Oxford Cambridge and RSA Examinations

General Certificate of Secondary Education

MATHEMATICS SYLLABUS A
PAPER 3
INTERMEDIATE TIER

Specimen Paper 2003

Additional materials: Geometrical instruments
Tracing paper (optional).

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Show your working. Marks may be given for working that shows that you know how to solve the problem even if you get the answer wrong.

YOU ARE NOT ALLOWED TO USE A CALCULATOR IN THIS EXAM.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.

FORMULAE SHEET: INTERMEDIATE TIER

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=($ area of cross section $) \times$ length

1 (a) Work out
(i) $\quad 2^{4}$,

Answer (a)(i)
(ii) 3^{3},
\qquad
(b) Write down the next two terms of the sequence

$$
21, \quad 15, \quad 9
$$

Answer (ii)
\qquad -

2 The diagram shows part of a design.
The dotted lines are lines of symmetry of the whole design.

Complete the design.

3 A hairdresser buys shampoo in 2.5 litre containers.
She buys 6 of these containers.
(a) How many millilitres of shampoo is this?
\qquad
Answer (a) \qquad ml [2]

Because the containers are bulky, the hairdresser pours shampoo into a small bottle.
When the small bottle is full it will hold 200 ml . When it is empty she refills the bottle.
During the process of filling the small bottle she spills 5% of the shampoo.
(b) How many times can she fill the small bottle?

Show all your working clearly.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad

4 There are blue, red and yellow discs in a bag.
When a disc is picked out at random, the probability of it being red is 0.4 and the probability of it being blue is 0.3 .
(a) What is the probability of picking a yellow disc?
\qquad
\qquad
Answer (a)
[2]

There are 60 discs in the bag.
(b) Work out how many of them are red.
\qquad
\qquad
Answer (b)
(a) Simplify $3 x+4 y-2 x+7 y$.
\qquad
\qquad
Answer (a)
[2]
(b) Solve the equations
(i) $2(3 x-2)=50$,
\qquad
\qquad
\qquad
Answer $(b)(i) x=$ \qquad [3]
(ii) $7 x=6+3 x$.
\qquad
\qquad
\qquad
Answer (ii) $x=$

6 (a) Elaine went for a walk.
Her walk is represented by the graph below.

Elaine's
Distance from Home (km)

(i) Describe the part of her walk represented by the sections CD, DE and EF.

Answer (a) (i)
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) On which section of the walk did she walk fastest?

Answer (ii)
(iii) What was her average speed for the first 2 hours?
\qquad
\qquad
\qquad
Answer (iii) \qquad km/h [2]

6 (b) The diagram shows the position of Elaine's house, H, and her position, X, on another of her walks.
The scale of the diagram is 1 cm represents 2 km .

(i) Measure and write down the bearing and distance, in km , of X from H .

$$
\begin{aligned}
& \text { Answer }(b)(i) \text { Bearing } \circ \\
& \text { Distance } \quad \mathrm{km} \mathrm{[2]}
\end{aligned}
$$

Elaine then walks to a position, Y, which is 15 km from H and on a bearing of 260° from H.
(ii) Mark the position of Y on the diagram.

7 (a) A recipe for pancake mixture is as follows.

To make	
10 pancakes	
300 ml	milk
124 g	plain flour
2	eggs
$1 / 2$ teaspoon	salt

Complete the list of ingredients for 15 pancakes.
To make 15 pancakes
\square

\square | milk |
| :--- |
| plain flour |
| eggs |
| teaspoon salt |

\qquad
\qquad
(b) A book on dieting states that one pancake contains 155 Calories, correct to the nearest Calorie.

Write down the greatest and least number of Calories that one pancake could contain.
\qquad
Least \qquad
(c) A frying pan is used to cook the pancakes.

The inside base of the frying pan is a circle of radius 10 cm .
Work out the area of the inside base of the frying pan.

Take the value of π to be 3.14159 .
Give your answer to an appropriate degree of accuracy.
\qquad
\qquad
\qquad
Answer (c) \qquad cm^{2} [3]

8 A farmer recorded the amount of rainfall and the size of his potato crop for seven years. The results are given below.

Annual Rainfall (inches)	9.6	8.2	11.2	6.8	13.6	13.0	15.0
Potato crop (tonnes/acre)	13.2	11.8	12.8	10.2	15.0	14.4	16.4

(a) Display the information as a scatter diagram on the grid below.

(a) Describe the correlation shown in your scatter diagram.

Answer (b)
\qquad
(c) Draw a line of best fit on your scatter diagram.
(d) Use your line of best fit to estimate the size of the potato crop after a rainfall of 12 inches.

Answer (d) \qquad tonnes/acre

9 In the diagram, lines ABC and ED are parallel. EOB is a diameter of the circle, centre O.
Angle $\mathrm{OED}=35^{\circ}$.
NOT TO SCALE

(a) Find the size of
(i) angle x,
\qquad
\qquad
Answer (a)(i)
(ii) angle y.
\qquad
\qquad
Answer (ii)
[2]
(b) Write down the size of angle z.

Give a reason for your answer.
Answer (b) $z=$ \qquad
Reason \qquad
\qquad
\qquad [2]

10 A group of students went to a fast food restaurant.
(a) $\frac{2}{5}$ of them bought a beef burger and $\frac{1}{3}$ of them bought a chicken burger. The rest of them just bought drinks.

What fraction of the group bought food?
\qquad
\qquad
\qquad
Answer (a)
(b) $\frac{3}{4}$ of those who bought a beef burger also bought chips.

What fraction of the whole group bought beef burger and chips?
Give your answer as a fraction in its simplest form.
\qquad
\qquad
\qquad
Answer (b)

11 The diagram shows the wall of a house drawn to a scale of 2 cm to 1 m .
A dog is fastened by a lead 3 m long to a point X on a wall.
Shade on the diagram the area that the dog can reach.

12

(a) Find the centre of the rotation which maps triangle A on to triangle B.

Answer (a) \qquad ,
(b) Describe the single transformation which maps triangle B onto triangle C .

Answer (b) \qquad
\qquad
\qquad

13 (a) Find the value of 24 multiplied by the reciprocal of 24
Show clear working to explain your answer.
\qquad
\qquad
\qquad
Answer (a)
(b) James said, "Five divided by zero is five".

What answer should he have given?
\qquad
Answer (b)
(c) Jagdeep said, 'The square root of a number is always smaller than the number itself.'

Is he correct?
Give an example to support your answer.
Answer (c) \qquad
\qquad
\qquad
\qquad
\qquad
(d) (i) Write sixty thousand in standard form.

> Answer (a)(i)

Hence, or otherwise, find
(i) the value of the square of sixty thousand.

Give your answer in standard form.
\qquad
\qquad
Answer (ii)

14 (a) Simplify
(i) $p^{4} \times p^{3}$,

Answer(a) (i)
(ii) $\frac{12 t^{5}}{3 t^{2}}$
\qquad
\qquad
Answer (ii)
(b) Solve
$3 x+19>4$.
\qquad
\qquad
Answer (b) \qquad
(c) Rearrange the following formula to make w the subject .
$s=\frac{w+y}{2}$
\qquad
\qquad
\qquad
Answer (c)

15 A manufacturer investigates how far a car travels before it needs new tyres.
The distances covered by 100 cars before they needed new tyres is shown in the table below.

Distance covered $(x$ thousands of miles $)$	Number of cars
$10<x \leq 15$	10
$15<x \leq 20$	23
$20<x \leq 25$	31
$25<x \leq 30$	19
$30<x \leq 35$	12
$35<x \leq 40$	5

(a) Complete the cumulative frequency table for the 100 cars.

Distance covered $(x$ thousand miles $)$	$x \leq 15$	$x \leq 20$	$x \leq 25$	$x \leq 30$	$x \leq 35$	$x \leq 40$
Cumulative Frequency	10					

(b) Draw the cumulative frequency diagram on the grid below.

15 (c) Use your cumulative frequency diagram to estimate the median distance covered.

> Answer (c)
\qquad thousand miles
(d) Use your diagram to estimate how many cars travelled less than 23000 miles before needing new tyres.

Answer (d)

16 A rectangular garden is made up of a square lawn of side $x \mathrm{~m}$ and 2 paths 1.5 m wide, as shown in the diagram.

The total area of the garden is $88 \mathrm{~m}^{2}$.
Write down an equation in x and solve it to find the dimensions of the lawn.

NOT
TO
SCALE

Answer \qquad m [5]
$17 \quad \mathrm{ABC}$ and PQR are similar triangles.

Find the length marked
(a) x,
\qquad
\qquad
\qquad
\qquad
Answer (a) \qquad cm [3]
(b) y.
\qquad
\qquad
\qquad
\qquad
Answer (b) \qquad cm [2]

18 The graph shows the results of a science experiment.
A line of best fit has been put onto the graph.

Find the equation of the line.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Answer
[4]

RECOGNISING ACHIEVEMENT
Oxford Cambridge and RSA ExaminationsGeneral Certificate of Secondary Education
MATHEMATICS SYLLABUS APAPER 3
(a) (i) 16
(ii) 27

1
1
(b) $3,-3$

2
B1 for one correct value

2 Completed design
3 B1 for each correct quadrant

3
(a) 15000
2
M1 for $2.5 \times 6 \times 1000$
(b) 71
6
M1 for 0.05×15000 oe
and A1 for 750
and B1 for 14250
and M1 for $\frac{14250}{2000}$
and A1 for 71.(25)

4
(a) 0.3
2
M1 for $1-(0.4+0.3)$
(b) 24
$2 \quad$ M1 for 60×0.4

5
(a) $(1) x+11 y$
2
B1 for one term correct
(b) (i) 9
3
M1 for $6 x-4=50$
and A1 for $6 x=54$
(ii) $1 \frac{1}{2}$ oe
2 M1 for $4 x=6$

6 (a) (i) Walks back oe 1
Has arest oe 1
(ii) CD 1
(iii) $4 \mathrm{~km} / \mathrm{h}$

2 M1 for $\frac{8}{2}$
(b) (i) $\quad(0) 50 \pm 1^{\circ} \quad 1$
$12 \mathrm{~km} \pm 1 \mathrm{~km} \quad 1$
(ii) Correct Point

2
B1 for angle $260 \pm 1^{\circ}$
or B1 for distance $7.5 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$
(a) 450 ml
3/8 1
(b) 155.5 or $155.49(9 \ldots)$
154.5
(c) 314 or 310

Allow either order
1
M1 for 3.14 $\ldots \times 10^{2}$ oe and A1 for 314 or 30°

8
(a) 8 pts correct
2
B1 for 5, 6 or 7 correct
(b) Positive
1
(c) Line
(d) 14 ± 0.3

9
(a) 110
2
M1 for $180-2 \times 35$
(b) 145
2
M1 for 180-35
(c) 90
1
angle in a semi-circle
1
$10 \quad$ (a) $\quad \frac{11}{15}$
2 M1 for a correct common denominator
(b) $\frac{3}{10}$

2 M1 for $\frac{2}{5} \times \frac{3}{4}$ or better

11 Circle, centre X
Radius 6 cm
Circle, centre corner
Radius 2 cm
1
-
$\longrightarrow \longrightarrow$

12 (a) $(1,1)$
1
(b) Translation 1
$\left[\begin{array}{r}4 \\ -6\end{array}\right] \quad 1$

13 (a) (i) Evidence of $24 \times \frac{1}{24} \quad$ M1
(b) No answer 1
(c) No, -1 \leq Answer $\leq 1 \quad 2$
(d) (i) $6 \times 10^{4} \quad 1$
(ii) $3.6 \times 10^{9} \quad 2$

B1 for the square of their (i) numerically correct

14 (a) (i) p^{7}
(ii) $4 t^{3}$
(b) $x>-5$

2
M1 for $3 x>-15$
(c) $\quad w=2 s-y$ oe

2
M1 for $2 s=w+y$
or $s-\frac{y}{2}=\frac{w}{2}$

15 (a) $33,64,83,95,100 \quad 1$
(b) 6 pts plotted P

Joined J1
(c) 22.5 to $23.5 \quad 1$
(d) 53 to $55 \quad 1$

168
5
B1 for $x(x+3)=88$
and B1 for $x^{2}+3 x-88=0$
and M1 for factors which would give 2 of the 3 terms
and M1 for their factors equated to 0 and x values found

| (a) 7.8 | 3 | B1 for 3 seen
 and M1 for 3×2.6 |
| :--- | :--- | :--- | :--- |
| (b) 4.3 | 2 | M1 for $\frac{12.9}{3}$ |

$18 y=0.4 x+130$
4
M1 for correct gradient method and A1 for $m=0.35$ to 0.45
and B1 for $c=+130$

	1662 Analysis			Topic／Context	Year					Target Grades										Notes				
	Paper 3													$\begin{aligned} & \mathrm{AO} \\ & 1 \\ & \hline \end{aligned}$										
$\begin{aligned} & \infty \\ & \stackrel{N}{\oplus} \\ & \stackrel{\rightharpoonup}{\top} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	Qn	NC ref	Syll ref		Nu	Man Alg	Non Man Alg	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$	HD					E	D	C	B	$\begin{aligned} & \mathrm{M} / \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & \mathrm{Co} \\ & \mathrm{mF} / \\ & 1 \end{aligned}$		Coml／ H	$\begin{aligned} & \text { Str } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Str } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { Str } \\ & 3 \end{aligned}$
	1	2．2b，	2．6a，		2		2			4					4									
\bigcirc	2	3．3a，	3．3b					3		3					3									
$\frac{\stackrel{\Phi}{\omega}}{\omega}$	3	2．1b，	2．1e，	$\begin{aligned} & \text { 2.1h, 2.1k, 2.3m, 2.3l, 2.4b, } \\ & 2.4 \mathrm{~d} \end{aligned}$	8					8				6	8		6							
$\stackrel{\overline{\widetilde{1}}}{ }$	4	4．1c，	4．4d，	4．4f					4	2	2				4									
荷	5	2．5b，	2.5 e			7				2	5				7									
$\begin{aligned} & \stackrel{D}{0} \\ & ⿳ 亠 丷 厂 彡 \\ & \stackrel{1}{0} \end{aligned}$	6	$\begin{aligned} & 2.1 \mathrm{e} \\ & 3.4 \mathrm{~b} \end{aligned}$	$\begin{aligned} & 2.6 \mathrm{c} \\ & 3.4 \mathrm{~d} \end{aligned}$	2.6 e			5	4		2	$\begin{aligned} & 3 \\ & 2 \end{aligned}$				$\begin{aligned} & 5 \\ & 4 \end{aligned}$			5						
\cdots	7	$\begin{aligned} & 2.3 \mathrm{c}, \\ & 3.1 \mathrm{e}, \end{aligned}$	$\begin{aligned} & 2.3 \mathrm{n} \\ & 3.4 \mathrm{~h} \end{aligned}$	2．4b	6			3			$\begin{aligned} & 4 \\ & 3 \end{aligned}$	2			$\begin{aligned} & 4 \\ & 3 \end{aligned}$			1						
	8	4．1a，	4．1f，	4．41，4．5f					5		2	3												
	9	3．1f，，	3．2c，	3．2d，3．2h				6		2	2		2						1					
	10	2．3c，	2．3d		4						2	2												
	11	3．1b，	3.4 e					4				4		2		4		4						
$\begin{aligned} & 0 \\ & \times \\ & \frac{\times}{0} \\ & \stackrel{0}{2} \end{aligned}$	12	3．3b，						3				3				3		2		Redundant info				
	13	，	2．3a	2．3h	8							5	3			8			2					
	14	2．5d，	2.5 g ，	2．5j		6						6				6								
	15	4．4a，	4.4 e ，	4．5b					6				6			6								
	16	2．4a，	2．5b，	2．5c		5							5	5		5	5							
	17	3.2 g						5					5			5								
	18	2．1b，	2．1c，	2．1b，2．6c			4						4			4	4							
¢	21																							
N0	22																							
＞	23																							
	24																							
B	25				28	18	11	28	15	25	25	25	25	13	42	41	15	12	3					

