GCSE

Mathematics B (MEI) (Two Tier)

January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Mathematics B MEI Two Tier (J518)

MARK SCHEME FOR THE UNITS

Unit/Content Page
B261 (Foundation - Modular) Paper 1 1
B262 Foundation - Terminal 5
B263 (Higher - Modular) Paper 1 9
B264 Higher-Terminal 12
Grade Thresholds 16

B261 (Foundation - Modular) Paper 1

Section A

1	(a) 50 (b) Food (c) 5.75 (d) Symbol can't be divided up that accurately.	1 1 2 ft 1	M1 their (£6.50-75p) or $11.5 \times$ (a)	5
2	(a) (i) 20 (ii) 13 (b) 12-16 (c) 10	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 1 \end{aligned}$	M1 for any evidence of correct method	5
3	impossible likely	1 1		2
4	(a) 900 (b) any multiple of 9 (c) 57 and 66 (d) 36 (e) $\frac{3}{10}$ (f) (i) square (ii) Square root (g) $15-(5+2)+1$	1 1 2 2 1 1 1	100 seen oe including 9 B1 for 4 or figs 36 or M1 complete method B1 for $\frac{9}{30}$ isw	10

5	(a) $(4,2)$ (b) Correct line	1 1		2
6	18.2-19 m	B2	B1 for $9.1-9.5 \mathrm{~cm}$ seen M1 for $\times 2$ (may be imp by 18)	2
7	535	4	M1 for $\frac{7}{12} \times 300$ or $\frac{9}{20} \times 800$ or 25 and 40 seen A1 175 A1 360	4
8	(a) $\begin{aligned} & 2 x=8+5 \\ & (x=) 6.5 \mathrm{oe} \end{aligned}$ (b) $x^{3}-5 x^{2}$ final answer (c) (i) a^{7} (ii) m^{6}	M1 A1 2 B1 B1	or $x-2.5=4$ oe SC1 for2 $\times 6.5-5=8$ oe B1 $x^{3}-5 x^{2}$ seen or final answer with one term correct	6

Section B

16	(a) 150×75 11250 (b) Sub $r=60$ into πr^{2} 11300 to 11315 (c) 100×100 soi 25000	M1 A1 M1 A1 M1 A1		6
17	$2 \times 3 \times 5^{2}$ or $2 \times 3 \times 5 \times 5$ in any order.	2	M1 one factor pair seen or 2,3,5,5	2
18	(a) $\quad(x=) 20$ (b) subtract 8 or divide by 9 $t=\frac{s-8}{9}$	B1 M1 A1	Or for correct second step	3

B262 Foundation - Terminal

Section A

1	(a) 40 (b) six sectors shaded. (c) 120	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	M1 for 1% is 6 or (10\%) is 60 seen	4
2	(a) (i) correct point marked (ii) correct angle drawn (iii) their length (b) (i) 1200 (ii) 1.2	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 1 \mathrm{~mm} \\ & \pm 2^{\circ} \\ & \pm 1 \mathrm{~mm} \end{aligned}$	5
3	(a) (i) bar 4 high (ii) 7 (b) $\quad 1 / 7$	$\begin{gathered} 1 \\ 1 \\ 2 \mathrm{ft} \end{gathered}$	Condone $3 / 21$ ft for $3 /(14+$ their answer to aiii) M1 for unsimplified fraction < 1 with correct numerator or denominator	4
4	(a) 60 (b) Isosceles (c) Angle $\mathrm{ABD}=30^{\circ}$ $b=120^{\circ}$ 2 reasons from opposite	1 1 M1 A1 R1 R1	Condone 30 seen in workings. ABD is 30 because perpendicular is 90 Equal angles because isosceles Angles in triangle total 180.	6
5	(a) correct diagram (b) 18 22 (c) goes up in 4's (d) 34 (e) 11	$\begin{gathered} 1 \\ 1 \\ 1 \mathrm{ft} \\ 1 \\ 1 \\ 1 \\ \hline \mathrm{P} 1 \end{gathered}$	ft 4 more than first answer oe	6 6
6	(a) four correct points plotted (b) one correct comparison (c) Feb	$\begin{gathered} \text { P1 } \\ 1 \\ 1 \\ \hline \end{gathered}$	Joined or not Condone 19-4 = 15	3

7	(a) 2 (b) 8 (c) 51	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { M1 for } 1+4^{2}=17 \text { soi or (their 17) } \\ & \text { x } 3 \\ & \text { SC1 for answer of } 147 \end{aligned}$	4
8	(a) $12 / 16$ (b) $5 / 8,11 / 16,3 / 4$ $5 / 8=10 / 16$ seen	$\begin{gathered} \hline 1 \\ \text { B1 } \\ \text { M1 } \\ \hline \end{gathered}$	cao or equivalent method	3
9	(a) 45 (b) 52 (c) 9	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$		3
10	(a) (i) $8 \leq$ answer <8.5 (ii) any two of the figures rounded to 1SF 32 or 40 (b) (i) 46.592 (ii) 465.92 (iii) 56	$\begin{gathered} 1 \\ \text { M1 } \\ \text { A1 } \\ 1 \\ 1 \\ 1 \\ \hline \end{gathered}$	Or for 3200 seen Or for 4000/100 seen	6
11	(a) $7(2 a-1)$ (b) $3 p+15$ (c) $2 x^{3}+5 x$	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	B1 for either term correct in answer or both correct seen	4
12	Reflection $y=3$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept reflect but not mirror, flip etc Indep SC1 for equiv combination of transformations	2

Section B

20	(a) $£ 40$ (b) $£ 125$ (c) straight line with positive gradient from $(400,35)$ to (1000, their 125) (d) 430-440 1100 (e) Plan B cao £15	$\begin{gathered} \hline 1 \\ 1 \\ 1 \\ 1 \mathrm{ft} \\ 1 \\ 1 \\ 1 \\ 1 \mathrm{ft} \\ \hline \end{gathered}$	'their 125' or correct, SC1 for non ruled line through both ft from their graph $\pm 1 / 2$ small square (± 10) ft from their graph $\pm 1 / 2$ small square (± 10) ft from their graph $\pm 1 / 2$ small square ($£ 1$)	8
21	$\mathrm{x}=36$	2	M1 $\mathbf{x} / 3=12$ or $x+39=75$	2
22	(a) $(60-40) \div 2$ (b) $\begin{aligned} & \sqrt{ }\left(26^{2}-10^{2}\right) \\ & (h=) 24 \end{aligned}$ (c) $\quad A=1 / 2(60+40) \times$ their 24 oe $\times 80$ 96000 cm^{3}	$\begin{gathered} \hline 1 \\ \text { M2 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 ft } \\ \text { U1 } \end{gathered}$	Accept argument starting with 10 square root can be implied by later work M1 for $26^{2} \pm 10^{2}$ If splitting up must be full method for A Indep, must have correct volume dimensions ft $4000 \times$ their (b) Indep ISW attempts to change units to eg m^{3}	8

B263 (Higher - Modular) Paper 1

Section A

1	$\frac{19}{30}, \frac{2}{3}, \frac{7}{10}, \frac{11}{15}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	for sight of LCM all correct	2
2	(a) $x=80$ (b) $x^{3}-5 x^{2}$ final answer	2	B1 $x^{3}-5 x^{2}$ seen or final answer with one term correct	3
3	(a) $\begin{array}{rlll}1,4 & 2,4 & 3,4 \\ & 1,5 & 2,5 & 3,5 \\ & 1,6 & 2,6 & 3,6\end{array}$ (b) (i) Sums: 567 678 789 $P(6)=\frac{2}{9}$ (ii) $\frac{6}{9}\left(=\frac{2}{3}\right)$ i.s.w	2 1 ft 1ft	B1 one error or omission	4
4	$\begin{aligned} & \frac{7}{12} \times 300+\frac{9}{20} \times 800 \\ & =175+360 \\ & =535 \end{aligned}$	4	M1 for $\frac{7}{12} \times 300$ or $\frac{9}{20} \times 800$ Or 25 and 40 seen A1, A1 A1	4
5	(a) Sum is greater than 1 (b) Because the outcomes are not mutually exclusive	1		2
6	(a) $(7,6)$ (b) $\frac{11-1}{17--3}=\frac{1}{2}$	2 M1 A1	B1+B1 Correct y step / correct x step	4
7		M1 A1 M1 M1 A1	for ratio correct M1 Ratio to find AC subtracts	5

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
(a) E.g. \(4 x+3 y=9 \Rightarrow 8 x+6 y=18\)
\[
3 x-2 y=28 \Rightarrow 9 x-6 y=84
\] \\
Add: \\
\(17 x=102\)
\[
\Rightarrow x=6, y=-5
\] \\
(b) (i) \(\quad a^{7}\) \\
(ii) \(m^{6}\) \\
(iii) \(64 x^{3} y^{6}\)
\end{tabular} \& 4

1
1

2 \& | M1 equates one of the coefficients M1 Adds to get one variable A1 + A1 |
| :--- |
| B1 for 2 out of 64 or 3 or 6 | \& 8

\hline 9 \& $$
\begin{aligned}
& X^{2}=48 \\
& Y^{2}=50 \\
& \Rightarrow A^{2}=98 \\
& \Rightarrow A=7 \sqrt{2}
\end{aligned}
$$ \& 4 \& \[

$$
\begin{aligned}
& \text { B1 or } 16 \sqrt{9} \\
& \text { B1 or } 25 \sqrt{4} \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$
\] \& 4

\hline
\end{tabular}

Section B

10	(a) Sub 60 into πr^{2} $=11300 \text { to } 11315$ (b) $\times 3.7=41850$ or 41810 (c) $\times 0.54=22597$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ 1 \\ \text { M1 } \\ \text { A1 } \end{gathered}$	for sub correct Anything in range 41810-41850 multiply their (b) by 0.54 anything in range 22577-22600	5
11	(a) $(11.5,7)$ ringed (b) Both points correct (c) (i) Line within range (ii) Their value from their line (iii) Extrapolation not wise	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\mathrm{ft} \pm 1 / 2$ square	5
12	$\begin{array}{ll} \text { (a) } & 8 x+7=3 x+22 \\ & \Rightarrow 5 x=15 \\ & \Rightarrow x=3 \\ \text { (b) } & 3 y+7 \leq 25 \\ & \Rightarrow 3 y \leq 18 \\ & \Rightarrow y \leq 6 \end{array}$	M1 A1 A1 M1 A1	Reduction to $a x=b$ Reduction to $a y \leq b$	5
13	$\begin{array}{ll} \text { (a) } & 12360 \times 1.025 \\ & =12669 \\ \text { (b) } & 26450 \times 0.98 \times 1.014 \\ & =26280 \text { to } 26300 \end{array}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	$\begin{aligned} & \text { Accept } 12670 \text { or } 12700 \\ & \times 0.98 \\ & \times 1.014 \end{aligned}$	6
14	(a) 5 and 17 (b) Points plotted correctly Cubic curve through points. (c) Roots from their graph $(-2.2,0.5$, 1.7)	2 2 2	B1 + B1 B1 ft B1 ft B1 for one correct value or 2 right and one wrong (or missing)	4
15	$\begin{aligned} & =\frac{-7 \pm \sqrt{49-20}}{2} \\ & =-0.81 \text { and }-6.19 \end{aligned}$	3	M1 attempt to sub into correct formula A1 soi A1 Must be 2 d.p.	3
16	$\begin{aligned} & \text { Circumference of base }=2 \pi \times 10 \times \frac{288}{360} \\ & \qquad(=5.027) \\ & \Rightarrow 2 \pi r=2 \pi \times 10 \times \frac{288}{360} \\ & \Rightarrow r=8 \end{aligned}$ Use pythagoras $\begin{aligned} & \Rightarrow h=\sqrt{100-64}=6 \\ & \Rightarrow \mathrm{Vol}=\frac{1}{3} \pi r^{2} h=402.1 \ldots \end{aligned}$	6	M1 to get circum (soi) M1 to get r M1 A1 DM1 A1	6

B264 Higher -Terminal

Section A

\begin{tabular}{|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
(a) 46.592 \\
(b) 465.92 \\
(c) 56
\end{tabular} \& \[
1
\] \& \& 3 \\
\hline 2 \& \begin{tabular}{l}
\[
x+5+x+30+x+x-25=360 \text { oe }
\] \\
Collecting terms \((5 x+10)\) soi Isolating \(x\) and numbers (\(5 x=360-10\)) \(x=70\) WWW
\end{tabular} \& M1 M1ft M1ft B1 \& Condone 1 slip ft provided at least 3 angles these steps can be reversed \& 4 \\
\hline 3 \& \begin{tabular}{l}
(a) \(168=2 \times 2 \times 2 \times 3 \times 7\) \\
(b) 4200 \\
(c) 45
\end{tabular} \& 2
2
2 \& \begin{tabular}{l}
B1 for correct start to factor tree or factor ladder or a pair of factors eg \(2 \times\) 84 \\
M1 for \(600 \times 7\) or \(168 \times 5 \times 5\) oe SC1 for any common multiple \\
M1 for \(3 \times 3 \times 5\)
\end{tabular} \& 6 \\
\hline 4 \& \begin{tabular}{l}
(a) \(7(2 a-1)\) \\
(b) \(2 x^{3}+5 x\) final answer
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 2
\end{aligned}
\] \& B1 for either term correct in answer or both correct seen \& 3 \\
\hline 5 \& \begin{tabular}{l}
(a) Reflection
\[
y=3
\] \\
(b) Correct enlargement \((6,4),(9,4)\), \((6,10)\)
\end{tabular} \& \[
\begin{aligned}
\& 1 \\
\& 1
\end{aligned}
\]
\[
3
\] \& \begin{tabular}{l}
Accept reflect but not mirror, flip etc Indep \\
SC1 for equiv combination of transformations \\
B1 for each correct vertex, \(\pm 1 \mathrm{~mm}\) SC2 for enlargement centre \((0,4)\) with a wrong s.f., or enlargement s.f. 3 with wrong centre
\end{tabular} \& 5 \\
\hline 6 \& \begin{tabular}{l}
(a) \\
(b) (i) A more consistent, reliable etc \\
(ii) B higher on average, median greater etc
\end{tabular} \& 3

1

1 \& | B2 for one error, B1 for two errors Or SC1 for UQ = 48 soi or $10,23,25$, 39, 60 |
| :--- |
| Accept comparison of range, iqr, box width, min. Accept alternative answers if fully justified |
| Accept comparison of max | \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(a) (i) \\
R \\
R \\
- - \\
(ii) 16 and 20 have prime factors 2 and 5 others have factors 3 and/or 7 \\
(b) \(52 / 99\) \\
(c) \(\quad 5 \sqrt{ } 2\)
\end{tabular} \& 2
2

2

2 \& | Give B1 for 3 correct |
| :--- |
| Give B1 for any mention of prime factors or 2 and 5 |
| Or B2 for full decimal conversion of all 4 |
| Or $\mathbf{B 1}$ for full decimal conversion of 3 |
| M1 for $100 \mathrm{r}=52.5252 \ldots .$. |
| M1 for $\times \sqrt{ } 2 / \sqrt{ } 2$ soi by $10 \sqrt{ } 2 / 2$ or $(5 \times$ 2) $/ \sqrt{ } 2$ | \& 8

\hline 8 \& | (a) 1st bar width 5-10, height 13 |
| :--- |
| 2nd and 3rd bars widths 10-20,2030 heights 3.3 and 2 respectively |
| (b) Reject Mode, It's lowest at 0 oe Reject Mean, too affected by 'giant' oe | \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 | \& | 13 should be on line |
| :--- |
| $3.3 \pm 1 / 2 \mathrm{sm} \mathrm{sq}, 2$ should be on line |
| Ignore 'choose line', Accept good equivalents | \& 4

\hline 9 \& | (a) $\mathrm{RC}=\mathrm{BQ}, \mathrm{CQ}=\mathrm{BP}$ Given, sides of a square (with equal amounts subtracted) SAS |
| :--- |
| (b) All $4 \Delta \mathrm{~s}$ congruent so sides equal e.g. angle CQR $+B Q P=90$ \Rightarrow angle $\mathrm{PQR}=90$ | \& \[

$$
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$
\] \& B1 for 2 reasons dep on 1st mark or B1 for one pair of sides with reason \& 5

\hline 10 \& \[
$$
\begin{aligned}
& x^{2}+(3 x-2)^{2}=20 \\
& 9 x^{2}-12 x+4 \\
& 10 x^{2}-12 x-16=0 \\
& (5 x+4)(x-2) \text { oe } \\
& \\
& x=-4 / 5 \text { or } 2 \\
& y=-22 / 5, \text { or } 4
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M2 |
| A1ft |
| A1 | \& | M1ft for a pair of brackets giving 2 terms correct ft their brackets Or M2ft for complete substitution in quadratic formula, |
| :--- |
| Or M1ft for substitution with 1 error | \& 7

\hline
\end{tabular}

Section B

\begin{tabular}{|c|c|c|c|c|}
\hline 11 \& \begin{tabular}{l}
(a) 375 (g) \\
(b) 10
\end{tabular} \& \[
\begin{aligned}
\& 2 \\
\& 2 \\
\& \hline
\end{aligned}
\] \& M1 for \(150 \times 15 / 6\) oe M1 for \(6 \times 125 / 75\) oe \& 4 \\
\hline 12 \& \begin{tabular}{l}
(a) \(£ 40\) \\
(b) \(£ 125\) \\
(c) straight line with positive gradient from \((400,35)\) to (1000, their 125) \\
(d) \(430-440\) \\
1100 \\
(e) Plan B cao \\
£15
\end{tabular} \& 1
1
1
1
1 ft

1
1
1
1
1

$18 t$ \& | 'their 125 ' or correct, |
| :--- |
| SC1 for non ruled line through both |
| ft from their graph $\pm 1 / 2$ small square (\pm 10) |
| ft from their graph $\pm 1 / 2$ small square (\pm 10) |
| ft from their graph $\pm 1 / 2$ small square (\pm £1) | \& 8

\hline 13 \& | (a) $1 \times 6+2 \times 4+3 \times 6+4 \times 7+5 \times 8+6 \times 9$ |
| :--- |
| $\div 40$ or their $(6+4+6+7+8+9)$ |
| 3.85 |
| (b) Not enough throws or frequencies not very different | \& | M1 |
| :--- |
| M1 |
| A1 |
| 1 | \& | condone 1 error dep |
| :--- |
| Ans 3.85 WWW scores B3 | \& 4

\hline 14 \& | (a) $(60-40) \div 2$ |
| :--- |
| (b) $\begin{aligned} & \sqrt{ }\left(26^{2}-10^{2}\right) \\ & (h=) 24 \end{aligned}$ |
| (c) $A=1 / 2(60+40) \times$ their 24 oe $\times 80$ 96000 cm^{3} | \& \[

$$
\begin{gathered}
\hline 1 \\
\text { M2 } \\
\text { A1 } \\
\text { M1 } \\
\text { M1 } \\
\text { A1ft }
\end{gathered}
$$
\]

U1 \& | Accept argument starting with 10 |
| :--- |
| square root can be implied by later work |
| M1 for $26^{2} \pm 10^{2}$ |
| If splitting up must be full method for A Indep, must have correct volume dimensions |
| ft $4000 \times$ their (b) |
| Indep ISW attempts to change units to eg m^{3} | \& 8

\hline 15 \& $$
\begin{aligned}
& x \geq 2 \\
& x+y \leq 6 \\
& y \geq 1 / 2 x
\end{aligned}
$$ \& 1

2
1 \& Condone strict inequalities. SC1 for $x+y=,>, \geq 6$ \& 4

\hline 16 \& Line parallel to road Circle centre tree lines parallel to house Arc at corner of house compass drawn arc(s) and radii (2 cm), 3 cm , Distances $1.5 \mathrm{~cm}, 2 \mathrm{~cm}$ shading \& M1
M1
M1
B1

A1
1ft \& ft , dep on 3 M 1 s \& 6

\hline
\end{tabular}

17	(a) $R=k / d^{2}$ substituting 0.25 and 8 $R=0.5 / d^{2}$ oe (b) 0.35 or 0.354	M1 M1ft A1 3	ft from $R=k d^{2}$ or $R=k / d$ or $R=k / \sqrt{ } d$ M1ft for substituting $R=4$ and 1 correct step in transposing their formula eg $4 d^{2}=$ their k. dep on one of forms in (a) B1 for rounding their answer to 2 or 3 sf seen	6
18	$\begin{array}{ll}\text { (a) } & 17.4 \text { to } 17.5 \\ \text { (b) (i) } & 162.5 \text { to } 162.6\end{array}$ (ii) $\quad 197.4$ to 197.5	1 1ft 1ft 1ft	ft 180 - their (a), - 1 for extra solutions ft 180 + their (a) ft 360 - their (a) - 1 for extra solutions	4
19	(a) $(x-3 y)(x+2)$ (b) $\frac{x(3 x+4)}{(x+1)(3 x+4)}-\frac{3 x(x+1)}{(x+1)(3 x+4)}$ or better $3 x^{2}+4 x-3 x^{2}-3 x \text { seen }$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$	B1 for 2($x-3 y$) or $x(x+2)-3 y(x+2)$ B1 for common denominator and one numerator correct indep B1 for 1 error	6

Grade Thresholds

General Certificate of Secondary Education
Maths B (MEI) (Specification Code J518)
January 2009 Examination Series
Component Threshold Marks

Component			A*	A	B	C	D	E	F	G
$\begin{aligned} & \text { B261 } \\ & \text { B262 } \end{aligned}$	Raw	72	N/A	N/A	N/A	50	42	35	28	21
	UMS	83	N/A	N/A	N/A	72	60	48	36	24
	Raw	100	N/A	N/A	N/A	67	56	45	35	25
	UMS	139	N/A	N/A	N/A	120	100	80	60	40
B263	Raw	72	64	53	42	31	19	14	N/A	N/A
	UMS	120	108	96	84	72	60	54	N/A	N/A
B264	Raw	100	77	62	47	32	20	14	N/A	N/A
	UMS	200	180	160	140	120	100	90	N/A	N/A
B265	Raw	48	43	37	31	26	22	18	14	10
	UMS	80	72	64	56	48	40	32	24	16

Specification Options

Foundation Tier

	Max Mark	A*	A	B	C	D	E	F	G
Overall Threshold Marks	279	N/A	N/A	N/A	240	200	160	120	80
Percentage in Grade		N/A	N/A	N/A	36.4	45.1	15.9	1.3	1.3
Cumulative Percentage in Grade		N/A	N/A	N/A	36.4	81.5	97.4	98.7	100

The total entry for the examination was 266
Higher Tier

	Max Mark	A*	A	B	C	D	E	F	G
Overall Threshold Marks	400	360	320	280	240	200	160	N/A	N/A
Percentage in Grade		2.5	25.0	45.0	15.0	10.0	0	N/A	N/A
Cumulative Percentage in Grade		2.5	27.5	72.5	87.5	97.5	97.5	N/A	N/A

The total entry for the examination was 43

Overall

	A*	A	B	C	D	E	F	G
Percentage in Grade	0.5	5.3	9.4	31.9	37.7	12.6	1.1	1.1
Cumulative Percentage in Grade	0.5	5.8	15.2	47.1	84.8	97.4	98.4	99.5

The total entry for the examination was 309
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

