RECOGNISING ACHIEVEMENT

Mathematics B (MEI)

Mark Schemes for the Units

June 2006

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2006
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annersley
NOTTINGHAM
NG15 0DL
Telephone: 08708706622
Facsimile: 08708706621
E-mail: publications@ocr.org.uk

CONTENTS

General Certificate of Secondary Education

GCSE Mathematics B (1968)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2311	Foundation Paper 1	1
2312	Intermediate Paper 1	5
2313	Higher Paper 1	11
2314	Foundation Paper 2	15
2315	Intermediate Paper 2	21
2316	Higher Paper 2	27
2318	Internal Assessment - OCR marked tasks *	35
	Grade Thresholds	37

Mark Scheme 2311 June 2006

SECTION A

		MARKS	NOTES	
1	(a) (i) 18 (ii) 4 (iii) 3 (b) 25% $3 / 10$ oe 0.09	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	3/10, 30/100, 15/50 tec	6
2	(a) $£ 2.43$ (b) (i) 150 (ii) 18 (c) $100 \times 4=400$ or $100 \times 4.2=420$	M2A1 M1A1 M1A1 M1A1	M1 £1.85+72p=(£2.57) M1 $£ 5$ - their $£ 2.57$ M1 $600 \div 100 \times 25$ oe seen M1 $45 \div 5 \times 2$ M1 100 or 4 seen	9
3	(a) (i) 5 (ii) 11 (b) 4	B1 B1 M1A1	Accept embedded answers on answer line for (i) and (ii) M1 18 or 14 seen	4
4	$£ 20.00$	M1A1	M1 1/8 or $\div 8$ oe seen	2
5	$\begin{aligned} & 4 b \\ & 4 a+2 b \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B2 } \end{aligned}$	B1 either 4a or $2 b$	3
6	(a) 27 (b) 39	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	If key not interpreted, penalise the first answer only	2
7	(a) 6 by 4 by $\mathbf{3}$ cuboid correctly drawn. (b) 108	B2 B2	Must use isometric paper correctly - no horizontals B1 for 6, 4, 3 cuboid drawn - uses paper correctly in 2 dimensions. M1 for $6 \times 4,6 \times 3$ and 4×3 o.e. s.o.i. (answer 54)	4
8	(a) 40 (b) 120 g	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1A1 } \end{array}$	M1 $80 \times 30 \div 20$ oe	3
9	$\begin{array}{\|l\|} \hline 20 \\ \mathrm{~cm}^{2} \end{array}$	$\begin{aligned} & \hline \text { M1A1 } \\ & \text { U1 } \end{aligned}$	M1 (their 10) $\times 4$, Mark separately	3

SECTION B

		MARKS	NOTES	
10	bars equal width, any spacings must be equal even scale frequency bar heights all correct	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$		3
11	(a) correct plots (b) $(3,-2)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$		3
12	(a) km (b) kg or g (c) ml, cl or l	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$		3
13	(a) $7.8-8.2 \mathrm{~cm}$ (b) $113(.0 \ldots ..) \mathrm{cm}^{2}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1A1 } \end{array}$	M1 $36 \times$ (their value for π)	3
14	$\begin{aligned} & \hline 6 / 25 \\ & 11 / 15 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$		2
15	$£ 38.25$	M2A1	$\begin{aligned} & \hline \text { M1 } 75 \times 0.17=12.75 \\ & \text { M1 their } 12.75+25.50 \end{aligned}$	3
16	(a) odd (b) even (c) odd	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$		3
17	(i) 23 (ii) 16	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M2A1 } \end{array}$	M1 $12+17+\ldots \ldots+25$ M1 their $192 \div 12$, 169.083 implies M2	4
18	(a) 70 (b) 480	M1A2 M2A1	M1 $2500 \div 36$ A1 69(.444...) seen M1 Vols 225 or 108000 seen M1 (their 108000) $\div($ their 225) Or M1 $60 \div 7.5$ or 3 or 10 Or $30 \div 7.5$ or 3 or 10 M1 their $a \times b \times c(8,20,3)$ or $(4,20,6)$ or ($8,10,6$)	6
19	(a) 109.79 cao final answer (b) 180	B3 B3	B2 for 109.79021 r.o.t. M1 for 157 \| 1.43 (implied by ans 109 - 110) M2 for $330 \mid 110 \times 60$ o.e. M1 for $330 \mid 110$ s.o.i. (3)	6

Mark Scheme 2312
June 2006

SECTION A

		MARKS	NOTES		
1	(a) 1000 (b) 400	$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \end{aligned}$	B1 for either 16 and 25 seen in working or complete correct method with one slip	3	
2	(a) 27 (b) 39	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	If key not interpreted, penalise the first answer only	2	
3	Square Rhombus	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Either order	2	
4	(a) 6 by 4 by 3 cuboid correctly drawn. (b) 108	B2 B2	Must use isometric paper correctly - no horizontals B1 for 6, 4, 3 cuboid drawn - uses paper correctly in 2 dimensions or correct with 1 dimension error M1 for $6 \times 4,6 \times 3$ and 4×3 o.e. s.o.i. (answer 54)	4	
5	(a) 42 (b) $3.5 \quad$ o.e.	$\begin{aligned} & \text { B2 } \\ & \text { B3 } \end{aligned}$	M1 for 30--12 o.e. seen in working M2 for $10 x=35$ or $2 x=7$ M1 for $10 x-20$ seen or $15 \mid 5$ as correct first step. or SC2 for embedded correct answers	5	
6	(a) 3200 (b) $9: 7$	B3 B2	```M2 for 8 - (4800 \| 12) o.e. M1 for 4800	12 o.e M1 for 18 and 14 s.o.i. (1.285...: 1) (1: 0.7r) SC1 for 7: 9```	5
7	(a) $6 x-21$ final answer (b) $3(3 a+4)$ final answer (c) $\quad(t=) \frac{v-u}{a}$ o.e. final answer	B1 B1 B2	Condone final bracket omitted M 1 for $v-u=$ at or $\frac{v}{a}=\frac{u}{a}+t$	4	
8	(a) 75 (b) Shows $\pi \cdot \underline{15^{\prime \prime}}=\underline{225} \pi$ (= 675) $225 \pi \mid 2(=112.5 \pi)$	B3 M1 E1	M2 for $(\pi \times 30) / 2$ s.o.i. (45 www) Condone 3.1 or better used for π M1 for π (3) $\cdot 30$ seen (90 www) Beware multiple method attempts - M0 unless clear selection Must see the division by 2 o.e. After M0, SC1 for $\left(\pi \times 15^{2}\right) / 2$ shown	5	

		MARKS	NOTES	
9	(a) $2^{3} \times 5$ o.e. (b) 90 or $2 \times 3^{2} \times 5$	B2 B2	M1 for correct factor tree o.e. (i.s.w. for 1 once) or factor staircase B1 for any other multiple of 90 given or 2 correct factor trees (30) and (18) www	5
10	Volume Three dimensional o.e.	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 dep } \end{aligned}$	Accept relates to volume of a cylinder o.e.	2

SECTION B

		MARKS	NOTES	
11	$5 x+9$ bottom left $2 x-3$ top right	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$	B1 for 5 x or +9	3
12	(a) 109.79 c.a.o. final answer (b) 180	B3 B3	B2 for 109.79021 r.o.t. (3 s.f..or better) M1 for 157 \| 1.43 (implied by ans. 109 to 110) M2 for $330 \mid 110 \times 60$ o.e. M1 for $330 \mid 110$ s.o.i. (3)	5
13	(a) 6 and 2 on table (b) Correct ruled line over full x range 0 to 4 (c) 1.5 c.a.o	T1 B2 B1	Within 1 mm accuracy M1 for correct but freehand or correct plots of their 3 points	4
14	29.68	B3	M2 for 28-1.06 o.e. - long method usually M1 for $28 \cdot 0.06 \quad$ (1.68)	3
15	23.6 to 23.7	B4	M3 for $1 / 2 \times 5.5 \cdot 5.1+1 / 2(5.5+3.7) \cdot 2.1$ o.e. M2 for $1 / 2 \times 5.5 \cdot 5.1$ or $1 / 2(5.5+3.7) \cdot 2.1$ o.e. $\quad(14.025) \quad(9.66)$ M1 for 5.1 used for ht of triangle	4
16	(a) 42 (b) -11	$\begin{aligned} & \text { B1 } \\ & \text { B3 } \end{aligned}$	Not embedded alone M2 for $-x=21$ - 10 o.e. M1 for $10-x=3 \times 7$ o.e. or SC2 for embedded correct answers	4
17	11.78 to 11.8 mark at most acc. i.s.r.	B3	M2 for $\sqrt{11.7^{2}+1.4^{2}}$ M1 for $11.7^{2}+1.4^{2}$ (138.85)	3

		MARKS	NOTES	
18	(a) $38,70,90,100$ on table	B1		
	(b) 6 plotted points within $1 / 2$ small square	P2f.t	f.t. dependent on S shape (not linear, no decrease) P1 f.t. for 4 or 5 pts correct $\pm 1 \mathrm{~mm}$ If bars as well - must mark points	
	Curve or line through 6 plotted points	C1ft	f.t curve/line within one square of points dep S shape. Ignore first section. No bars Available for mid-values plotted	
	(c) (i) 16.5 to 17.5	B1		
	(ii) 8.5 to 10.25 www	B2	M1 for UQ 20.5 to 21.5 or LQ 11.25 to 12	
	(d) Compares medians correctly Correct IQR comparison	B1ft B1ft	Boys spend less time on average. o.e Boys results are more widespread. o.e Both comments must be general and f.t their (c)	9

Mark Scheme 2313 June 2006

1		$(t=)(v-u) / a \quad$ o.e. final answer	B2	M1: for $v-u=a t$ or $v / \mathrm{a}=\mathrm{u} / \mathrm{a}+\mathrm{t}$ o.e.	2
2	(a) (b)	$75 \text { (Condone } 76.5 \& 77.1 \text {) }$ Shows $\pi \times 15^{2}=225 \pi$ (675) $225 \pi / 2(=112.5 \pi)$	B3 M1 E1	M2: for $(\pi \times 30) / 2$ s.o.i. (45) Condone 3.1 or better for π M1 for $\pi(3) \times 30$ seen ($90-w w w$) Must see both 15^{2} and 225 - beware multiple method attempts - M0 unless clear selection Must see the division by 2 o.e. If M0, SC1 for $\left(\pi \times 15^{2}\right) / 2$ shown	5
3		$3 \frac{13}{15}$ or $\frac{58}{15}$ not spoilt or 3.86 recurring	B3	M1: $\frac{10}{15}-\frac{12}{15}$ or $\frac{25}{15}-\frac{12}{15}$ or $\frac{20}{3}-\frac{14}{5}$ DM1: $\frac{-2}{15}$ or $\frac{13}{15}$ or $\frac{100}{15}-\frac{42}{15}$ [If M0 and DM0 then SC1 for 1 correct conversion] or M1: 6.6 recurring M1: 2.8 SC2: 3.86	3
4	(a) (b)	$\begin{aligned} & 2^{3} \times 5 \text { or } 2 \times 2 \times 2 \times 5 \\ & 90 \quad \text { or } 2 \times 3 \times 3 \times 5 \text { o.e. } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \end{aligned}$	M1: 2,2,2,5 or correct factor tree (allow one " 1 " seen) or factor staircase (last prime not seen) B1: any other multiple of 90 given (e.g. $2 \times 3^{3} \times 5$) M1: $2 \times 3 \times 3$ and $2 \times 3 \times 5$ no isw (eg. not HCF)	4
5		$x>0.8$ o.e.	B2	M1: $10 x>8$ or $10 x=8$ or $x=0.8$	2
6		Volume Three dimensional	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { dep } \end{aligned}$	Accept relates to volume of a cylinder	2
7	(a) (b) (c)	$(x-5)(x+5)$ $\frac{x-5}{2 x-5}$ No isw $7,-\frac{3}{2} \text { o.e. }$	B1 B3 B4	M2: $(2 x-5)(x+5)$ Or SC2 $\frac{x+5}{2 x+5}$ No isw Or M1: $(2 x+5)(x-5)$ M1: $2 x^{2}-11 x-21$ or $2 x^{2}-21=11 x$ o.e. DM2: $(x-7)(2 x+3)$ or DM1: $(x+7)(2 x-3)$ or $(x \ldots . .3)(2 x . . .7)$ or M1: $(11 \pm \sqrt{ } 289) / 4$ DM2: $(11 \pm 17) / 4$	8
8	(a) (b)	$(4 \sqrt{3}+\sqrt{3})^{2}=(5 \sqrt{3})^{2}=25 \times 3$ which is an integer [not required if 75 seen] or $48+2 \times \sqrt{48} \times \sqrt{3}+3=48+2 \times 12+3$ which is an integer [not required if 75 seen] $\frac{1}{125} \text { or } 0.008$	B3 B2	M1: $\sqrt{48}=4 \sqrt{3}$ soi + M1 $:(3 \sqrt{3})^{2}=9 \times 3$ M1: 3 terms correct in $\begin{array}{r} 48+\sqrt{48} \times \sqrt{3}+\sqrt{48} \times \sqrt{3}+3 \\ + \text { M1f.t.: } \sqrt{48} \times \sqrt{3}=12 \end{array}$ M1: $\sqrt{25}$ soi or reciprocal soi	5
9	(a) (b)	$\begin{array}{ll} b=2, c=-11 & \mathrm{~B} 1+\mathrm{B} 2 \\ \left(-\frac{2}{3},-11\right) & \mathrm{B} 1+\mathrm{B} 1 \end{array}$	B3 B2	$\text { M2: } 9 x^{2}+6 b x+b^{2} \text { soi (e.g. } 6 b=12 \& b^{2}+c=-$ 7) or M1: $6 b=12$ or $b^{2}+c=-7$ Correct, or ft from $\left(-\frac{b}{3}, c\right)$	5

10		0.029... or 0.03 www	B4	$\begin{aligned} & \text { M2: } \pi \times 6^{2}(\approx 113) \text { DM1: } 113 \times 3(\approx 339) \\ & \text { Or SC3: } 0.007 \ldots \quad \text { or M1: } \pi \times 12^{2}(\approx 452) \\ & \\ & \\ & \text { DM1: } 452 \times 3(\approx 1357) \end{aligned}$	4
11	(a) (b)	$\begin{aligned} & 10.5 \text { o.e. } \\ & x=3.5, y=-2 \quad \text { www } \end{aligned}$	B3 B4	M2: $4 x=42$ Or M1: $4 x+28$ seen or $2 x-3.5=x+7$ M1: for correct second step f.t. M1: $\left\{\begin{array}{l}12 x+10 y=22 \\ 12 x-9 y=60\end{array}\right.$ allow one arithmetical error M1f.t.: $19 y=-38 \quad$ A1: $y=-2$ M1: $\left\{\begin{array}{l}18 x+15 y=33 \\ 20 x-15 y=100\end{array}\right.$ allow one arithmetical error M1f.t: $38 x=133 \quad$ A1: $x=3.5$ [Similarly, M1(allow one error), M1f.t., A1, A1 for substitution] SC2 for 2 correct answers and no working.	7
12	(a) (b) (c) (d) (e)	$38,70,90,100$ on table 6 plotted points within $1 / 2$ small square Curve or line through 6 plotted points (i) 16.5 to 17.5 (ii) 8.5 to 10.25 www in answer space Compares medians correctly Correct IQR comparison e.g. (Select at random from) year groups in proportion to number in year group.	B1 P2f.t. C1f.t. B1 B2 B1ft B1ft B2	f.t. dependent on S shape (not linear, no decrease) P1 f.t. for 4 or 5 pts correct $\pm 1 \mathrm{~mm}$ If bars as well - must mark points f.t curve/line within one square of points dep S shape. Ignore first section. No bars Available for mid-values plotted M1 for UQ 20.5 to 21.5 or LQ 11.25 to 12 Boys spend less time on average o.e. Boys results are more widespread o.e. Both comments must be general and f.t their (c) B1: specific strata suggested B 1 : in proportion, random or systematic	11
13		$19.2(6 \ldots)^{\circ}$ or $19.3^{\circ} \quad$ Accept 19 www	B3	M1: selects sine \quad DM1: $\sin \theta=0.33$ soi SC2: 0.336 (rad) or 21.4 (gra)	3
14		28 or 27.999 or better	B2	M1: 75.5 or 47.5 seen Accept 75.499 or better	2
15		$\begin{aligned} & 39 \text { or } 39.1(\ldots) \text { or } 39.2(\ldots) \\ & \text { Accept } 40 \text { www } \end{aligned}$	B3	M2: $\sqrt{120} \times 8 / \sqrt{5}$ or $8 \times \sqrt{24}$ or $\sqrt{120} \times 3.577 \ldots$ Or $(\sqrt{ } 120) / 3.58$ or $(\sqrt{ } 120) / 0.279$ Or M1: $8=k \sqrt{5}$ soi e.g. $3.57(7 \ldots)$ seen $8 k=\sqrt{ } 5 \quad$ e.g $0.279 \ldots$ seen Allow for change of units.	3

16	(a)	$\frac{3}{4} \times 2 \pi \times 40=2 \pi r$ (LHS: M1) or $\frac{3}{4} \times \pi \times 40^{2}=\pi r \times 40$ (LHS: M1) 25000 Accept answer in [24900, 25000]	B2	Accept explanation in words $\operatorname{SC} 1 \frac{270}{360} \times 40=30$ or $\frac{3}{4} \times 40=30$ M1: $40^{2}-30^{2}(=700)$ A1: $\sqrt{700}(\approx 26.457 \ldots)$ M1f.t.: $\pi \times 30^{2} \times \sqrt{ }($ "their $h ") / 3 \quad(h \neq 40)$	6

Mark Scheme 2314 June 2006

SECTION A

		MARKS	NOTES	
1	(a) 20 (b) 200	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 A1 } \end{array}$	M1 $2 \times 5 \times 20$ or ft. $2 \times 5 \times$ their 20 . sc1 for 280	3
2	(a) (i) 6.8 cm (ii) 5.4 cm (b) (i) and (ii) 515 p and 1 10 p 315 p and 410 p 115 p and 710 p	M1 A1 M1 A1 B1 B1 B1	M1 $3 \times 2+4 \times 0.2$ Accept units changed from $\mathrm{mm}-68 \mathrm{~mm}$ M1 $2 \times 2.4+3 \times 0.2$ Accept units changed to $\mathrm{mm}-54 \mathrm{~mm}$ If zero for part a), then allow sc1 once only for either i) 6.4 or ii) 5 Any order \downarrow (part ii) B1 once only for two correct plus wrong combinations)	7
3	$\begin{aligned} & \mathrm{B} \\ & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$		3
4	$\begin{aligned} & 3.9 \\ & 1^{1} / 4 \text { or } 1.25 \text { or } 5 / 4 \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$		3
5	(a) 6.3 cm or 63 mm (b) 67° (c) p and r	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \pm 1 \mathrm{~mm} \\ & \pm 2^{\circ} \end{aligned}$	3
6	(a) 12,15 (b) 27 (c) 21	B1 M1 A1 M1 A1	M1 $(10-1) \times 3$ or $9+3 \times 6$ or continues sequence/diagram to tenth term. M1 $(60+3) \div 3$ or equivalent	5
7	All 12 correct squares shaded	B3	B2 two correct Ls, or Rot Sym order 4(ignoring grid) - but not just a square. $B 1$ one correct L or any shape with Rotational symmetry order 2 ignoring grid SC1 for square smaller than whole grid.	3
8	(a) 17 (b) 30	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$		2
9	(a) $\frac{11}{35}$ isw (b) 15	M1 A1 M1 A1	M1 fraction (not top-heavy)including either 11 as the numerator or 35 as the denominator (-1 for in/out of; zero for ratio.) M1 finding total number of beads is 20 (Explicitly).	4

		MARKS	NOTES	
10	(a) $x=35$ (b) Angle sum of a triangle (= 180) Isosceles (triangle) or base angles equal $y=112$ Allied angles (b) trapezium One pair of parallel sides	B1 R1	condone omission of 180 if answer correct or if seen in working. accept two equal sides so two equal angles allow interior (supplementary) angles. Condone [angles, or unambiguous use of corresponding or alternate angles and angles on straight line etc. 0 for isosceles trapezium accept 'two parallel lines' unless rubbish follows	7
11	Correct enlarged triangle	B3	B2 for two correct points or for correct enlarged triangle centre the origin, or correct centre, wrong sf. B1 correct enlarged triangle, any centre	3
12	(a) 28 (b) 3.5	B1 M2 A1	Condone embedded answer M2 for $2 x=7$ or $5 x-3 x=5+2$ M1 for one correct step dealing with either x 's or numbers.	4
13	(a) $\frac{21}{5}$ or $4 \frac{1}{5}$ isw (b) $\frac{2}{15}$ is w	B1 M1 A1	At least one correct equivalent fraction seen with fifteen (or multiple) as the denominator	3

SECTION B

		MARKS	NOTES	
14	Draw one line of symmetry Draw the other line	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$	B1 for both lines plus extras, BO for one line and any errors	2
15	Draws correct triangle	M1 A1	Side $2.6 \mathrm{~cm} \pm 1 \mathrm{~mm}$ Right angle $90^{\circ} \pm 2^{\circ}$ M1 for one of these	2
16	(a) i) $£ 9.45$ ii) 5.52 or 552 p (b) 17	B1 M2 A1 M1 A1	M1 7.88×0.7 (digits 5516 seen) M 1 rounding to the nearest penny Special cases $£ 5.51$ or $£ 5.53$ (from 79p x 7) B2 M1 $800 \div 45$ or $8 \div 0.45$ or for 20 cans is £9 Special case B1 answer 18 or $£ 7.65$ seen	6
17	(a) $-6^{\circ} \mathrm{C}$ (b) Friday (c) (i) 3.46 (ii) 3.38	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$	condone -5	4
18	B and F A and E C and D	$\begin{array}{\|l} \hline \text { B1 } \\ \text { B1 } \\ \text { B1 } \end{array}$		3
19	(a) $(5,4)$ (b) $(4,3)$	M1 A1 B1	M1 Putting correct position of remaining vertex on diagram sc1 for two reversals if zero out of three.	3
20	(a)(i) Completes the table (10), 20, 30, (40), 50, 60, 70, 80 (ii) Draws correct line $c=10$ I (b)(i) Completes the table (15), $30,45,(50), 55,60,65$, 70 (ii) Draws correct lines (c) Genthree and $5 p$	B1 B2 B2 B2 B1	B2 for full bar chart. B1 plots their points correctly (<1mm accuracy) B1 30 and 45 or $55,60,65$ and 70 No marks for bar chart B1 plot their points (must be two straight lines) Ft. from their tables or graphs (reasonable answer only)	8

		MARKS	NOTES	
21	12	4	M1 for 405 or 4.05 for potatoes or $5.4 x$ 0.75 M1 for 10 - (1.27 and their 4.05) or 4.68 (not for negative result) M1 for their $4.68 \div(0)$.	4
22	(a) (i) $\frac{12}{30}$ (or equivalent) isw (ii) $\frac{11}{30}$ isw (b) (i) 0.1 (ii) 3	2 2 2 2	-1 once only for in/out of M1 for $12 / \mathrm{n}$ or $\mathrm{n} / 30$ provided fraction less than 1 allow 0.36(66..) M1 for $6+5$ or 11. Also $6 / 30+\frac{5}{30}$ o.e. M1 for attempt at $1-(0.25+0.15+0.3+$ 0.2) e.g. implied by answer of 0.55 M1 for 0.15×20	8
23	(a) 18.09 (b) 7.38 (c) 0.75	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	allow rounding if exact answer seen. allow $3 / 4$	3
24	(a) $3 x+15$ (b) $2(2 p+5)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	allow x $3+15$ and similar poor notation.	2
25	12	M1 A1	M1 for $360 \div 30$	2
26	£83.44	M2 A1	$\begin{aligned} & \text { M2 } 74.5 \times 1.12 \text { or } \\ & \text { M1 } 0.12 \times 74.5(=8.94) \\ & \text { M1 } 74.5+\text { their } 8.94 \end{aligned}$	3

Mark Scheme 2315 June 2006

SECTION A

| | | MARKS | NOTES |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | all 12 correct squares shaded | 3 | B2 two correct Ls, or for rotational
 symmetry order 4 ignoring grid, or with
 more than the min. number of squares,
 (but not just a square) |

		MARKS	NOTES	
7	(a) 3.5 or $31 / 2$ (b) $(x+5)(x+2)$ -5 and -2 (c) multn to give x s or $y s$ the same coefft subn to eliminate a variable $x=2.5 \text { or } 21 / 2, y=0.5 \text { or } 1 / 2$	3 M2 A1 M1 M1 $1+1$	M2 for $2 x=7$ or $5 x-3 x=5+2$ or M1 for one correct first step M1 for a sign error or for factors giving 10 or $7 x$ or B1; allow A1 ft their factors if M1 earned at least 2 terms correct in each eqn at least 2 terms correct $f t$ their eqns, dep on coeffts same www	10
8	(a) 1.2×10^{6} (b) 0.43 o.e. isw	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	1 for 12×10^{5} or 1200000 o.e. seen or correct answer with poor notation 1 for 0.4 or 0.03 seen	4
9	(a) 0.3 on first set and labels on all branches, consistent with probs $0.3,0.7,0.3$ on second set (b) (i) 0.49 (ii) 0.91	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	accept fractions and \% throughout; allow inst., not vocal etc M1 for 0.7×0.7 M2 for $1-0.3 \times 0.3$ or $0.7 \times 0.7+0.3 \times 0.7+0.7 \times 0.3$ or M1 for two of these [may be implied by answer of 0.42] or for the three correct paths clearly identified	7

SECTION B

		MARKS	NOTES	
10	12	4	M1 for 5.4×7.5 o.e or 405 or 4.05 for potatoes M1 for 10 - (1.27 and their 4.05) or 4.68 M1 for their $4.68 \div(0)$.39 eg condone $8.73 \div(0)$.	4
11	40	2	M1 for 360 $\div 9$ or for 140	2
12	(a) (i) $12 / 30$ o.e. isw (ii) $11 / 30$ isw (b) (i) 0.1 (ii) 3	2 2 2 2	-1 once only in qn for in/out of M1 for $12 / n$ or $n / 30$ allow 0.36(6..); M1 for $6+5$ [$=11$] or $6 / 30$ $+5 / 30$ o.e. [but 0 for $2 / 11$ without working] M1 for attempt at $1-(0.25+0.15+0.3+0.2)$ eg implied by answer of 0.55 M1 for 0.15×20 or for $3 / 20$	8
13	(a) reflection in y axis drawn (b) reflection in $x=3$ drawn (c) translation $\binom{-4}{3}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	M1 for evidence of $x=3$ drawn or reflection in other $x=k$ or in $y=3$ 1 each 'coordinate'; accept '4 to the left, 3 up'; SC1 for ' 4 to the right, 3 down' o.e. [ie D onto A] or for vector inverted; condone coords; allow only 1 out of 2 if contradiction	6
14	circle centre R radius 4 cm perp bisector of RT drawn correct shading	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	tol 2 mm ; at least part in rectangle, must be compass drawn within 2 mm where line crosses rectangle ft their ruled straight line and circle	3
15	(a) (i) $5 a+6 b$ (ii) $30 c^{5}$ (iii) $3 d^{2}+2 d$ (b) open circle at 1.5 and line to left	2 2 2 3	1 for 5 a or $6 b$; mark final answers in (a) 1 for $k c^{5}$ 1 for $3 d^{2}$ or $2 d ; 2$ for $d(3 d+2)$ or M1 for $3 d^{2}-4 d+6 d$ seen or $3 d^{2}+2 d$ seen and spoilt 2 for $x<1.5$ or for closed circle at 1.5 and line to left or 1 for 1.5 found or for $2 x$ <3; SC1 for correct representation of their inequality soln	9

\begin{tabular}{|c|c|c|c|c|}
\hline 16 \& \begin{tabular}{l}
(a) (i) 7.38 \\
(ii) 0.75 \\
(b) 231.52(5) or 231.5(0)
\end{tabular} \& 1
1
3 \& \begin{tabular}{l}
allow 7.4 on ans line if 7.38 seen accept \(3 / 4\) \\
M2 for \(200 \times 1.05^{2}\) o.e. or for 210 and 220.5 seen; SC1 for 230 SC2 for one year out: 220.5 or 243.09 to 243.10 as answers
\end{tabular} \& 5 \\
\hline 17 \& \begin{tabular}{l}
(a) 16.6(...) or 17 \\
(b) \(2.1 \times 10^{9}\) \\
(c) \(2470(.5\)..) to 2 or more sf
\end{tabular} \& 3

2

2 \& | condone 17000000 etc; SC2 for 25 million;M2 for $10(000$ 000) $\div 0.6$ o.e.; M1 for $60 \%=10$ million followed by a correct constructive step or for digits 166.. or 17; eg $10 \%=10$ million $\div 6$ |
| :--- |
| 1 for correct ans with poor 'calculator' standard form notation or M1 for correct equiv seen eg 2100×10^{6} or 21×10^{8} or 2100000000 |
| M1 for (b) $\div 850000$ soi or digits $247 \ldots$ | \& 7

\hline 18 \& | (a) angle between tangent and radius $\left[=90^{\circ}\right.$] angle at centre $=2 \times$ angle at circumference [and $144=2 \times 72$] |
| :--- |
| (b) 13 or 13.2 cm | \& 1

1

4 \& 3 for other versions of 13.2(34..) or 13.24 to 13.33 or M2 for $4.3 \times \tan 72^{\circ}$ or M1 for $\tan 72^{\circ}=$ AT/4.3. Allow A2 for 10 following correct method seen 0 for scale drawing \& 6

\hline
\end{tabular}

Mark Scheme 2316 June 2006

SECTION A

1	(a) $-5,-4$ (b) plotting [tolerance 1 mm] curve [within 2 mm of correct points] (c) 0.8 or 5.2 approx or follow through from their curve	$\begin{aligned} & \text { 1+ } \\ & \text { 1 } \\ & \text { P1 } \\ & \text { C1 } \\ & \\ & 1+ \\ & 1 \end{aligned}$	correct only, plotted or in table correct or follow through table no ft from wrong points; parabola shape needed Tolerance 1 mm of their curve or line segment	6
2		4	3 for all points indicated by circles 2 for 4 correct 1 for 3 correct. 1 for all lines sensibly straight, apart from last one allow short curve down to zero.	4
3	(a) (i) 30 (ii) 9 (b) If n is odd, $n+1$ even odd x even $=$ even or if n is even \qquad (c) $\begin{aligned} & n(n+1)-(n-1) n \text { or better } \\ & \left(=n^{2}+n-n^{2}+n\right) \\ & =2 n \end{aligned}$	1 1 1 1 1	Or equivalent approach from $n^{2}+n$ i.e. even squared is even, even + even $=$ even odd squared is odd, odd + odd $=$ even. No credit for specific examples, however many Or w2	6
4	(a) 0.3 on first set $0.3,0.7,0.3$ on second set labels on all branches, consistent with probabilities (b) 0.49 o.e. (c) 0.91 o.e.	$\begin{aligned} & 1 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	Allow inst., not vocal etc M1 for 0.7×0.7 seen M2 for $1-0.3 \times 0.3$ or $0.7 \times 0.7+0.3 \times 0.7+0.7 \times 0.3$ or M1 for two of these $\Rightarrow 0.42$ or for the correct thee paths clearly identified	7

\begin{tabular}{|c|c|c|c|c|}
\hline 5 \& \[
(a=) \frac{102}{999}=\frac{34}{333}
\] \& 3 \& \begin{tabular}{l}
W2 for \(\frac{102}{999}\) or \\
M1 for 1000a \(=102.102102 \ldots\) seen
\end{tabular} \& 3 \\
\hline 6 \& \begin{tabular}{l}
(a) Correct \(3^{\text {rd }}\) side in range 87 mm to 92 mm Right angle \(\pm 2^{0}\) Some evidence of construction \\
(b) \(\mathrm{OR}=\mathrm{OS}\), \(\mathrm{RT}=\mathrm{ST}\), \\
OT common ORT OST congruent SSS \\
so \(\angle \mathrm{AOT}=\angle \mathrm{TOB}\) (corresponding angles)
\end{tabular} \& 1
1
1

1
1
1

1 \& | Accept as evidence of construction an arc for the third side |
| :--- |
| Must have both results (reason not needed) |
| Must have "common", "same", or eqv. |
| Must have "SSS" and reference to ROT and TOS to gain the mark (condone "all sides equal" for SSS) | \& 7

\hline 7 \& | (a) (i) $\overrightarrow{H B}=-\boldsymbol{d}+\boldsymbol{a}$ (o.e.) |
| :--- |
| (ii) $\overrightarrow{F D}=-d+a$ (o.e.) |
| (so) $\overrightarrow{F D}=\overrightarrow{H B}$ or $F D=H B$ |
| (b) $\boldsymbol{a}-\boldsymbol{b}-\boldsymbol{c}-\boldsymbol{d}$ | \& 1

1
1

2 \& | Or similarly for Or BD and HF [$\mathrm{BD}=\mathrm{b}+\mathrm{c}=\mathrm{HF}$] |
| :--- |
| Or BD and HF $[\mathrm{HB}=\mathrm{d}+\mathrm{a}=\mathrm{FD}]$ |
| 1 for two terms correct (including sign) | \& 5

\hline
\end{tabular}

8	$\frac{2 x}{x^{2}-1}\left(=\frac{3}{4}\right)$ $8 x=3(x-1)(x+1)$ or better $3 x^{2}-8 x-3=(0)$ $\begin{aligned} & (3 x+1)(x-3)(=0) \\ & x=3, x=\frac{-1}{3} \end{aligned}$	M3 A1 A1 M1 A1	M1 for correct numerator or denominator If MO M1 for $\frac{x+1+x-1}{(x-1)(x+1))}\left(=\frac{3}{4}\right)$ or M2 for $\frac{2 x}{(x-1)(x+1))}\left(=\frac{3}{4}\right)$ Or $[x+1]+[x-1]=\left[\frac{3}{4}\left(x^{2}-1\right)\right]$ $\uparrow M 1 \uparrow M 1 \uparrow M 1$ Or W2 (i.e, can imply previous A1) or (W)5 for evidence of working M1 also if clear attempt to use formula Need both, condone 0.33	7
9	$\begin{aligned} & \hline p=4 \\ & q=2 \\ & r=2 \\ & s=3 \\ & t=-1 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$		5

SECTION B

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(a) Correct \(x\)-movement Correct \(y\)-movement \\
(b) rotation \(90^{\circ}\) (or equivalent) anticlockwise about \((2,5)\)
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 \\
1 \\
\\
1 \\
1 \\
1
\end{array}
\] \& \begin{tabular}{l}
(no movement) \\
(4 down) \\
SC for wrong and rotation seen
\end{tabular} \& 5 \\
\hline 11 \& \begin{tabular}{l}
(a) 16.6(6...) \\
(b) \(2.1 \times 10^{9}\) \\
(c) \(2470(.5 .\).\() to 2\) or more s.f.
\end{tabular} \& 3
2
2 \& \begin{tabular}{l}
Condone 17000000 etc.SC2 for 25 million, M2 for 10(000 000) \(\div 0.6\) M1 for \(60 \%=10\) million followed by a constructive step or for digits 166.. or 17 \\
1 for correct answer with poor notation (i.e. not standard form) or cal. notation. M1 for (b) \(\div 850000\) seen or implied
\end{tabular} \& 7 \\
\hline 12 \& \begin{tabular}{l}
Angle between tangent and radius (\(=90^{\circ}\)) \\
Angle at centre \(=2 x\) angle at circumference
\end{tabular} \& \[
1
\]
\[
1
\] \& \begin{tabular}{l}
Tangent and radius must be mentioned \\
Do not accept "edge of circle" for circumference.
\end{tabular} \& 2 \\
\hline 13 \& \begin{tabular}{l}
Evidence of one correct trial another correct trial \\
11 metres (which can "count" as a trial)
\end{tabular} \& 1
1

1 \& \begin{tabular}{l}

d	$\%$
2	42.250
3	27.463
4	17.851
5	11.603
6	7.542
7	4.902
8	3.186
9	2.071
10	1.346
11	0.875
12	0.569
13	0.370
14	0.240
15	0.156
16	0.102
17	0.066
18	0.043

(Accept rot to 1 sf) Clearly indicated as the answer Or W3 (W2 for $10 \leq h<11$)
\end{tabular} \& 3

\hline 14 \& | (a) ($a=$) b-120 or equivalent |
| :--- |
| (b) $a=110-120$ |
| which means that a takes a negative value | \& 3

1 \& | M1 for sight of 720 |
| :--- |
| M1 for sight of $3 a+3(360-b)$ or better |
| or M1 for "b" and M1 for (-120) |
| See LIST after coordination |
| e.g. "b would be negatice" | \& 4

\hline
\end{tabular}

15	(a) 8 (b) 1.45 and -3.45	1 3	Correct answer only SC2 for 1.45 and 3.45 or -1.45 and 3.45 or 1 for 1.45 or $\quad 2$ for - 3.45 Or Attempt to substitute into the quadratic equation formula: M1 $\frac{-2 \pm \sqrt{2^{2}-4 \times-5}}{2}$ or better (i.e. $a=1, b=2$ and $\mathrm{c}=-5$) M2 $\frac{-2 \pm \sqrt{24}}{2}$ A1 1.45 and -3.45 or W3	4
16	(a) $\quad(m=) \frac{p-0}{0-q}$ o.e. (b) $y= \pm \sqrt{40-x^{2}}$ isw (c) $\begin{aligned} & c=\frac{b^{2}}{4} \text { o.e. } \\ & 3 b=a+1 \\ & b=\frac{a+1}{3} \\ & c=\frac{(a+1)^{2}}{36} \text { or better } \end{aligned}$	2 2 1 1 1 1 1	1 for correct numerator or denominator or 1 for either of these expressions (or better seen) $m q+c=0 \text { or } c=p$ M1 for $y=\sqrt{40-x^{2}}$ seen isw Or any correct attempt to substitute for b or c. << if total zero SC1 for a correct piece of constructive algebra >> Alternatives: $\begin{align*} & 3 b=a+1 \\ & b=\frac{a+1}{3} \quad \text { (1) } \\ & 4 c=\left(\frac{a+1}{3}\right)^{2} \quad(1) \quad c=\ldots . .(1) \tag{1}\\ & b=2 \sqrt{c} \text { or } \sqrt{4 c} \tag{1}\\ & a=6 \sqrt{c}-1 \text { or } 3 \sqrt{4 c}-1 \end{align*}$ Or $\sqrt{c}=\frac{a+1}{6}$ (1) $c=\ldots$ $c=\frac{(a+1)^{2}}{4 \times 3^{2}}, \frac{a^{2}+2 a+1}{36}, \frac{(a+1)^{2}}{6^{2}}, \frac{\left(\frac{a+1}{3}\right)^{2}}{4}$ or equivalents	8
17	(a) $0.73(20 \ldots) \mathrm{oe}$ (b) $0.26(790 \ldots) \mathrm{oe}$ (c) $0.23(7435 \ldots)$ or equivalent	2 2 3	M1 for 0.925^{4} or 92.5^{4} seen M1 for 1 - (a) seen or implied For sight of: $\begin{array}{ll} \text { M1 } & (0.925)^{3} \times 0.075 \text { or better } \\ \text { M2 } & (0.925)^{3} \times 0.075 \times 4 \text { oe } \end{array}$	7

18	Clear attempt to use cosine rule Correct substitution to give cosine θ Correct angle: 60 or 81.7(867...) or 38.2(1321...) Attempt to use " $\frac{1}{2} a b \sin \theta$ " Correct area: 17(.3205...)	M1 A1 A1 M1 A1	Such as $\frac{1}{2} 8 \times 5 \sin 17^{0}$ i.e. even when unclear of origin of angle If and only if evidence of relevant working W5 CARE: as $(7 \times 5) \div 2=17.5$!	5
19	$\begin{aligned} & 25 \text { to } 26 \mathrm{~m} \\ & 2500 \text { to } 2600 \mathrm{~cm} \end{aligned}$	5	W4 for the "number" and U1 for " m " Similarly for answer in cm In essence marks awarded for this: Need at least M2 to get U1 - (usually omission of 25) SC3 for consistently and clearly calculating the upper bound and final answer	5

Mark Scheme 2318 June 2006

MARKING GUIDE This guide gives some of the many examples of evidence that candidates may produce. It indicates possible lines of development that may allow the award of each mark, depending on the supporting context.

Matchstick Patterns [Ao1]

		Strategy	Communication	Reasoning
1		- Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Counts and records the other matchstick patterns correctly (14, 26)	- Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Counts and records the other matchstick patterns correctly (14, 26)	- Candidates show that they understand a general statement by finding particular examples that match it. Correctly constructs a further, correct, matchstick pattern.
2		- Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and applying mathematics to practical contexts. Finds one more total from a correct matchstick pattern	- Candidates present information and results in a clear way, explaining the reasons for their presentation. Records drawings and results in an orderly manner.	- Candidates search for a pattern by trying out ideas of their own. Records three related results for one series of matchstick patterns.
3		- In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible. Systematically finds three or more related matchstick totals, linking these to the width of the pattern.	- Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams. Records drawings and results utilising tables and a minimum of text to annotate the work.	- Candidates make general statements of their own, based on evidence they have produced, and give an explanation of their reasoning. Makes a general statement about the results obtained. E.g. the number of matchstick in a "two high" series is $4 w+2, O R$ "The number of matches increases by 4 each time".
4		- Candidates carry through substantial tasks and solve quite complex problems by breaking them down into smaller, more manageable tasks. Provides an algebraic generalisation for one system of matchstick patterns.	- Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams. Records drawings and results utilising tables and a clear commentary that links and annotates the work.	- Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases. Tests the generalisation made in R3 on new data, showing the predicted result and the derived result from the associated diagram.

5		- Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions. Generates sufficient data to be able to generalise another pattern. Further patterns may be generalised but, if the same counting and "pattern spotting" techniques are employed the assessment stops here.	- Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made. C4 AND produces an algebraic formula into which values are substituted and the formula is evaluated.	- Candidates justify their generalisations or solutions, showing some insight into the mathematical structure of the situation being investigated. They appreciate the difference between mathematical explanation and experimental evidence. Explains WHY a formula works, relating the solution to the shape of the patterns. E.g. Uses the geometry of the pattern ... "Each vertical contains two matches and will always be one more vertical than the width because... " to reason out the formula.
6		- Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques. Applies an algebraic method to analyse the relationships within the patterns and, hence, generate further formulae. E.g., sets the height at h matches and the width as w, deriving a formula for the number of matches as $2 w+h(w+1)$. Solves the cube lattice case.	- Candidates convey mathematical meaning through consistent use of symbols. Uses algebraic manipulation, with clearly defined variables and logical reasoning, in pursuit of the formula(e) sought in S6.	- Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result. Considers a series of formulae with varying heights (for example) to determine a formula for patterns of any height and width, oe.
It is regarded as unlikely that candidates at Foundation/Intermediate tier will generate evidence to allow the award of 7 or 8 marks. However, it is the responsibility of the examiner to judge whether the work submitted justifies such an award.				
7		- Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry. The same techniques as 56 employed to research the number of matchsticks in 3D structures, such as lattices in the form of cuboids, or to explore triangular or tessellating arrays and make significant progress.	- Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument. Construction of formulae to give the total number of matchsticks in cuboid lattices using variables for length (I) width (w) and height (h), showing clear reasoning.	- Candidates' reports include mathematical justifications, explaining their solutions to problems involving a number of features or variables. Construction of formulae to give the total number of matchsticks in cuboid lattices using variables for length (I) width (w) and height (h), showing clear reasoning and no \dagger mere statement of cases.

8		- Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques. The candidate uses algebraic means only to explore their chosen S7 development.	- Candidates use mathematical language and symbols efficiently in presenting a concise reasoned argument. Clear concise algebraic reasoning for at least one development into 3D completely solved, or a tessellating lattice.	- Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid. Algebraic proof for the formula presented for the S8 case.

MARKING GUIDE This guide gives some of the many examples of evidence that candidates may produce. It indicates possible lines of development that may allow the award of each mark, depending on the supporting context.

Spiral Bound [Ao1]

	$\begin{aligned} & \text { K FOR } \\ & \text { ACH } \\ & \text { RAND } \end{aligned}$	Strategy	Communication	Reasoning
1	ןец!ds uәл!̣б әцұ uo sулоМ	- Candidates try different approaches and find ways of overcoming difficulties that arise when they are solving problems. They are beginning to organise their work and check results. Finds the length of any spiral, most likely to $(-3,3)$ [30].	- Candidates discuss their mathematical work and are beginning to explain their thinking. They use and interpret mathematical symbols and diagrams. Records the working for the length of one spiral.	- Candidates show that they understand a general statement by finding particular examples that match it. Finds the correct length of the spiral to any point.
2		- Candidates are developing their own strategies for solving problems and are using these strategies both in working within mathematics and applying mathematics to practical contexts. Finds the correct length of a different portion of the spiral.	- Candidates present information and results in a clear way, explaining the reasons for their presentation. Sets out the work of S2 neatly with a clear drawing, lengths indicated and totals shown.	- Candidates search for a pattern by trying out ideas of their own. Finds three related results for lengths of spirals.
3		- In order to carry through tasks and solve mathematical problems, candidates identify and obtain necessary information; they check their results, considering whether these are sensible. Finds the length of any three related spirals. Eg to consecutive turning points on the spiral.	- Candidates show understanding of situations by describing them mathematically using symbols, words and diagrams. Records drawings and results utilising tables and minimum tex \dagger to annotate the work.	- Candidates make general statements of their own, based on evidence they have produced, and give an explanation of their reasoning. Makes a general statement that is correct for the results obtained. Eg The spiral is made up of pairs of consecutive whole numbers, the sum of horizontals are triangular numbers, $\frac{n(n+1)}{2}$ etc
4		- Candidates carry through substantial tasks and solve quite complex problems by breaking them down into smaller, more manageable tasks. Makes a correct general statement about the length of any part of the spiral. Eg the sum of n horizontal components are $\frac{n(n+1)}{2}$	- Candidates interpret, discuss and synthesise information presented in a variety of mathematical forms. Their writing explains and informs their use of diagrams. Records diagrams of spirals, tables of results and calculations in an orderly way. These are linked with a commentary that clearly explains the work that has been done.	- Candidates are beginning to give a mathematical justification for their generalisations; they test them by checking particular cases. Tests the generalisation made in R3 on new data, showing the predicted result and the derived result from the associated diagram.

5		- Starting from problems or contexts that have been presented to them, candidates introduce questions of their own, which generate fuller solutions. Extends spiral systematically and records spiral lengths to related corners, breaking down lengths to component parts. Eg to points on odd numbered corners, $y=-x$, etc	- Candidates examine critically and justify their choice of mathematical presentation, considering alternative approaches and explaining improvements they have made. Following the award of C4, an algebraic formula is stated and a clear substitution into this is shown.	- Candidates justify their generalisations or solutions, showing some insight into the mathematical structure of the situation being investigated. They appreciate the difference between mathematical explanation and experimental evidence. Explains WHY a formula works, using the geometry of the pattern. Eg. Shows that the series of lengths may be rearranged to form two series of triangular numbers, because of the geometry of the spiral.
6		- Candidates develop and follow alternative approaches. They reflect on their own lines of enquiry when exploring mathematical tasks; in doing so they introduce and use a range of mathematical techniques. Uses algebraic method to determine a formula for a further series of lengths to related corners. Eg as a pair of added triangular numbers or by applying difference method.	- Candidates convey mathematical meaning through consistent use of symbols. The algebraic method employed in the extension (S6 or better) utilises variables that are clearly defined and some manipulation is employed. This may be part of a "leading diagonal" method to determine a formula.	- Candidates examine generalisations or solutions reached in an activity, commenting constructively on the reasoning and logic employed, and make further progress in the activity as a result. Eg. Examines work on original spiral and extends this to a spiral in which the spaces are twice as large.
7		- Candidates analyse alternative approaches to problems involving a number of features or variables. They give detailed reasons for following or rejecting particular lines of enquiry. Applies well-explained algebraic methods to explore all spiral lengths within one quadrant. May achieve such formula(e) in terms of coordinates.	- Candidates use mathematical language and symbols accurately in presenting a convincing reasoned argument. Algebraic methods used on [at least] the S6 development to convey clear meaning and make progress. The work is annotated and demonstrates clear thinking about the task.	- Candidates' reports include mathematical justifications, explaining their solutions to problems involving a number of features or variables. Provides thorough reasoning for why some results are valid for the S7 development, referring to the geometry of the spiral.
8		- Candidates consider and evaluate a number of approaches to a substantial task. They explore extensively a context or area of mathematics with which they are unfamiliar. They apply independently a range of appropriate mathematical techniques. Fully generalises given spiral by extending work to all four quadrants OR by constructing rectangular (or triangular) spirals and applies algebraic methods to derive further formulae.	- Candidates use mathematical language and symbols efficiently in presenting a concise reasoned argument. Algebraic methods used on [at least] the S7 development. The work is annotated, succinct and conveys clear meaning and understanding of the task.	- Candidates provide a mathematically rigorous justification or proof of their solution to a complex problem, considering the conditions under which it remains valid. Clear algebraic reasoning for the complete S7 development and attempts to extend this reasoning to work in other quadrants or to formulae obtained within the new spiral(s) considered.

This guide contains examples of some evidence candidates might produce in response to the task

Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.

2. Candidates must provide evidence of their plan being implemented.

3. If secondary data is provided it must be in sufficient quantity to allow sampling to take place.

Candidates choose a simple well-defined problem. Their Candidates show they understand a simple aims have some clarity. The appropriate data to collect are reasonably obvious. An overall plan is
discernible and some attention is given to whether the plan will meet the aims. The structure of the report as a whole is loosely related to the aims.
task
There is an implicit plan.

* Attempts the question. Eg Records some data for African/European countries.
* Identifies some relevant data and makes an extended attempt to answer the question. Eg Records some data for some African/European countries and draws graph(s).
* Writes one relevant aim and produces a minimal plan to meet the aim. Eg Intent to use data to find mean incomes for chosen countries.
* Writes one or more aims and produces a clear plan that will allow one aim to be met. Eg. Intends selecting data from some African/European countries, comparing GDPs and drawing comparative graphs

Candidates consider a more complex problem. They

5 @. choose appropriate data to collect and state their aims in
5 @ \sum_{0}^{0} statistical terms with the selection of an appropriate plan. Their plan is designed to meet the aims and is welldescribed. Candidates consider the practical
problems of carrying out the survey or experiment. Where appropriate, they give reasons for choosing a particular sampling method. The project report is well structured so that the project can be seen as a whole

Candidates work on a problem requiring creative
thinking and careful specification. They state their aims clearly in statistical terms and select and develop an appropriate plan to meet these aims giving reasons for their choice. They foresee and plan for practical problems in carrying out the survey or experiment.
Where appropriate, they consider the nature and size of sample to be used and take steps to avoid bias. Where appropriate, they use techniques such as control groups, or pre-tests or questionnaires or data sheets and refine these to enhance the project. The project report is well structured and the conclusions are related to the initial aims.

- Candidates consider a substantial problem stating their initial aims clearly at the beginning of the report.
- Their plan is explicitly stated to meet those aims.
- They choose an appropriate sample.
- Candidates work on a demanding problem.
- They state their aims clearly in statistical terms and give valid reasons for their choice of planning - They explain and act upon limitations of their chosen sample (eg bias), where appropriate.
* Writes two or more aims in general terms. A written plan that allows at least two aims to be tested. Relevant data is used. Eg. Intends to compare GDP with life expectancy, wealth with birth rate ... using appropriate graphs and calculations.
* Writes one or more aim in statistical terms and constructs an efficient plan to test the aims. Data is carefully selected. Eg. As S5 but aims in the form"... showing negative correlation between GDP and death rate" with a clear structure drawing all components of the task together.
* An overall structure incorporates individual tasks. Each task stated in statistical terms and carefully specified. The tasks are brought together within the overall hypothesis. Eg. Intends to show that life in Europe is better than in Africa. Explains how the data used will define "life" and "better".
* S7 is expanded to involve justification for choice of data, possibly whole populations. Specific aims and components stated in correct statistical language. Clear justification, in statistical terms, for how each aim will be met. Methods justified and relevant to the tasks.

COLLECT, PROCESS and REPRESENT [C]
Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.
2. The mark awarded to a particular technique should reflect the quality of use and understanding as well as its position within the Level Indicators.
3. The inclusion of statistical techniques outside the National Curriculum does not necessarily justify the award of higher marks.
4. 'Diagrams' include tables, charts and graphs. At 5-6 marks the diagrams used should be appropriate. At 7-8 marks the range of diagrams should be appropriate to the problem chosen and the statistical strategy chosen.
5. 'Redundancy' implies unnecessary and/or inappropriate diagrams or calculations. This includes techniques that are not used for any conclusion.

		Minimum requirements	Examples
1	Candidates collect data with limited relevance to the problem and plan. The data are collected or recorded with little thought given to processing. Candidates use calculations of the simplest kind. The results are frequently correct. Candidates present information and results in a clear and organised way. The data presentation is sometimes related to their overall plan.	- Candidates collect or use data and record it.	* Evidence haphazardly recorded from S
2			* One technique, (grade G) used. Eg bar chart, tally chart... * Some organisation shown in the work
3	Candidates collect data with some relevance to the problem and plan. The data are collected or recorded with some consideration given to efficient processing. Candidates use straightforward and largely relevant calculations involving techniques of at least the level detailed in the handling data paragraph of the grade description for grade F. The results are generally correct. Candidates show understanding of situations by describing them using statistical concepts, words and diagrams. They synthesise information presented in a variety of forms. Their writing explains and informs their use of diagrams, which are usually related to their overall plan. They present their diagrams correctly, with suitable scales and titles.	Candidates collect or use data with some relevance to the problem. They utilise statistical techniques/diagrams (see note 1 above) to process and represent the data. - Their results are generally correct..	Two techniques (one grade F) used. Eg Tabulated results, comparative bar chart to show incomes, mean incomes... * Results contain few obvious errors.
4			* The results of C3 are linked with a commentary. * Grade E and D techniques used appropriately.
5	Candidates collect largely relevant and mainly reliable data. The data are collected in a form designed to ensure that they can be used. Candidates use a range of more demanding, largely relevant calculations that include techniques of at least the level detailed in the handling data paragraph of the grade description for grade C. The results are generally correct and no obviously relevant calculation is omitted. There is little redundancy in calculation or presentation. Candidates convey statistical meaning through precise and consistent use of statistical concepts that is sustained throughout the work. They use appropriate diagrams for representing data and give a reason for their choice of presentation, explaining features they have selected.	- Candidates collect/sample largely relevant data. - They utilise appropriate calculations/techniques/ diagrams (see note 1 above) within the problem. - Their results are generally correct..]	* Two techniques (one grade C) used. Makes own hypothesis and plans to test this by Eg Scatter graph to link GDP to life expectancy (D), [type of correlation discussed (C)] * At least 25 data items chosen. * Results contain few obvious errors
6			* As C5 but with grade B techniques and little redundancy in their use. * Statistical language used accurately.
7	Candidates collect reliable data relevant to the problem under consideration. They deal with practical problems such as non-response, missing data or ensuring secondary data are appropriate. Candidates use a range of relevant calculations that include techniques of at least the level detailed in the handling data paragraph of the grade description for grade A. These calculations are correct and no obviously relevant calculation is omitted. Numerical results are rounded appropriately. There is no redundancy in calculation or presentation. Candidates use language and statistical concepts effectively in presenting a convincing reasoned argument. They use an appropriate range of diagrams to summarise the data and show how variables are related.	Candidates collect/sample largely relevant data. - They utilise appropriate and necessary calculations/techniques/ diagrams (see note 1 above) consistently within the problem. Their results are correct. [Some minor errors may be condoned provided they do not detract from the quality of the argument.]	* At least S5 awarded. * Statistical language used accurately and consistently. * Three techniques (two at least grade B) used. Eg Compares life expectancies of two + countries with cf curve, draws box and whisker plots and comments, scatter graphs interpreted.
8			* Presents multifaceted argument using data, grade A and B techniques and statistical language efficiently and effectively.

INTERPRET and DISCUSS [I]

Notes: 1. In these criteria there is an intended approximate link between 7 marks and grade A, 5 marks and grade C and 3 marks and grade F.
2. The number of marks awarded at this strand is unlikely to exceed the mark at Strand 1 by more than 1 .
3. The use of ICT is to be encouraged to allow candidates more time to analyse and interpret the data. (There is no requirement for the diagrams to be drawn by hand).

		Minimum requirements	
1	Candidates comment on patterns in the data. They summarise the results they have obtained but make little attempt to relate the results to the initial problem.	Candidates comment on their data.	
2			

* Makes a comment based on the data. Eg. "I have found some income figures for African/European countries."
* Any summary or comparative comment, based on their results. Eg "People in Luxembourg are the wealthiest."
Candidates comment on patterns in the data and any

3 exceptions. They summarise and give a reasonably correct interpretation of their graphs and calculations. They attempt to relate the summarised data to the initial problem, though some conclusions may be incorrect or irrelevant.

They make some attempt to evaluate their strategy.

4
Candidates comment on patterns in the data and sugges reasons for exceptions. They summarise and correctly interpret their graphs and calculations, relate the
5 in inferences. Candidates use summary statistics to make relevant comparisons and show an informal appreciation that results may not be statistically significant.
Where relevant, they allow for the nature of the sampling method in making inferences about the population. They evaluate the effectiveness of the overall strategy and make a simple assessment of limitations.

Candidates comment on patterns and give plausible reasons for exceptions. They correctly summarise and interpret graphs and calculations. They make correct and detailed inferences from the data concerning the original problem the significance of results they obtain.

Where relevant, they allow for the nature and size of the sample and any possible bias in making inferences about the population. They evaluate the effectiveness of the
8 overall strategy and recognise limitations of the work done, making suggestions for improvement. They comment constructively on the practical consequences of the work

Candidates summarise and correctly interpret their results.

- They show an appreciation of the significance of these results.
- They recognise possible limitations in their strategy and suggest improvements (where appropriate)
* Evidence of processing data
* Relevant comment made based on the processed data. Eg "Most of the European countries have a higher GDP than the African countries."
* I3 AND S3
* One comparison made within the task
* Summary of findings, related back to the aim
* Makes two comparisons of results within the context of their task Eg GDP and life expectancy for Europe and Africa AND GDPs of both continents.
* Some evaluation of strategy Eg "I should have taken data from more countries", OR "The scale on my graphs was too small to see the patterns clearly."
- Evaluation is more sophisticated and includes comments on the limitations of their data and the implications of their findings. Eg Assesses how "current" the data is and discusses whether the results will be true for ALL inhabitants of the countries.
* Reasons are beginning to be given for the evaluative statements
* Techniques are interpreted clearly.
* S6 awarded (no lower than S5)
. A correct and detailed evaluation, in statistical terms, of their strategy and use of techniques is made.
* Valid improvements are suggested (see generic criteria) and some reasons for suggestions will be given
* Most techniques are interpreted correctly using accurate statistical language and some are related to the task.
17 and
. Fully justifies improvements that may have been suggested and/or offers clear commentary showing an understanding of how the conclusions could be used (for example) by Aid agencies.
* All techniques are interpreted correctly using accurate statistical language and all findings related to the task.

General Certificate of Secondary Education

Mathematics B (MEI) (1968)
June 2006 Assessment Series
Unit Threshold Marks

Unit		Maximum	\mathbf{a}^{*}	a	b	c	d	e	f	g	u
2311	Raw	72	-	-	-	-	54	43	33	23	0
	UMS	71	-	-	-	-	60	48	36	24	0
2312	Raw	72	-	-	51	39	28	17	-	-	0
	UMS	95	-	-	84	72	60	48	-	-	0
2313	Raw	72	56	43	30	17	-	-	-	-	0
	UMS	120	108	96	84	72	-	-	-	-	0
2314	Raw	100	-	-	-	-	71	55	40	25	0
	UMS	119	-	-	-	-	100	80	60	40	0
2315	Raw	100	-	-	65	47	34	21	-	-	0
	UMS	159	-	-	140	120	100	80	-	-	0
2316	Raw	100	67	51	35	19	-	-	-	-	0
	UMS	200	180	160	140	120	-	-	-	-	0
2317	Raw	48	43	37	31	26	22	18	14	10	0
	UMS	80	72	64	56	48	40	32	24	16	0
2318	Raw	48	43	37	31	26	22	18	14	10	0
	UMS	80	72	64	56	48	40	32	24	16	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A *	A	B	C	D	E	F	G	U
$\mathbf{1 9 6 8}$	400	360	320	280	240	200	160	120	80	0

The cumulative percentage of candidates awarded each grade was as follows:

	A* *	A	B	C	D	E	F	G	U	Total No. of Cands
F	-	-	-	-	3.9	29.3	62.3	86.6	100	607
I	-	-	14.7	49.9	84.7	95.6	-	-	100	1874
H	33.4	66.3	91.4	99.4	-	-	-	-	100	1559
All tiers	13.6	27.1	43.7	62.3	77.9	86.7	91.9	95.7	100	4040

4040 candidates were entered for aggregation this series For a description of how UMS marks are calculated see; www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)

1 Hills Road

Cambridge

CB1 2EU

OCR Information Bureau

(General Qualifications)
Telephone: 01223553998
Facsimile: 01223552627
Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Registered Office; 1 Hills Road, Cambridge, CB1 2EU
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

