

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A PAPER 6 HIGHER TIER

Specimen Paper 2003

Additional materials:

Electronic calculator, Geometrical instruments, Tracing paper (optional).

Candidates answer on the question paper.

TIME 2 hours

Candidate Name	Centre Number	Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem, even if you get the answer wrong.

You are expected to use an electronic calculator for this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Unless otherwise instructed in the question, take π to be 3.142 or use the π button on your calculator.

For examiner's use only

1962/6

FORMULAE SHEET: HIGHER TIER

The Quadratic Equation

Volume of cone = $\frac{1}{3}\pi r^2 h$ **Curved surface area of cone** = $\pi r l$

Volume of sphere $= \frac{4}{3}\pi r^3$ **Surface area of sphere** = $4\pi r^2$

In any triangle ABC

Sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Area of triangle = $\frac{1}{2}ab \sin C$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

Volume of prism = (area of cross section) × length

ection length

2

3 (a) Form and solve an equation to calculate the angles of this triangle.

	NOT TO SCALE 2x - 10 x $22 + x$ x	
(b)	$Answer(a) _ °, _ °, _ °$ Solve this inequality x ² < 25.	[4]
	Answer (b)	_ [2]

5 The diagram shows a window formed from rectangular sections

	(a)	How much did she have in her account 3 years later, after the final interest had been added									
			_								
			_								
			_								
			_								
			_								
		Answer (a) £	[3								
	(b)	An annual rate of interest between 7% and 8% would be required for a sum of money to double in ten years. Use a trial and improvement method to find this rate of interest.									
		Give your answer as a percentage to 1 decimal place. Show your calculations.									
			_								
			_								
			_								
			_								
		Answer (b)	- %[4								
			_/ • L								
			_/ • L								
,	Lake	Reindeer in Canada covers an area of 6.3×10^9 m ² . Michigan in the United States of America covers an area of 5.8×10^{10} m ²	_/* [
	Lake Lake (a)	Reindeer in Canada covers an area of 6.3×10^9 m ² . Michigan in the United States of America covers an area of 5.8×10^{10} m ² . What is the total area covered by these two lakes? Give your answer in standard form.									
,	Lake Lake (a)	Reindeer in Canada covers an area of $6.3 \times 10^9 \text{ m}^2$. Michigan in the United States of America covers an area of $5.8 \times 10^{10} \text{ m}^2$. What is the total area covered by these two lakes? Give your answer in standard form.									
	Lake Lake (a)	Reindeer in Canada covers an area of $6.3 \times 10^9 \text{ m}^2$. Michigan in the United States of America covers an area of $5.8 \times 10^{10} \text{ m}^2$. What is the total area covered by these two lakes? Give your answer in standard form.									
,	Lake Lake (a)	Reindeer in Canada covers an area of 6.3×10^9 m ² . Michigan in the United States of America covers an area of 5.8×10^{10} m ² . What is the total area covered by these two lakes? Give your answer in standard form. <i>Answer (a)</i>	 m ² [2								
	Lake Lake (a) (b)	Reindeer in Canada covers an area of $6.3 \times 10^9 \text{ m}^2$. Michigan in the United States of America covers an area of $5.8 \times 10^{10} \text{ m}^2$. What is the total area covered by these two lakes? Give your answer in standard form. <i>Answer</i> (a) What is the ratio of the area of Lake Reindeer to the area of Lake Michigan? Give your answer in the form 1: n	 m ² [2								
	Lake Lake (a)	Reindeer in Canada covers an area of $6.3 \times 10^9 \text{ m}^2$. Michigan in the United States of America covers an area of $5.8 \times 10^{10} \text{ m}^2$. What is the total area covered by these two lakes? Give your answer in standard form. <i>Answer</i> (a) What is the ratio of the area of Lake Reindeer to the area of Lake Michigan? Give your answer in the form 1: <i>n</i> .	 								
	Lake Lake (a)	Reindeer in Canada covers an area of $6.3 \times 10^9 \text{ m}^2$. Michigan in the United States of America covers an area of $5.8 \times 10^{10} \text{ m}^2$. What is the total area covered by these two lakes? Give your answer in standard form. <i>Answer</i> (<i>a</i>) What is the ratio of the area of Lake Reindeer to the area of Lake Michigan? Give your answer in the form 1: <i>n</i> .	[2								
	Lake Lake (a)	Reindeer in Canada covers an area of $6.3 \times 10^9 \text{ m}^2$. Michigan in the United States of America covers an area of $5.8 \times 10^{10} \text{ m}^2$. What is the total area covered by these two lakes? Give your answer in standard form. <i>Answer</i> (<i>a</i>) What is the ratio of the area of Lake Reindeer to the area of Lake Michigan? Give your answer in the form 1: <i>n</i> .	[2								

8 A bar of gold is a prism with volume 165 cm³. Its cross-section is a trapezium with dimensions as shown.

(a) Calculate the length of the bar of gold.

	Answer (a) cm
As	similar bar of gold has a volume of 675.84 cm ³ . Calculate the height of this bar of gold.
	Answer (b)c
A o Re	different bar of gold has a volume given by the formula $V = h^2 y$. earrange the formula to make h the subject.

9 Watcham has a population of 86 000 in an area of 104 square miles. To meet housing targets, it needs to aim to house an extra 14 000 people whilst increasing the area by only 6 square miles.

If this happens, by how much will the population density have increased?

Answer ______ people / square mile [4]

Throw five sixes and win a holiday What is the probability of throwing 5 sixes with one throw of the 5 ordinary dice? **(a)** Answer (a) [2] **(b)** The number of dice is now changed so that *n* dice are thrown. You win a holiday if all *n* dice show sixes. Ian throws the *n* dice once. Write down an expression for the probability that Ian **does not** win a holiday. Give your answer in its simplest form.

Answer (b) [2]

10

13 (a)	Simplify $2a^3 \ge 4a^2$.	
(b)	Answer (a) Solve the equation $x^2 - 8x + 10 = 0$.	[1]
(c)	Answer (b)	[3]
	x (2y - 3) = 5(y - 2)	
	Answer (c)	[4]
(d)	Solve algebraically these simultaneous equations. Show your method clearly. $\label{eq:x+y=5} x^2 + 3y^2 = 49$	
	Answer (d)	[6]
Mathematics	s A 12	© OCR 2000

15 The table shows information about the ages of the members of a choir on Christmas Day.

Age in years	Number of members
$15 \le y < 20$	5
$20 \le y < 25$	18
$25 \le y < 30$	12
$30 \le y < 40$	24
$40 \le y < 50$	40
$50 \le y < 70$	36

(a) On the grid, draw a histogram to show this information.

The membership of the choir remains unchanged for 2 years.

(b) Calculate an estimate of the mean age of the choir members on Christmas Day in 2 years time. Explain how you obtain this.

Answer (*b*) ______ years [5]

[4]

15	(c)	When a new histogram of the ages of the choir members is drawn, it is noticed that it has
		exactly the same shape as the original one. Describe the relationship between the two
		histograms.

[2]

Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A PAPER 6 HIGHER TIER

1962/6

MARK SCHEME

Specimen Paper 2003

1	(a) −7.16	2	M1 for 130.67 ÷ -18.25	
	(b) $3^2 \ge 11^2$	2	M1 for 3x3x11x11	4
2	(a) reflection in y = x drawn - vertices at (3,1)(4,1)(4,3) and (1,1)	2	M1 for line $y = x$ drawn	
	(b) correct flag drawn - vertices at (0,3) (-1,3) (-1,2.5) and (-1,1.5)	2	M1 for flag correct size in wrong position	4
3	(a) $4x + 12 = 180$ 4x = 168 or x + 3 = 45 x = 42 other angles 64, 74	M1 M1 A1 A1	may be unsimplified	4
	(b) $-5 < x < 5$	2	B1 for $x < 5$ or $x > -5$ or $-5 = x = 5$	
4	(a) 3.3(2)	3	M2 for v(3.5 ² - 1.1 ²) or M1 for 1.1 ² + $h^2 = 3.5^2$ or better	
	(b) $\cos \phi = 1.1 / 3.5$ or 0.314 inv cos used $\phi = 71(.6)$	M1 M1 A1		
	$\frac{\text{or}}{=} 3.5 \text{ x cos } 70^{\circ}$ $= 1.1(97)$ so ladder is safe	M1 M1 A1		6
5	(a) $6y^2 + 2xy$	2	M1 for $2y(3y+x)$ Allow omission of brackets	
	(b) $x+2y = 105; 2x+3y = 185$	1		
	(c) $x = 55 \ y = 25$	3	M1 for multiplying and subtracting oe. and A1 for one correct value	6
6	(a) 3573.04 or 3573.05	3	M2 for 3000×1.06^3 or M1 for evidence of at least two years totals (3180 and 3370.8(0))	
	(b) trial between 7 and 8% trials of 7.1 and 7.2% or better trial of 7.15% or better answer 7.2%	M1 M1 1	5 1.6289 7.1 1.9856135 6 1.7908 7.2 2.0042314 7 1.9672 7.3 2.0230062 8 2.1589 7.4 2.0419392 9 2.3674 7.5 2.0610316 10 2.5937 7.6 2.0802844 7.7 2.099699 7.15 1.9949 7.8 2.1192764 7.9 2.139018 7.9 2.139018	7

7	(a) $6.4(3) \ge 10^{10}$	2	B1 for correct answer with poor notation	
	(b) 9.2(06)	2	M1 for $(5.8 \times 10^{10}) \div (6.3 \times 10^{9})$	4
8	(a) 8.4	3	M1 for Area of trap. = 19.6(2) M1 for 165 / Area of trap	
	 (b) vol sf = 675.84 ÷ 165 or 4.096 length sf = cube rt vol sf or 1.6 3.6 x their length s.f 5.76 or 5.8 	M1 M1 A1		6
	(c) $\sqrt{\frac{V}{y}}$	2	M1 for $h^2 = \frac{V}{y}$	
9	82(.19)	4	M1 for 86000/104 or 826(.9) M1 for 100000/110 or 909.(09) M1 for subtraction of these	4
10	(a) $1/7776$ or 1.286×10^{-4} or equivalent	2	M1 for $(1/6)^5$	
	(b) $1 - (1/6)^n$	2	M1 for $(1/6)^n$ seen	4
11	(a) 8, 2, -4 pts plotted general shape correct smooth curve	1 1 1 1		
	(b) (i) 2.6 to 2.8 , -0.1 to -0.2, -2.5 to -2.6	2	1 for 2 correct	
	(ii) y = x - 1 drawn -3, 0.3 to 0.4, 2.5 to 2.7	M2 A2	M1 for attempted rearrangement of eqn as $x^3 - 7x + 2 = x - 1$; A1 for 2 correct solns	10
12	(a) $AB^2 = 3.4^2 + 15^2 - 2 \times 3.4 \times 15 \times \cos 115^\circ$	M1		
	= 279.66 AB = 16.7 km or 17 km	A1 A1	accept 2 sf if method seen	
	(b) where ø is acute angle made by AB with N:			
	AB $\cos \varphi = 3.4 \cos 40^\circ + 15 \cos 25^\circ$	M2	or e.g. AB sin $\emptyset = 15 \cos 65^{\circ} - 3.4 \cos 50^{\circ}$	
		AI A1	accept to more s.f.; implies previous A1	7

13	(a) $8a^5$	1		
	(b) 4±v6 or 6.4(49) and 1.55	3	M1 for subst. in quadratic formula or for x-4 = (\pm) v6 or $(x-4)^2 = 6$	
	(c) $2xy - 3x = 5y - 10$ 2xy - 5y = 3x - 10 LHS = y (2x-5) $y = \frac{3x - 10}{2x - 5}$ or equivalent	M1 M1 M1 A1	or negative equivalent	
	(d) $(5-y)^2 + 3y^2 = 49$ $25 - 10y + y^2 + 3y^2 = 49$ $4y^2 - 10y - 24 = 0$ (2y+3)(y-4) = 0 y = 4 or -1.5 x = 1 or 6.5	M1 M1 A1 M1 A1 A1	or $x^{2} + 3(5-x)^{2} = 49$ or $x^{2} + 3(25 - 10x + x^{2}) = 49$ or $4x^{2} - 30x + 26 = 0$ or $(2x - 13)(x - 1) = 0$	14
14	 (a) OP = OQ [radii] CPO = CQO = 90° [angle between tgt and radius] CO is common 	1 1 1		
	(b) 254°	2	M1 for POQ (obtuse) = $180 - 74^{\circ}$	5
15	(a) axes graduated and labelled with age and frequency density [or area scale shown]	1		
	members per year: 1, 3.6, 2.4, 2.4, 4, 1.8 group widths correct heights of bars correct	1 1 1	or may be per 10 years etc	
	(b) mean = $43.6(48)$	5	M1 for midpts used: 17.5, 22.5, 27.5, 35, 45, 60; M1 for midpts x freq; M1 for division by 135, M1 for mean + 2; or M2 for 19.5, 24.5 etc used as midpts, M2 for evidence of correct use of statistical fns of calculator	
	(c) will be a translation of 2 years to right, with groups $17 \le y < 22$ etc or good full attempt at calculating numbers in existing groups in two years time and relating to shape	2	1 for partially correct description [list of examples would be supplied to examiners]	11

Total 100

1962 Analys Paper: 6	iis			Year: S	pecime	n 200	3	Т	arget	grad	les					AO 1		
Qn NC ref	Торіс	Context	Nu	Man Alg	Non Man Alg	SS	HD	C	В	A	A*	M/ S	Com F/I	Com I/H	Str 1	Str 2	Str 3	Notes
1 2.30 2.3a	Calc efficiency; p	prime factors	4					4										(b) possibly worth 1 more
2 3.3b 3.3c	Transformations	Flag				4		4										
3 2.5e 2.5j	Form and solve eqns/Inequality	Triangle		6				4	2									
4 3.2f 3.2g	Pythagoras' Theorem/ Trigonometry	Fence support				6		3	3					6			3	paper 4 qn 11a
5 2.5b 2.5i	Equations / expar	nsion		6				6						6		2		paper 4 qn 12
6 2 3k	Compound	savings	7					3		4		3		3	3			paper 4 on $13 + extra part$
2.3t	interest	54411155	/					5				5		5	5			pupor i qui is i oxuti purt
7 2.3m 2.3r 2.4a	Standard form	lakes	4						4					4				paper 4 qn 14
8 3.4d 3.3d 2.5g	Volumes	trap. prism; similar shapes		2		6			5		3	3		5	3			paper 4 qn 15 + extra part
9 2.4a	Compound measures	population density	4						4			4		4	4			paper 4 qn 16
10 4.4g	Probability	Win a holiday					4			2	2					2		
11 2.6f 2.6e	Cubic graph + gr	aphical soln of eqns		2	8				6		4			4				paper 4 qn 17a + extra parts; part (c) links two criteria as may be expected at A*
12 3.2g	Sine and cosine rule	ships				7				3	4	4			4			

13 2.5b 2.5k 2.5g 2.51	Indices; quadratics + simultaneous	s equatior	IS	14				1		3	10							
14 3.2e 3.2h	Congruency / angles in circle					5				5							3	
15 4.4a 4.4j	Histogram / mean Choir						11			9	2	5				2	2	
Totals for pa	aper:	1	19	30	8	28	15	25	24	26	25	19	0	32	14	6	8	
Target totals	s for paper	ľ	Nu I	Man Alg	Non Man Alg	SS	HD					M/ S	Com F/I	Com I/H	Str 1	Str 2	Str 3	
		Fdn 3	38			28	15	34	22	22	22							
		Inter 2	28			28	15	25	25	25	25							
Target totals	s for tier	Higher 1	19			28	15	25	25	25	25							
0		Fdn		n/a								10	0_13		8	8	8	minimum of 25 AO1 per tier; 8 per strand
		Inter	3	35-40								1	5-20		8	8	8	minimum of 25 AO1 per tier; 8 per strand
		Higher		50								2	0-25		8	8	8	minimum of 25 AO1 per tier; 8 per strand