Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A

PAPER 5

Specimen Paper 2003

Additional materials: Geometrical instruments Tracing paper (optional)
Candidates answer on the question paper.
Calculators are not allowed.
TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem even if you get the answer wrong.

YOU ARE NOT ALLOWED TO USE A CALCULATOR IN THIS PAPER

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.

FORMULAE SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r 1$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, area given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 The diagram shows the wall of a house drawn to a scale of 2 cm to 1 m .
A dog is fastened by a lead 3 m long to a point X on a wall.
Shade on the diagram the area that the dog can reach.
Scale: 2 cm to 1 m

2

(a) Find the centre of the rotation which maps triangle A on to triangle B .

Answer (a) \qquad , \qquad
(b) Describe the single transformation which maps triangle B onto triangle C .

Answer (b) \qquad
\qquad
\qquad

3 (a) Find the value of 24 multiplied by the reciprocal of 24.
Show clear working to explain your answer.
\qquad
\qquad
\qquad
Answer (a)
(b) James said, 'Five divided by zero is five'.

What answer should he have given?
\qquad

Answer (b)
(c) Jagdeep said, 'The square root of a number is always smaller than the number itself.'

Is he correct?
Give an example to support your answer.
Answer (c) \qquad
\qquad
\qquad
\qquad
\qquad

4 A survey was carried out to see how much the sixth formers in a school earn each week from part-time employment.
The frequency polygon below shows the distribution of earnings of the Year 12 students.

The table below shows the distribution of earnings of the Year 13 students.

Earnings (£x)	Number of Year 13 students
$0<\mathrm{x} \leq 10$	15
$10<\mathrm{x} \leq 20$	27
$20<\mathrm{x} \leq 30$	14
$30<\mathrm{x} \leq 40$	4
$40<\mathrm{x} \leq 50$	1

(a) Draw, on the same grid, the frequency polygon for the earnings of the Year 13 students.
(b) Make two different comparisons between the earnings of the Year 12 and the Year 13 students. Answer(b)(1) \qquad
\qquad
\qquad
(2) \qquad
\qquad
\qquad [2]
(a) Simplify
(i) $p^{4} \times p^{3}$,
\qquad
Answer (a)(i) \qquad
(ii) $\frac{12 t^{5}}{3 t^{2}}$.
\qquad
\qquad
Answer (ii)
(b) Solve $3 x+19 \geq 4$.
\qquad
\qquad
\qquad
Answer (b)
[2]
(c) Rearrange the following formula to make w the subject.

$$
s=\frac{w+y}{2}
$$

\qquad
\qquad
\qquad
Answer (c)
(d) The nth term, t_{n}, of a sequence is given by the formula
$t_{n}=\frac{n(n+1)}{2}$
(i) Write down the values of t_{1}, t_{2}, t_{3}.
\qquad
\qquad
Answer (d) (i)
[2]
(ii) This sequence of numbers has a special name. Write down that name.

Answer (ii)
$A B C$ and $P Q R$ are similar triangles.

(a) Find the length marked
(i) x,
\qquad
\qquad
\qquad
\qquad
Answer (a)(i) \qquad cm [3]
(ii) y.
\qquad
\qquad
\qquad
\qquad
Answer (ii) \qquad cm [2]
(b) (Area of triangle PQR$)=n \times($ Area of triangle ABC$)$

Find the value of n.
\qquad
\qquad
Answer (b)

7 A manufacturer investigates how far a car travels before it needs new tyres.
The distances covered by 100 cars before they needed new tyres is shown in the table below.

Distance covered (x thousands of miles)	Number of cars
$10<x<15$	10
$15<x<20$	23
$20<x<25$	31
$25<x<30$	19
$30<x<35$	12
$35<x<40$	5

(a) Complete the cumulative frequency table for 100 cars.

Distance covered $(x$ thousand miles $)$	$x<15$	$x<20$	$x<25$	$x<30$	$x<35$	$x<40$
Cumulative Frequency	10					

(b) Draw the cumulative frequency diagram on the grid below.

[3]

7 (c) Use your cumulative frequency diagram to estimate the median distance covered.
Answer (c)
\qquad miles [1]
(d) Use your diagram to estimate how many cars travelled less than 28000 miles before needing new tyres.

Answer (d)

8 (a) (i) Write sixty thousand in standard form.
Answer (a)(i)
(ii) Hence, or otherwise, find the value of the square of sixty thousand.

Give your answer in standard form.
\qquad
\qquad
Answer (ii)
(b) Work out $4.3 \times 10^{-3}+2.7 \times 10^{-2}$.

Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
Answer (b)

9 The graph shows the results of a science experiment.
A line of best fit has been put onto the graph.

Find the equation of the line.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer

10 A rectangular garden is made up of a square lawn of side $x \mathrm{~m}$ and 2 paths 1.5 m wide, as shown in the diagram.

The total area of the garden is $88 \mathrm{~m}^{2}$.
Write down an equation in x and solve it to find the dimensions of the lawn.

NOT TO SCALE

Answer \qquad m [5]

11 The distance, $d \mathrm{~km}$, it is possible to see on a clear day is proportional to the square root of the height, $h \mathrm{~m}$, above sea level

Standing on a pier, 4 m above sea level, it is possible to see a distance of 10 km .
(a) Find a formula for d in terms of h.
\qquad
\qquad
\qquad
\qquad
Answer (a) $d=$
(b) Standing on top of the cliffs I can see a distance of 35 km .

How high are the cliffs?
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad m [2]
$12 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D are points on a circle.
$A B$ is equal in length and parallel to $C D$. NOT TO SCALE Lines $A D$ and $B C$ intersect at E.
Angle EDC $=35^{\circ}$.
(a) Write down the size of angle ABE .

Give a reason for your answer.
Answer (a) \qquad
\qquad
\qquad
(b) (i) Find the size of angle AEC.

Show all your working clearly.
\qquad
\qquad
\qquad
Answer (b)(i)
(ii) What does this tell you about point E ? Give a reason for your answer.

Answer (ii) \qquad
\qquad
\qquad

13 Below is the graph of $y=\sin x^{\circ}$ for values of x between -360 and 360 .

(a) One solution of the equation $\quad \sin x^{\circ}=0.766$
is $x=-230$.

Find the other solutions for x in the range -360 to 360 .
\qquad
\qquad
\qquad
Answer (a) \qquad
(b) On the grids below draw the graph of
(i) $y=\sin (2 x)^{\circ}$,

(ii) $\quad y=\sin (x+90)^{\circ}$.

14 (a) Express the following in the form $p \vee q$ where p and q are integers.

$$
\frac{4}{\sqrt{2}}
$$

\qquad
\qquad
Answer (a)
(b) Simplify the following. Give your answer in the form $a+b \sqrt{ } 2$ where a and b are integers.

$$
(1+\sqrt{ } 2)(3-\sqrt{ } 2)
$$

\qquad
\qquad
\qquad
Answer (b)
[2]

15 In the film 'Shipwreck', the Captain and five passengers remain on board a sinking ship. There are three lifejackets remaining.
The Captain knows that three of the passengers cannot swim.
In his panic he hands out the lifejackets randomly to three of the five passengers.
Calculate the probability that he gives the lifejackets to just two of the three non-swimmers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer

16 (a) Given that $\mathbf{s}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $\mathbf{t}=\left[\begin{array}{r}6 \\ -1\end{array}\right]$, find $2 \mathbf{s}-\mathbf{t}$.
\qquad
\qquad $\operatorname{Answer}(a)[\square$
(b) In the diagram $X Q=3 P X$.

Given that $\mathbf{P X}=\mathbf{p}$, find in terms of \mathbf{p}

(i) XQ ,

Answer (b)(i) \qquad [1]
(ii) QP.

Answer (ii)
[1]
(c) In the diagram ABCD is a parallelogram. M and N are the mid-points of $A B$ and $D C$. $\mathbf{A B}=\mathbf{a}$ and $\mathbf{A D}=\mathbf{b}$.

Use a vector method to prove that AMCN is also a parallelogram.
Show all your working clearly.
Answer (c) \qquad

17 I wish to paint the outside walls of my house.
A tin of paint covers $25 \mathrm{~m}^{2}$, correct to the nearest $5 \mathrm{~m}^{2}$.
The outside walls of my house have an area of $320 \mathrm{~m}^{2}$, correct to the nearest $10 \mathrm{~m}^{2}$.
Calculate the maximum number of tins of paint I may have to buy.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer

18 (a) Simplify the following expression.

$$
\frac{x^{2}+x-2}{x^{2}-4}
$$

\qquad
\qquad
\qquad
\qquad
Answer (a)
(b) Solve

$$
\frac{2 x+1}{x-1}=\frac{7 x+3}{4 x-3}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (b)
(c) Solve $(x-5)(x+1)>0$
\qquad
\qquad
\qquad
\qquad
Answer (c)

RECOGNISING ACHIEVEMENT
Oxford Cambridge and RSA Examinations
General Certificate of Secondary Education
MATHEMATICS SYLLABUS A1962/5
HIGHER TIER
MARK SCHEME
Specimen Paper 2003

1 Circle, centre X
Radius 6 cm
Circle, centre corner
Radius 2 cm
1

2
(a) $(1,1)$
1
(b) Translation
1
$\left[\begin{array}{r}4 \\ -6\end{array}\right]$
1

3 (a)
(a) (i) Evidence of $24 \times \frac{1}{24}$ M1
1
B1
$\begin{array}{lcl}\text { (b) } & \text { No answer } & 1 \\ \text { (c) } & \begin{array}{l}\text { correct example } \\ \text { correctly evaluated }\end{array} & \text { M1 } \\ & \text { A1 }\end{array}$

4 (a) Points correct
P1
Straight line joins
L1
(b) Year 12 higher average oe

1
Year 12 wider range oe
1
Accept reasonable alternatives

5
(a) $\begin{aligned} & \text { (i) } \mathrm{p}^{7} \\ & \\ & \text { (ii) } \\ & 4 t^{3}\end{aligned}$
1
(b) $x \geq-5$

2
M1 for $3 x \geq-15$
(c) $\mathrm{w}=2 \mathrm{~s}-\mathrm{y}$ oe

2
M 1 for $2 \mathrm{~s}=\mathrm{w}+\mathrm{y}$ or $s-\frac{y}{2}=\frac{w}{2}$
(d)
(i) $1,3,6$
(ii) Triangular

1
B1 for 2 correct
Accept Triangle

6
(a) 7.8
3
B1 for 3 seen
and M1 for 3×2.6
(b) 4.3
2
M1 for $\frac{12.9}{3}$
(c) 9
2
M1 for (their 3) ${ }^{2}$
(a) $33,64,83,95,100$

1
(b) 6 pts plotted Joined
(c) 22.5 to 23.5 1
(d) 75 to 77

P1 for 4 or 5 points plotted correctly Por plar

8 (a) (i) $6 \times 10^{4} \quad 1$
(ii) $3.6 \times 10^{9} \quad 2$
(b) 3.13×10^{-2}

2
B1 for 0.0313
$9 \quad y=0.4 x+130$
4
M1 for correct gradient method and A 1 for $m=0.35$ to 0.45 and B 1 for $c=+130$

108
5
B1 for $x(x+3)=88$
and B1 for $x^{2}+3 x-88=0$
and M1 for factors that would give 2 of the 3 terms
and M1 their factors equated to 0 and x values found

11 (a) $d=5 \sqrt{ } h$
(b) 49

12 (a) ($\left.35^{\circ}\right)$
same segment oe
(b) (i) 70° dep on M
(ii) E is centre of circle

Angle at centre

13
(a) $50,130,-310$
(b) (i) Stretch of $1 / 2$ from y-axis
'Accurate' curve
(ii) Translate $\left[\begin{array}{c}-90 \\ 0\end{array}\right]$
'Accurate' curve
$3 \quad \mathrm{M} 1$ for $d=k \sqrt{ } h$ and M1 for $k=10 / \sqrt{ } 4$ or better

M1 for (35/their $k)^{2}$

14 (a) $2 \sqrt{ } 2$
2
M1 for $\frac{4}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ or better
(b) $1+2 \sqrt{ } 2$

2
M1 for $3-\sqrt{ } 2+3 \sqrt{ } 2-\sqrt{ } 2 \sqrt{ } 2$ or better
$15 \quad \frac{6}{10}$
5
B1 for each of $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$;
$\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} ; \frac{2}{5} \times \frac{3}{4} \times \frac{2}{3}$
and M1 for adding the three possibilities

16 (a) $\left[\begin{array}{l}0 \\ 9\end{array}\right]$
(b) (i) $3 p$
(ii) $-4 p$
(c) $\mathrm{AM}=\mathrm{NC}=1 / 2 a$
$\mathrm{AN}=\mathrm{MC}=b+1 / 2 a$
Opposite sides parallel
Opposite sides equal
$17 \quad 15$
5
5 B1 for 325 used
and B1 for 22.5 used
and M1 for their Max /their Min
and A1 for 14.4

18 (a) $\frac{x-1}{x-2}$
3 B1 for $(x-2)(x+2)$
and B1 for $(x+2)(x-1)$
(b) $x=0$ or -2

6
M1 for Attempt to cross multiply and A1, A1 for $8 x^{2}-2 x-3$ and $7 x^{2}-4 x-3$ and M1 for collect terms and attempt to factorise oe and A1 for $x(x+2)=0$ oe
(c) $x>5$
$x<-1$
1
1

1962 Analysis Paper 5			Topic/Context	Year					Target Grades										Notes				
												AO											
Qn	NC ref	Syll ref		Nu	Man Alg	Non Man Alg	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	HD					C	B	A	A*	$\begin{aligned} & \mathrm{M} / \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & \text { Com } \\ & \text { F/l } \end{aligned}$		$\begin{aligned} & \text { Com } \\ & \mathrm{I} / \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { Str } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Str } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Str } \\ & 3 \end{aligned}$
1	3.1b,	3.4 e						4		4				2		4		4					
2	3.3b,						3		3						3		2						
3		2.3a		5					5						5			4					
4	4.4a,	4.5b,	4.5d					4	4									2					
5	2.5d,	2.5 g ,	2.5j		6	3			9						6								
6	3.2g,	3.3d					7			5	2				5								
7	4.4a,	4.4 e ,	4.5b					6		6					6								
8	2.3h,			5						5					3								
9	2.1b,	2.1c,	2.1f, 2.6c			4				4					4								
10	2.4a,	2.5b	2.5c		5					5			5		5	5							
11	2.1g,	2.5h			5						5												
12	3.1d,	3.1f,	3.2h				5				5							4					
13	3.1b,	3.1f,	3.2g, 2.6 g			4	3				3	4					4						
14	2.3n			4								4											
15	4.1b,	4.4h						5			5		5			5							
16	3.1d,	3.1f,	3.3 f				6					6	4					4					
17	2.1a,	2.1b,	2.3 q	5							5		4			4	1						
18	2.1a,	2.5b,	2.5j, 2.5k		11							11											
25				19	27	11	28	15	25	25	25	25	20		41	14	11	14					

