

1962/5

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A PAPER 5 HIGHER TIER

Specimen Paper 2003

Additional materials: Geometrical instruments Tracing paper (optional) Candidates answer on the guestion paper.

Calculators are **not** allowed.

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem even if you get the answer wrong.

YOU ARE NOT ALLOWED TO USE A CALCULATOR IN THIS PAPER

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [] at the end of each question or part question.

For examiner's use only

FORMULAE SHEET: HIGHER TIER

Volume of prism = (area of cross section) × length

Volume of sphere $= \frac{4}{3}\pi r^3$ **Surface area of sphere** = $4\pi r^2$

In any triangle ABC

The solution of $ax^2 + bx + c = 0$ where $a \neq 0$, area given

by
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1 The diagram shows the wall of a house drawn to a scale of 2 cm to 1 m. A dog is fastened by a lead 3m long to a point X on a wall.

Shade on the diagram the area that the dog can reach.

Scale: 2cm to 1m

[4]

(a) Find the centre of the rotation which maps triangle A on to triangle B.

	Answer (a),,	[1]
(b)	Describe the single transformation which maps triangle B onto triangle C.	
	Answer (b)	
		[2]

(a)	Find the value of 24 multiplied by the reciprocal of 24.	
	Show clear working to explain your answer.	
	Answer (a)	
(b)	James said, 'Five divided by zero is five'.	
	What answer should he have given?	
	Answer (b)	
(c)	Jagdeep said, 'The square root of a number is always smaller than the number itself.'	
	Is he correct?	
	Give an example to support your answer.	
	Answer (c)	

4 A survey was carried out to see how much the sixth formers in a school earn each week from part-time employment.

The frequency polygon below shows the distribution of earnings of the Year 12 students.

The table below shows the distribution of earnings of the Year 13 students.

Earnings (£x)	Number of Year 13 students
$0 < x \le 10$	15
$10 < x \le 20$	27
$20 < x \le 30$	14
$30 < x \le 40$	4
$40 < x \le 50$	1

(a) Draw, on the same grid, the frequency polygon for the earnings of the Year 13 students.

[2]

(b) Make two different comparisons between the earnings of the Year 12 and the Year 13 students.

Answer(b)(1)_____ (2)____

	Answer (a)(i)
ii)	$\frac{12t^5}{3t^2}.$
	Answer (ii)
olve	$e \ 3x + 19 \ge 4.$
	Answer (h)
Reari	ange the following formula to make w the subject.
Ream	The subject is the subject is the subject is $s = \frac{w+y}{2}$
Rearr	range the following formula to make <i>w</i> the subject. $s = \frac{w+y}{2}$
Rearr	Trange the following formula to make <i>w</i> the subject. $s = \frac{w+y}{2}$
	Trange the following formula to make <i>w</i> the subject. $s = \frac{w+y}{2}$ Answer (c)
Yearr The r	The following formula to make <i>w</i> the subject. $s = \frac{w+y}{2}$ Answer (c)
$\frac{1}{n} = \frac{n}{n}$	range the following formula to make <i>w</i> the subject. $s = \frac{w+y}{2}$ Answer (c) $(n+1)$ 2
Find the result of the result	The subject is given by the formula to make w the subject. $s = \frac{w+y}{2}$ Answer (c)
The r $h_n = \frac{m}{1}$	range the following formula to make <i>w</i> the subject. $s = \frac{w + y}{2}$ Answer (c) $\frac{(n+1)}{2}$ Write down the values of t_1, t_2, t_3 .
Rearring the rear	The subject is given by the formula $(n+1)$ Write down the values of t_1, t_2, t_3 .
The right frequency is a constraint of the right frequen	tange the following formula to make <i>w</i> the subject. $s = \frac{w + y}{2}$ Answer (c)

5

6 ABC and PQR are similar triangles.

7 A manufacturer investigates how far a car travels before it needs new tyres.The distances covered by 100 cars before they needed new tyres is shown in the table below.

Distance covered	Number of cars
(x thousands of miles)	
10 < <i>x</i> < 15	10
15 < x < 20	23
20 < <i>x</i> < 25	31
25 < x < 30	19
30 < <i>x</i> < 35	12
35 < x < 40	5

(a) Complete the cumulative frequency table for 100 cars.

Distance covered (x thousand miles)	<i>x</i> < 15	<i>x</i> < 20	<i>x</i> < 25	<i>x</i> < 30	<i>x</i> < 35	<i>x</i> < 40
Cumulative Frequency	10					

(b) Draw the cumulative frequency diagram on the grid below.

[1]

7 (c)	Use your	cumulative freque	ency diagram t	to estimate th	e median o	distance covered.
-------	----------	-------------------	----------------	----------------	------------	-------------------

			Answer (c)	miles [1]
	(d)	Use need	your diagram to estimate how many cars travelled less than 28000 miles before ling new tyres.	
			<i>Answer</i> (<i>d</i>)	[1]
8	(a)	(i)	Write sixty thousand in standard form.	
		(ii)	Hence, or otherwise, find the value of the square of sixty thousand. Give your answer in standard form.	[1]
			Answer (ii)	[2]
	(b)	Wor	k out $4.3 \times 10^{-3} + 2.7 \times 10^{-2}$.	
		Give	e your answer in standard form.	
			Answer (b)	[2]

9 The graph shows the results of a science experiment. A line of best fit has been put onto the graph.

Find the equation of the line.

10	A rec lawn as sh The Writ find	etangular garden is made up of a square of side x m and 2 paths 1.5 m wide, own in the diagram. total area of the garden is 88 m ² . e down an equation in x and solve it to the dimensions of the lawn.	$1.5 \text{ m} \qquad x \text{ m} \qquad 1.5 \text{ m}$	NOT TO SCALE
			Answer	m [5]
11	The <i>h</i> m, <i>h</i> m, Stand (a)	distance, <i>d</i> km, it is possible to see on a cle above sea level ding on a pier, 4 m above sea level, it is po Find a formula for <i>d</i> in terms of <i>h</i> .	ar day is proportional to the square root of t ssible to see a distance of 10 km.	he height,
	(b)	Standing on top of the cliffs I can see a d How high are the cliffs?	<i>Answer (a) d</i> =istance of 35 km.	[2] [2]
			Answer (b)	m [2]

12	A, B AB i Line Angl	, C and s equa s AD a e EDC	d D are points on a circle. l in length and parallel to CD. and BC intersect at E. $C = 35^{\circ}$. NOT TO SCALE A E A B C B B C B C C C C C C C C	
	(a)	Writ Give Ansv	e down the size of angle ABE. a reason for your answer. wer (a)	_
				- _ [1]
	(b)	(i)	Find the size of angle AEC.	
			Show all your working clearly.	
			Answer (b)(i)	_ [2]
		(ii)	What does this tell you about point E? Give a reason for your answer.	
			Answer (ii)	-
				- _ [2]

		$\frac{4}{\sqrt{2}}$				
		Answer (a)	_ [1]			
	(b)	Simplify the following. Give your answer in the form $a + b\sqrt{2}$ where <i>a</i> and <i>b</i> are integers. $(1 + \sqrt{2})(3 - \sqrt{2}).$				
		Answer (b)	_ [2]			
5	In the There The O In his Calcu	e film 'Shipwreck', the Captain and five passengers remain on board a sinking ship. e are three lifejackets remaining. Captain knows that three of the passengers cannot swim. s panic he hands out the lifejackets randomly to three of the five passengers. ulate the probability that he gives the lifejackets to just two of the three non-swimmers.				
		Answer	_ [5]			

16 (a) Given that
$$\mathbf{s} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and $\mathbf{t} = \begin{bmatrix} 6 \\ -1 \end{bmatrix}$, find $2\mathbf{s} - \mathbf{t}$.

I wish to paint the outside walls of my house. A tin of paint covers 25 m ² , correct to the nearest 5 m ² . The outside walls of my house have an area of 320 m ² , correct to the nearest 10 m ² . Calculate the maximum number of tins of paint I may have to buy
Calculate the maximum number of this of paint I may have to buy.
Answer

18	(a)	Simplify the following	expression.
----	------------	------------------------	-------------

$$\frac{x^2 + x - 2}{x^2 - 4}$$

Solve	$\frac{2x+1}{x-1} = \frac{7x+3}{4x-3}$	Answer (a)	
		Answer (b)	
Solve $(x-5)(x+1) > 0$			
		Answer (a)	

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A PAPER 5 HIGHER TIER

MARK SCHEME

Specimen Paper 2003

1	Circ Radi Circ Radi	le, centre X lus 6 cm le, centre corner lus 2 cm	1 1 1 1	
2	(a)	(1,1)	1	
	(b)	Translation	1	
		$\begin{bmatrix} 4\\-6 \end{bmatrix}$	1	
3	(a)	(i) Evidence of $24 \times \frac{1}{24}$	M1	
		1	B1	
	(b)	No answer	1	Allow ∞
	(c)	correct example	M1	
		correctly evaluated	AI	
4	(a)	Points correct Straight line joins	P1 L1	
	(b)	Year 12 higher average oe Year 12 wider range oe	1 1	Accept reasonable alternatives
5	(a)	(i) p^7 (ii) $4t^3$	1 1	
	(b)	$x \ge -5$	2	M1 for $3x \ge -15$
	(c)	w = 2s - y oe	2	M1 for $2s = w + y$ or $s - \frac{y}{2} = \frac{w}{2}$
	(d)	(i) 1, 3, 6	2	B1 for 2 correct
		(ii) Triangular	1	Accept Triangle
6	(a)	7.8	3	B1 for 3 seen and M1 for 3×2.6
	(b)	4.3	2	M1 for $\frac{12.9}{3}$
	(c)	9	2	M1 for (their 3) ²

(b)6 pts plotted JoinedP2 J1P1 for 4 or 5 points plotted correctly J1(c)22.5 to 23.51(d)75 to 7718(a)(i) 6×10^4 1 (ii)(b) 3.13×10^{-2} 2B1 for the square of their (i) numeric correct.(b) 3.13×10^{-2} 2B1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = + 130$ 9 $y = 0.4x + 130$ 4M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 for factors that would give 2 terms and M1 for $s = 10/\sqrt{4}$ or better1085B1 for $x/s + 3x - 88 = 0$ and M1 for $s = 10/\sqrt{4}$ or better11(a) $d = 5\sqrt{h}$ 3M1 for $d = k\sqrt{h}$ and M1 for $k = 10/\sqrt{4}$ or better(b)492M1 for (35/their k)^212(a) (35^c) same segment oe1(b)(i)70° dep on M (ii) E is centre of circle Angle at centre113(a)50, 130, -3103B1 for each value correct(b)(i)Stretch of ½ from y-axis Accurate curve1 $o.e.$ Thro' max min and axis correctly (ii) Translate $\begin{bmatrix} -90\\ 0 \\ 0 \end{bmatrix}$	7	(a)	33, 64, 83, 95, 100	1	
(c) 22.5 to 23.5 1 (d) 75 to 77 1 8 (a) (i) 6×10^4 1 (ii) 3.6×10^9 2 B1 for the square of their (i) numeric correct. (b) 3.13×10^2 2 B1 for 0.0313 9 $y = 0.4x + 130$ 4 M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = + 130$ 10 8 5 B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 for factors that would give 2 terms and M1 for factors equated to 0 and values found 11 (a) $d = 5\sqrt{h}$ 3 M1 for $(35/their k)^2$ 12 (a) (35°) same segment oe 1 M1 for use of parallel lines etc (b) (i) 70° dep on M 2 M1 for use of parallel lines etc (iii) iii E is centre of circle 1 Angle at centre 1 13 (a) 50, 130, -310 3 B1 for each value correct (b) (i) Stretch of ½ from y-axis o.e. Thro' max min and axis correctly (ii) Tanslate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1 o.e. Thro' max min and		(b)	6 pts plotted Joined	P2 J1	P1 for 4 or 5 points plotted correctly
(d) 75 to 77 1 8 (a) (i) 6×10^4 1 (ii) 3.6×10^9 2 B1 for the square of their (i) numeric correct. (b) 3.13×10^2 2 B1 for 0.0313 9 $y = 0.4x + 130$ 4 M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = + 130$ 10 8 5 B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 for factors equated to 0 and values found 11 (a) $d = 5\sqrt{h}$ 3 M1 for $d = k\sqrt{h}$ and M1 for $k = 10/\sqrt{4}$ or better (b) 49 2 M1 for (35/their k) ² 1 12 (a) (35°) same segment oc 1 1 (b) (i) 70° dep on M 2 M1 for use of parallel lines etc (ii) Ei scentre of circle 1 1 A 50, 130, -310 3 B1 for each value correct (b) (i) Stretch of $\frac{1}{2}$ form y-axis 1 o.e. 'Accurate' curve 1		(c)	22.5 to 23.5	1	
8 (a) (i) 6×10^4 1 (ii) 3.6×10^9 2 B1 for the square of their (i) numeric correct. (b) 3.13×10^{-2} 2 B1 for 0.0313 9 $y = 0.4x + 130$ 4 M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = +130$ 10 8 5 B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 for factors that would give 2 terms sand M1 for factors that would give 2 terms sand M1 for $k = 10/\sqrt{4}$ or better 11 (a) $d = 5\sqrt{h}$ 3 M1 for $(35/\text{their }k)^2$ 12 (a) (35°) same segment oe 1 M1 for use of parallel lines etc (ii) E is centre of circle 1 Angle at centre 1 M1 for each value correct (b) (i) Stretch of ½ from y-axis 1 o.e. o.e. Thro' max min and axis correctly (ii) Translate $\begin{bmatrix} -90\\ -90\\ -90\\ -90\\ -10\\ -00 \end{bmatrix}$ 1		(d)	75 to 77	1	
(b) 3.13×10^{-2} 2 B1 for 0.0313 9 $y = 0.4x + 130$ 4 M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = +130$ 10 8 5 B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 for factors equated to 0 and values found 11 (a) $d = 5\sqrt{h}$ 3 M1 for $d = k\sqrt{h}$ and M1 for $k = 10/\sqrt{4}$ or better (b) 49 2 M1 for (35/their $k)^2$ 12 (a) (35°) same segment oe 1 (b) (i) 70° dep on M 2 M1 for use of parallel lines etc (ii) E is centre of circle 1 M1 for each value correct (b) (i) Stretch of ½ from y-axis 0 o.e. 13 (a) 50, 130, -310 3 B1 for each value correct (ii) Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1 o.e. Thro' max min and axis correctly (ii) Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1	8	(a)	(i) 6×10^4 (ii) 3.6×10^9	1 2	B1 for the square of their (i) numerically correct.
9 $y = 0.4x + 130$ 4 M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = + 130$ 10 8 5 B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 their factors equated to 0 and values found 11 (a) $d = 5\sqrt{h}$ (b) 49 2 M1 for $(35/\text{their }k)^2$ 12 (a) (35°) same segment oe 1 (b) (i) 70° dep on M 2 (ii) E is centre of circle 1 Angle at centre 1 13 (a) 50, 130, -310 3 B1 for each value correct (b) (i) Stretch of ½ from y-axis 1 $\sqrt{Accurate' curve}$ 1 $\sqrt{16^\circ}$ min and axis correctly (ii) Translate $\begin{bmatrix} -90\\ -90\\ -90\\ -90\end{bmatrix}$ 1 $\sqrt{Accurate' curve}$ 1 $\sqrt{16^\circ}$ min and axis correctly (ii) Translate $\begin{bmatrix} -90\\ -90\\ -90\\ -90\\ -90\\ -90\\ -90\\ -90\\$		(b)	3.13×10^{-2}	2	B1 for 0.0313
1085B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 terms and M1 their factors equated to 0 and values found11(a) $d = 5\sqrt{h}$ 3M1 for $d = k\sqrt{h}$ and M1 for $k = 10/\sqrt{4}$ or better(b)492M1 for (35/their $k)^2$ 12(a) (35°) same segment oe1(b)(i) 70° dep on M (ii)2 E is centre of circle Angle at centreM1 for use of parallel lines etc13(a)50, 130, -3103B1 for each value correct(b)(i)Stretch of ½ from y-axis 'Accurate' curve1o.e. Thro' max min and axis correctly(ii)Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1o.e. Thro' max min and axis correctly	9		y = 0.4x + 130	4	M1 for correct gradient method and A1 for $m = 0.35$ to 0.45 and B1 for $c = +130$
11(a) $d = 5\sqrt{h}$ 3M1 for $d = k\sqrt{h}$ and M1 for $k = 10/\sqrt{4}$ or better(b) 492M1 for $(35/\text{their }k)^2$ 12(a) (35°) same segment oe1(b) (i) 70° dep on M2 (ii) E is centre of circle Angle at centreM1 for use of parallel lines etc13(a) 50, 130, -3103B1 for each value correct(b) (i) Stretch of ½ from y-axis 'Accurate' curve1o.e. Thro' max min and axis correctly(ii) Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1	10	8		5	B1 for $x(x + 3) = 88$ and B1 for $x^2 + 3x - 88 = 0$ and M1 for factors that would give 2 of the 3 terms and M1 <u>their</u> factors equated to 0 and <i>x</i> values found
(b) 492M1 for $(35/their k)^2$ 12(a) (35°) same segment oe1(b) (i) 70° dep on M2 (ii) E is centre of circle Angle at centreM1 for use of parallel lines etc13(a) 50, 130, -3103B1 for each value correct(b) (i) Stretch of ½ from y-axis 'Accurate' curve0.e. Thro' max min and axis correctly (ii) Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1 	11	(a)	$d = 5\sqrt{h}$	3	M1 for $d = k\sqrt{h}$ and M1 for $k = 10/\sqrt{4}$ or better
12(a) (35°) same segment oe1(b) (i) 70° dep on M2 (ii) E is centre of circle Angle at centreM1 for use of parallel lines etc13(a) 50, 130, -3103B1 for each value correct(b) (i) Stretch of ½ from y-axis 'Accurate' curve1o.e. Thro' max min and axis correctly(ii) Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1 ·Accurate' curve		(b)	49	2	M1 for $(35/\text{their } k)^2$
(b)(i) 70° dep on M2M1 for use of parallel lines etc(ii)E is centre of circle11Angle at centre1B1 for each value correct(b)(i)Stretch of ½ from y-axis1o.e.'Accurate' curve1Thro' max min and axis correctly(ii)Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1'Accurate' curve1	12	(a)	(35°) same segment oe	1	
13(a)50, 130, -3103B1 for each value correct(b)(i)Stretch of $\frac{1}{2}$ from y-axis1o.e.'Accurate' curve1Thro' max min and axis correctly(ii)Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1'Accurate' curve1'Accurate' curve1		(b)	 (i) 70° dep on M (ii) E is centre of circle Angle at centre 	2 1 1	M1 for use of parallel lines etc
(b) (i)Stretch of $\frac{1}{2}$ from y-axis1o.e.'Accurate' curve1Thro' max min and axis correctly(ii)Translate $\begin{bmatrix} -90\\ 0 \end{bmatrix}$ 1'Accurate' curve1	13	(a)	50, 130, -310	3	B1 for each value correct
'Accurate' curve 1		(b)	 (i) Stretch of ½ from y-axis 'Accurate' curve (ii) Translate [-90] 	1 1 1	o.e. Thro' max min and axis correctly
			'Accurate' curve	1	

14	(a)	2√2	2	M1 for $\frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ or better
	(b)	$1 + 2\sqrt{2}$	2	M1 for $3 - \sqrt{2} + 3\sqrt{2} - \sqrt{2}\sqrt{2}$ or better
15	$\frac{6}{10}$		5	B1 for each of $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$; $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$; $\frac{2}{5} \times \frac{3}{4} \times \frac{2}{3}$ and M1 for adding the three possibilities
16	(a)	$\begin{bmatrix} 0\\9\end{bmatrix}$	1	
	(b)	(i) 3 <i>p</i> (ii) -4 <i>p</i>	1 1	
	(c)	AM = NC = 1/2a AN = MC = b + 1/2a Opposite sides parallel Opposite sides equal	1 1 1 1	
17	15		5	B1 for 325 used and B1 for 22.5 used and M1 for their Max /their Min and A1 for 14.4
18	(a)	$\frac{x-1}{x-2}$	3	B1 for $(x - 2)(x + 2)$ and B1 for $(x + 2)(x - 1)$
	(b)	x = 0 or -2	6	M1 for Attempt to cross multiply and A1, A1 for $8x^2 - 2x - 3$ and $7x^2 - 4x - 3$ and M1 for collect terms and attempt to factorise oe and A1 for $x(x + 2) = 0$ oe
	(c)	$\begin{array}{l} x > 5 \\ x < -1 \end{array}$	1 1	

3

1962	Analysi	is																	
Pape	er 5			Year					Targ	get Gi	rades						AO		
	1	1	_		1		I	r								1		-	
		~ "				Non								-	-	<i></i>	~		
0	NC	Syll	Tania/Oantast	NL	Man	Man	~		~	-	•	۸.+	M/	Com	Com	Str	Str	Str	Natas
Qn	ret	ret	i opic/Context	NU	Alg	Alg	S	HD	C	В	A	A^	S	F/I	I/H	1	2	3	Notes
1	3.1b,	3.4e					4		4				2		4		4		
2	3.3b,						3		3						3		2		
3		2.3a		5					5						5			4	
4	4.4a,	4.5b,	4.5d					4	4									2	
5	2.5d,	2.5g,	2.5j		6	3			9						6				
6	3.2g,	3.3d					7			5	2				5				
7	4.4a,	4.4e,	4.5b					6		6					6				
8	2.3h,			5						5					3				
9	2.1b,	2.1c,	2.1f, 2.6c			4				4					4				
10	2.4a,	2.5b	2.5c		5					5			5		5	5			
11	2.1g,	2.5h			5						5								
12	3.1d,	3.1f,	3.2h				5				5							4	
13	3.1b,	3.1f,	3.2g, 2.6g			4	3				3	4					4		
14	2.3n			4								4							
15	4.1b,	4.4h						5			5		5			5			
16	3.1d,	3.1f,	3.3f				6					6	4					4	
17	2.1a,	2.1b,	2.3q	5							5		4			4	1		
18	2.1a,	2.5b,	2.5j, 2.5k		11							11							
25				19	27	11	28	15	25	25	25	25	20		41	14	11	14	