OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education
MATHEMATICS B (MEI)
1968/2313A
PAPER 1 SECTION A
HIGHER TIER
Monday
5 JUNE 2006
Afternoon
45 minutes
Candidates answer on the question paper.
Additional materials:
Geometrical instruments
Tracing paper (optional)

Candidate
Candidate Name

Number

TIME 45 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem, even if you get the answer wrong.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this section is 36 .

This question paper consists of 8 printed pages.

Formulae Sheet: Higher Tier

Volume of prism $=($ area of cross-section $) \times$ length

In any triangle $A B C$
Sine rule $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

The Quadratic Equation
The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 Make t the subject of this formula.

$$
v=u+a t
$$

2 The goal area of a hockey pitch is in the shape of a semicircle with diameter 30 m .

(a) Calculate the total perimeter of the goal area.

Take π to be 3 .
(a)
(b) Show that the area of the goal area can be written as $112.5 \pi \mathrm{~m}^{2}$.

3 Work out.

$$
6 \frac{2}{3}-2 \frac{4}{5}
$$

4 (a) Write 40 as the product of its prime factors.
(a)
(b) Find the least common multiple (LCM) of 30 and 18.
(b)

5 Solve this inequality.

$$
6 x>8-4 x
$$

6 In this question, h and w represent lengths.
Does the expression $\frac{1}{6} \pi h w^{2}$ represent a perimeter, an area, a volume or none of these?
Give a reason for your answer.
because

7 (a) Factorise.

$$
x^{2}-25
$$

(a)
(b) Simplify.

$$
\frac{x^{2}-25}{2 x^{2}+5 x-25}
$$

(b)
(c) Solve.

$$
\frac{2 x^{2}-21}{x}=11
$$

(c)

8 (a) Show that $(\sqrt{48}+\sqrt{3})^{2}$ is an integer.
(b) Evaluate $25^{-\frac{3}{2}}$.
(b)

9 (a) Find b andc such that $(3 x+b)^{2}+c \boxtimes 9 x^{2}+12 x-7$.
(a) $b=$ \qquad

$$
\begin{equation*}
c= \tag{3}
\end{equation*}
$$

\qquad
(b) The sketch shows the graph ofy $=9 x^{2}+12 x-7$.

Using your answer to part(a), state the coordinates of the lowest point on the graph.

(b)
. [2]

