	For ft their (i) must be $\mathrm{f}(\mathrm{p})$
13	(a)	34 www or 34.1	3	M1 for $\frac{700-522}{522}$ or $700 \div 522$ A1 for figs 340.9-341 or 1.34-1.341 Or SC1 for 25.4 (\%)
	(b)	360	3	M2 for $522 \div 1.45$ oe M1 for 145% or 1.45 seen
14	(a)	$n^{2} \mathrm{oe}$	1	
	(b)	$2 n+1$ oe	2	B1 for $2 n+k$
	(c)	$n^{2}+2 n+1$ oe	1 ft	ft their (a) + their (b) provided both $\mathrm{f}(\mathrm{n})$.
15	(a)	-3 ... 5	1	
	(b)	5+ points plotted correctly smooth parabolic curve through points	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	to +/-1 mm
	(c)	Correct ruled line $y=x-2$ Strict ft their points of intersection.	2 2 ft	B1 for table of values or at least 2 correct plots strict $\mathrm{ft} \pm 1 / 2 \mathrm{sm} \mathrm{sq}$, B1 for each pair of coords. No ft from horizontal or vertical lines.
16	(a)	$\frac{35}{36}$	3	M1 for $1 / 6 \times 1 / 6$ or $1 / 36$ + M1 for 1 - their ($1 / 6 \times 1 / 6$)

	(b)	0.025 www cao	3	M2 for [their $(35 / 36)]^{4} \times$ their $(1 / 36)$ M1 for [their $(35 / 36)]^{n} \times$ their $(1 / 36)$
17		87.4 or 87 following correct working	4	M2 for $x=(150 \sin 35) / \sin 100$ oe or M1 for $x / \sin 35=150 / \sin 100$ oe A1 for 87.36 .
18	(a)	circle centre $(0,0)$ radius $\sqrt{40}$ oe or 6.3.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	soi by coords at axes
	(b)	$\begin{aligned} & x^{2}+(x-4)^{2}=40 \\ & x^{2}-8 x+16 \\ & 2 x^{2}-8 x-24(=0) \text { or } x^{2}-4 x-12(= \\ & 0) \\ & (x-6)(x+2) \text { oe } \\ & x=6 \text { or }-2 \\ & (6,2) \text { and }(-2,-6) \end{aligned}$	M1 B1 A1 M1 A1 1 ft	attempt to factorise their quadratic (so 2 terms correct) or subst in formula ft their two x values subst in $y=x-4$

List of Abbreviations

The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- Where you see cao in the mark scheme it means correct answer only.
- Where you see ft in the mark scheme it means follow through.
- Where you see oe in the mark scheme it means or equivalent.
- Where you see rot in the mark scheme it means rounded or truncated.
- Where you see seen in the mark scheme it means that the mark is earned if that number or expression is seen anywhere in the answer space, including on the answer line, even if it is not in the method leading to the final answer.
- Where you see soi in the mark scheme it means seen or implied.
- Where you see www in the mark scheme it means without wrong working.
- Where you see dep in the mark scheme it means dependent on.

Grade Thresholds

General Certificate of Secondary Education
Mathematics B (MEI) (Two Tier) (J519)
January 2010 Examination Series

Unit Threshold Marks

Unit		Maximum Mark	A* *	A	B	C	D	E	F	G	U
B291	Raw mark	72	N/A	N/A	N/A	51	43	35	28	21	0
B292	Raw mark	100	N/A	N/A	N/A	67	55	43	31	19	0
B293	Raw mark	72	59	49	39	29	19	14	N/A	N/A	0
B294	Raw mark	100	71	58	45	32	21	15	N/A	N/A	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A*	A	B	C	D	E	F	G	U
Foundation Tier	279	N/A	N/A	N/A	240	200	160	120	80	0

The total entry for the Foundation Tier was 394.

	Maximum Mark	A*	A	B	C	D	E	F	G	U
Higher Tier	400	360	320	280	240	200	160	N/A	N/A	0

The total entry for the Higher Tier was 45.

The cumulative percentage of candidates awarded each grade was as follows:

	A*	A	B	C	D	E	F	G	U	Total No. of Cands
Percentage in each grade	2.7	2.5	1.4	41.5	25.5	11.9	5.2	6.2	3.2	439
Cumulative percentage	2.7	5.2	6.6	48.1	73.6	85.4	90.7	96.8	100	439

439 candidates were entered for aggregation this series
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums/index.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

