Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A
PAPER 6

Specimen Paper 2003

Additional materials: Electronic calculator, Geometrical instruments, Tracing paper (optional).

Candidates answer on the question paper.
TIME 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show all your working. Marks may be given for working which shows that you know how to solve the problem, even if you get the answer wrong.

You are expected to use an electronic calculator for this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- Unless otherwise instructed in the question, take π to be
 3.142 or use the π button on your calculator.

FORMULAE SHEET: HIGHER TIER

Volume of prism $=($ area of cross section $) \times$ length

In any triangle ABC

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r 1$

The Quadratic Equation

The solution of $a x^{2}+b x+c=0$ where $a \neq 0$, area given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 (a) Calculate $\frac{131.4-0.73}{2-4.5^{2}}$.
\qquad
\qquad
Answer (a)
\qquad
(b) Using indices, write 1089 as a product of its prime factors.
\qquad
\qquad
\qquad
Answer (b) \qquad [2]

(a) Reflect flag A in the line $\mathrm{y}=\mathrm{x}$. Label the image B.
(b) Enlarge flag A with scale factor $\frac{1}{2}$ and centre $(-3,2)$. Label the image C.

3 (a) Form and solve an equation to calculate the angles of this triangle.

\qquad
\qquad
\qquad
\qquad

Answer(a) \qquad。, \qquad ${ }^{\circ}$, \qquad - [4]
(b) Solve this inequality $\mathrm{x}^{2}<25$.
\qquad
\qquad
\qquad
Answer (b)

A tall vertical fence $G Y$ is supported by a post AB which is 3.5 m long as shown. The foot of the post is 1.1 m from the fence on horizontal ground $X G$.
(a) Calculate the length of $A G$.
\qquad
\qquad
\qquad
Answer (a) \qquad m [3]
(b) To be safe, the post must make an angle of at least 70° with the ground.

Is this post safe? Show the calculations you make.
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad

5 The diagram shows a window formed from rectangular sections

(a) Find an expression, without brackets, for the area of the shaded section of the window.
\qquad
\qquad
\qquad
\qquad
Answer (a) \qquad
The window is 185 cm long and 105 cm high.
(b) Write down a pair of equations in terms of x and y.

Answer (b) \qquad
(c) Solve algebraically these simultaneous equations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (c) $x=$ \qquad

$$
y=
$$

\qquad

6 Mrs Blake put $£ 3000$ in a building society account that offered 6% interest per year. Interest was added to the account at the end of each year.
(a) How much did she have in her account 3 years later, after the final interest had been added?
\qquad
\qquad
\qquad
\qquad
\qquad

Answer (a) $£$
(b) An annual rate of interest between 7% and 8% would be required for a sum of money to double in ten years. Use a trial and improvement method to find this rate of interest.

Give your answer as a percentage to 1 decimal place. Show your calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad \% [4]
$7 \quad$ Lake Reindeer in Canada covers an area of $6.3 \times 10^{9} \mathrm{~m}^{2}$.
Lake Michigan in the United States of America covers an area of $5.8 \times 10^{10} \mathrm{~m}^{2}$.
(a) What is the total area covered by these two lakes? Give your answer in standard form.
\qquad
\qquad
Answer (a) \qquad m^{2} [2]
(b) What is the ratio of the area of Lake Reindeer to the area of Lake Michigan?

Give your answer in the form $1: n$.
\qquad
\qquad
\qquad
Answer (b) 1:

8 A bar of gold is a prism with volume $165 \mathrm{~cm}^{3}$. Its cross-section is a trapezium with dimensions as shown.

(a) Calculate the length of the bar of gold.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (a) \qquad cm
(b) A similar bar of gold has a volume of $675.84 \mathrm{~cm}^{3}$. Calculate the height of this bar of gold.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad cm [3]
(c) A different bar of gold has a volume given by the formula $V=h^{2} y$.

Rearrange the formula to make h the subject.
\qquad
\qquad
\qquad
Answer (c)

9 Watcham has a population of 86000 in an area of 104 square miles. To meet housing targets, it needs to aim to house an extra 14000 people whilst increasing the area by only 6 square miles.

If this happens, by how much will the population density have increased?
\qquad
\qquad
\qquad
\qquad
\qquad
Answer \qquad people / square mile

10

(a) What is the probability of throwing 5 sixes with one throw of the 5 ordinary dice?
\qquad
\qquad
\qquad
Answer (a)
(b) The number of dice is now changed so that n dice are thrown.

You win a holiday if all n dice show sixes.
Ian throws the n dice once.
Write down an expression for the probability that Ian does not win a holiday.
Give your answer in its simplest form.
\qquad
\qquad
\qquad
Answer (b)

11 (a) Complete this table and draw the graph of $y=x^{3}-7 x+2$ values of x from -3 to 3 .

x	-3	-2	-1	0	1	2	3
y	-4	8				-4	8

(b) By drawing suitable straight lines on the graph, solve these equations:
(i) $x^{3}-7 x+2=3$
\qquad
\qquad
Answer (b)(i) $\mathrm{x}=$
[2]
(ii) $\mathrm{x}^{3}-8 \mathrm{x}+3=0$
\qquad
\qquad
Answer (ii) $\mathrm{x}=$

Ship A is 3.4 km from port P on a bearing of 040°.
Ship B is 15 km from P on a bearing of 155°.
(a) Calculate the distance between the two ships. Give your answer to an appropriate degree of accuracy.
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (a)
(b) Calculate the bearing of $\operatorname{ship} A$ from ship B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad

13 (a) Simplify $2 a^{3} \times 4 a^{2}$.
\qquad
Answer (a)
(b) Solve the equation $\mathrm{x}^{2}-8 \mathrm{x}+10=0$.
\qquad
\qquad
\qquad
\qquad
Answer (b)
(c) Make y the subject of this formula.

$$
x(2 y-3)=5(y-2)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (c)
(d) Solve algebraically these simultaneous equations. Show your method clearly.

$$
\begin{gathered}
x+y=5 \\
x^{2}+3 y^{2}=49
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (d)

$C P$ and $C Q$ are tangents to the circle with centre O.
(a) Prove that triangles $C P O$ and $C Q O$ are congruent.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Given that angle $P C Q=74^{\circ}$, calculate the reflex angle $P O Q$.
\qquad
\qquad
Answer (b)

15 The table shows information about the ages of the members of a choir on Christmas Day.

Age in years	Number of members
$15 \leq y<20$	5
$20 \leq y<25$	18
$25 \leq y<30$	12
$30 \leq y<40$	24
$40 \leq y<50$	40
$50 \leq y<70$	36

(a) On the grid, draw a histogram to show this information.

The membership of the choir remains unchanged for 2 years.
(b) Calculate an estimate of the mean age of the choir members on Christmas Day in 2 years time. Explain how you obtain this.
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad years [5]

15 (c) When a new histogram of the ages of the choir members is drawn, it is noticed that it has exactly the same shape as the original one. Describe the relationship between the two histograms.
\qquad
\qquad

RECOGNISING ACHIEVEMENT
Oxford Cambridge and RSA Examinations
General Certificate of Secondary Education
MATHEMATICS SYLLABUS A PAPER 6 1962/6
HIGHER TIER
MARK SCHEME
Specimen Paper 2003

(a) -7.16

2
M1 for $130.67 \div-18.25$
(b) $3^{2} \times 11^{2}$

2
M1 for $3 \times 3 \times 11 \times 11$

2
(a) reflection in $\mathrm{y}=\mathrm{x}$ drawn - vertices $\quad 2$
at $(3,1)(4,1)(4,3)$ and $(1,1)$
(b) correct flag drawn - vertices at $(0,3) \quad 2$
$(-1,3)(-1,2.5)$ and $(-1,1.5)$
M1 for line $y=x$ drawn

M1 for flag correct size in wrong position

4

3
(a) $4 x+12=180$
$4 x=168$ or $x+3=45$
$x=42$
other angles 64, 74

M1
M1
A1
(b) $-5<x<5$

4
(a) $3.3(2 \ldots)$

3
M2 for $\mathrm{v}\left(3.5^{2}-1.1^{2}\right)$ or M1 for 1.1^{2}
(b) $\cos \varnothing=1.1 / 3.5$ or 0.314 ..

M1
inv cos used M1
$\varnothing=71$ (. $6 \ldots$...)
A1
or $3.5 \mathrm{x} \cos 70^{\circ}$
M1
$=1.1(97 .$.$) \quad M1$
so ladder is safe
$+\mathrm{h}^{2}=3.5^{2}$ or better

6

B1 for $x<5$ or $x>-5$ or $-5=x=5$
may be unsimplified

B1 for $x<5$ or $x>-5$ or $-5=x=5$

5
(a) $6 y^{2}+2 x y$
(b) $x+2 y=105 ; 2 x+3 y=185$
(c) $x=55 y=25$

M1 for multiplying and subtracting 6 oe. and A1 for one correct value

6
(a) 3573.04 or 3573.05

3
(b) trial between 7 and 8% trials of 7.1 and 7.2% or better
trial of 7.15% or better

answer 7.2\%

M2 for 3000×1.06^{3} or M1 for evidence of at least two years totals (3180 and 3370.8(0))

5	1.6289		7.1	1.9856135
6	1.7908		7.2	2.0042314
7	1.9672		7.3	2.0230062
8	2.1589		7.4	2.0419392
9	2.3674		7.5	2.0610316
10	2.5937		7.6	2.0802844
			7.7	2.099699
7.15	1.9949		7.8	2.1192764
			7.9	2.139018

7
(a) $6.4(3) \times 10^{10}$
(b) $9.2(06 .$.
$8 \quad$ (a) 8.4
(b) $\mathrm{vol} \mathrm{sf}=675.84 \div 165$ or 4.096
length $\mathrm{sf}=$ cube rt vol sf or 1.6
3.6 x their length s.f
5.76 or 5.8
(c) $\sqrt{\frac{V}{y}}$

2
M1
M1
A1
3
M1 for Area of trap. $=19.6(2)$
M1 for 165 / Area of trap
B1 for correct answer with poor notation
$2 \quad$ M1 for $\left(5.8 \times 10^{10}\right) \div\left(6.3 \times 10^{9}\right)$
4

M1 for $\mathrm{h}^{2}=\frac{V}{y}$

4 M1 for 86000/104 or 826(.9..)
M1 for 100000/110 or 909.(09..)
M1 for subtraction of these
4

10
(a) $1 / 7776$ or 1.286×10^{-4} or equivalent
(b) $1-(1 / 6)^{\mathrm{n}}$

2
M1 for $(1 / 6)^{n}$ seen
4
M1 for $(1 / 6)^{5}$
9 82(.19..)

2

11 (a) $8,2,-4$
pts plotted
general shape correct
smooth curve
(b) (i) 2.6 to $2.8,-0.1$ to -0.2 , -2.5 to -2.6
(ii) $\mathrm{y}=\mathrm{x}-1$ drawn M2 $-3,0.3$ to $0.4,2.5$ to 2.7

1
1
1
1

2

A2
\qquad

$13 \quad$ (a) $8 a^{5}$
(b) $4 \pm \mathrm{v} 6$ or $6.4(49 .$.$) and 1.55$. .
(c) $2 x y-3 x=5 y-10$
$2 x y-5 y=3 x-10$
LHS $=\mathrm{y}(2 \mathrm{x}-5)$
$y=\frac{3 x-10}{2 x-5}$ or equivalent
(d) $(5-y)^{2}+3 y^{2}=49$
$25-10 y+y^{2}+3 y^{2}=49$
$4 y^{2}-10 y-24=0$
$(2 y+3)(y-4)=0$
$y=4$ or -1.5
$\mathrm{x}=1$ or 6.5

1

3

M1
M1 M1 A1

M1 M1
A1 M1 A1 A1

M1 for subst. in quadratic formula or for $x-4=(\pm) v 6$ or $(x-4)^{2}=6$
or negative equivalent
$1 \quad$ or $x^{2}+3(5-x)^{2}=49$
$1 \quad$ or $x^{2}+3\left(25-10 x+x^{2}\right)=49$
1 or $4 x^{2}-30 x+26=0$
M1 \quad or $(2 x-13)(x-1)=0$

14 (a) $\mathrm{OP}=\mathrm{OQ}$ [radii] 1
$\mathrm{CPO}=\mathrm{CQO}=90^{\circ}$ [angle between 1
tgt and radius]
CO is common 1
(b) 254°

M1 for POQ (obtuse) $=180-74^{\circ} \quad 5$

15 (a) axes graduated and labelled with age
1 and frequency density [or area scale shown] members per year:
1, 3.6, 2.4, 2.4, 4, 1.8
group widths correct heights of bars correct
(b) mean $=43.6(48 .$.
(c) will be a translation of 2 years to right, with groups $17 \leq y<22$ etc or good full attempt at calculating numbers in existing groups in two years time and relating to shape
or may be per 10 years etc
ft their freq density
M1 for midpts used: 17.5, 22.5, $27.5,35,45,60$; M1 for midpts x freq; M1 for division by 135, M1 for mean +2 ; or M2 for 19.5, 24.5 etc used as midpts, M2 for evidence of correct use of statistical fns of calculator

1 for partially correct description [list of examples would be supplied to examiners]

1962 Analysi Paper: 6			Year: Specimen 2003				Target grades				$\left\lvert\, \begin{gathered} \mathrm{M} / \\ \mathrm{S} \end{gathered}\right.$			AO		Notes
Qn NC ref	Topic	Context		Man Alg	Non Man Alg	SS HD	C	B	A	A*		$\begin{gathered} \text { Com } \\ \text { F/I } \end{gathered}$	Com I/H	$\begin{array}{\|c} \mathrm{Str} \\ 1 \end{array}$	$\begin{gathered} 1 \\ \text { Str } \\ 2 \end{gathered}$	
$\begin{array}{r} 12.3 \mathrm{o} \\ 2.3 \mathrm{a} \end{array}$	Calc efficiency;	rime factors	4				4									(b) possibly worth 1 more
$\begin{array}{r} 23.3 \mathrm{~b} \\ 3.3 \mathrm{c} \end{array}$	Transformations	Flag				4	4									
$\begin{array}{r} 32.5 \mathrm{e} \\ 2.5 \mathrm{j} \end{array}$	Form and solve eqns/Inequality	Triangle		6			4	2								
$\begin{array}{r} 43.2 \mathrm{f} \\ 3.2 \mathrm{~g} \end{array}$	Pythagoras' Theorem/ Trigonometry	Fence support				6	3	3					6			paper 4 qn 11a
$\begin{array}{r} 52.5 \mathrm{~b} \\ 2.5 \mathrm{i} \end{array}$	Equations / expa	sion		6			6						6		2	paper 4 qn 12
$\begin{array}{r} \hline 62.3 \mathrm{k} \\ 2.3 \mathrm{t} \end{array}$	Compound interest	savings	7				3		4		3		3	3		paper 4 qn $13+$ extra part
$\begin{gathered} 72.3 \mathrm{~m} \\ 2.3 \mathrm{r} \\ 2.4 \mathrm{a} \end{gathered}$	Standard form	lakes	4					4					4			paper 4 qn 14
$\begin{array}{r} 83.4 \mathrm{~d} \\ 3.3 \mathrm{~d} \\ 2.5 \mathrm{~g} \end{array}$	Volumes	trap. prism; similar shapes		2		6		5		3	3		5	3		paper 4 qn $15+$ extra part
9 2.4a	Compound measures	population density	4					4			4		4	4		paper 4 qn 16
104.4 g	Probability	Win a holiday				4			2	2					2	
$\begin{array}{r} 112.6 \mathrm{f} \\ 2.6 \mathrm{e} \end{array}$	Cubic graph +g	aphical soln of eqns		2	8			6		4			4			paper 4 qn 17a + extra parts; part (c) links two criteria as may be expected at A^{*}
123.2 g	Sine and cosine rule	ships				7			3	4	4			4		

