OCR GCSE in Mathematics B J567

specification

Version 2 July 2010

More choice

Your learners have a great choice of options when it comes to entries and re-sits, as a November session is available. Certification is available in March, June and November from June 2012.

Making it easier for you

When it comes to support, we provide all you need. To make it as easy as possible for you to manage the changes to our new GCSE, you are able to access a range of Mathematics B support materials designed to save you time in preparing to teach our specification. For example, you can use our free online results analysis service - 'Active Results' - with which you can analyse your learners' results in greater detail.

Our new Mathematics B is a linear GCSE, which offers:

- No specified units, so you are completely free to teach the content how you want, in the order you want. It gives your learners the chance to make connections between the different areas of maths - and you and your department can plan your own programme of study.
- No revision for module tests, so you have more time to use rich investigations to develop learners' mathematical understanding. Taking both papers at the end also means your learners have more time to become familiar with problem solving in maths assessments before they have to do them.
- Reduced assessment burden for learners. With GCSEs in most other subjects now unitised, your learners will appreciate a Maths GCSE that has no coursework, and no modules.
- Defer decisions about tier of entry. You can teach each learner the maths that is appropriate to their needs, and do not need to make any tier decisions until certification. This gives all learners, including latebloomers, the chance to realise their full potential.

The content of the new Mathematics B specification is presented in stages within each tier: Initial, Bronze, Silver and Gold. These stages:

- Allow you to account for the fact that different learners, or groups, start a GCSE Maths course at different points. They make it easy for you to identify content in which learners may already be secure.
- Give you the opportunity to target teaching appropriately to the needs of different learners or groups.
- Promote assessment for learning by providing a series of progressive, accessible targets throughout the GCSE course.
- Allow you to use formative assessments provided by us at the end of each stage. These help to identify strengths and areas for improvement, as well as give an indication of the current level of performance in relation to the whole tier. Assessments can be used to give learners Stage Certificates (which do not contribute to the GCSE). These link learners' attainment to criteria, gives them a sense of achievement and progress, and provides both you and your learners with an indication of current performance.

Support

A wide range of resources are available, for further details turn to the inside back cover of this specification.
1 Introduction to GCSE Mathematics B 4
1.1 Overview of OCR GCSE Mathematics B 4
1.2 Guided learning hours 4
2 Content of GCSE Mathematics B 5
2.1 About the content of this specification 5
2.2 J567/01 and J567/02: Mathematics Paper 1 (Foundation) and Mathematics Paper 2 (Foundation) 6
2.3 J567/03 and J567/04: Mathematics Paper 3 (Higher) and Mathematics Paper 4 (Higher) 22
3 Assessment of GCSE Mathematics B 38
3.1 Overview of the assessment in GCSE Mathematics B 38
3.2 Tiers 38
3.3 Assessment Objectives 39
3.4 Grading and awarding grades 40
3.5 Grade descriptions 40
3.6 Quality of written communication 42
4 Support for CCSE Mathematics B 43
4.1 Free resources available from the OCR website 43
4.2 Other resources 43
4.3 Training 45
4.4 OCR Support Services 45
5 Access to GCSE Mathematics B 46
5.1 Disability Discrimination Act information relating to GCSE Mathematics B 46
5.2 Arrangements for candidates with particular requirements 46
6 Administration of GCSE Mathematics B 47
6.1 Availability of assessment 47
6.2 Making entries 47
6.3 Terminal rule 47
6.4 Qualification re-sits 47
6.5 Enquiries about results 48
6.6 Prohibited qualifications and classification code 48
7 Other information about GCSE Mathematics B 49
7.1 Overlap with other qualifications 49
7.2 Progression from this qualification 49
7.3 Avoidance of bias 49
7.4 Code of Practice/Common Criteria Requirements/Subject Criteria 49
7.5 Language 49
7.6 Spiritual, moral, ethical, social, legislative, economic and cultural issues 50
7.7 Sustainable development, health and safety considerations and European 50developments, consistent with international agreements
7.8 Key Skills 51
7.9 ICT 51
7.10 Citizenship 51
Appendix 52
A. 1 Conventional presentation of specification content 52
A. 2 J567/01 and J567/02: Mathematics Paper 1 (Foundation) and Mathematics 53Paper 2 (Foundation)
A. 3 J567/03 and J567/04: Mathematics Paper 3 (Higher) and 65
Mathematics Paper 4 (Higher)

1.1 Overview of OCR GCSE Mathematics B

Candidates take either Foundation tier Paper 1 and Paper 2 or Higher tier Paper 3 and Paper 4.

Foundation tier, grades C to G	
J567/01 Mathematics Paper 1 (Foundation)	Written paper 1 hour 30 minutes 100 marks Calculator not permitted 50% of the qualification
J567/02 Mathematics Paper 2 (Foundation)	Written paper 1 hour 30 minutes 100 marks Calculator permitted 50% of the qualification

Higher tier, grades A^{*} to D (E)

J567/03 Mathematics Paper 3 (Higher)	Written paper 1 hour 45 minutes 100 marks Calculator not permitted 50% of the qualification
J567/04 Mathematics Paper 4 (Higher)	Written paper 1 hour 45 minutes 100 marks Calculator permitted 50% of the qualification

1.2 Guided learning hours

GCSE Mathematics requires 120-140 guided learning hours in total.

2.1 About the content of this specification

- The content for the Foundation tier is listed in section 2.2, and the content for the Higher tier is listed in section 2.3
- This is a linear GCSE. Paper 1 and Paper 2 together assess the content for the Foundation tier. Paper 3 and Paper 4 together assess the content for the Higher tier. Candidates must take both papers for the appropriate tier in the same series
- As a result, centres are free to teach candidates the content for the appropriate tier in whichever order they choose
- The specification content is listed in a conventional order in the Appendix, for centres wishing to plan their own programme of study
- However, in this section, the content is arranged in four stages within each tier: Initial, Bronze, Silver and Gold. The stages are graduated in content and level of difficulty. These stages:
- Allow teachers to take account of the fact that different students, or groups, start a GCSE Mathematics course at different points. They allow teachers to identify content in which students may already be secure
- Give teachers the opportunity to target teaching appropriately to the needs of different students or groups
- Promote assessment for learning by providing a series of progressive, accessible targets throughout the GCSE course
- Allow teachers to use formative assessments provided by OCR at the end of each stage. These help to identify strengths and areas for improvement, as well as give an indication of the current level of performance in relation to the whole tier. They can be used objectively to give students Stage Certificates (which do not contribute to the GCSE). The certificates link students' attainment to criteria, give them a sense of achievement and progress, and provide both the students and the teacher with an indication of current performance
- Note that the Foundation Silver Stage is identical to the Higher Initial Stage, and the Foundation Gold Stage is identical to the Higher Bronze stage
- Please see the Teachers' Guide for further details about how to use the stages of the specification

2.2 J567/01 and J567/02: Mathematics Paper 1 (Foundation) and Mathematics Paper 2 (Foundation)

2.2.1 Foundation Initial Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Number	
FIN1	N1.1	Round numbers to a given power of 10.	
FIN2	N1.3 N2.2	Add and subtract three-digit numbers, without the use of a calculator. Add and subtract using numbers with up to two decimal places without the use of a calculator.	
FIN3	N3.2 N3.3	Multiply and divide numbers with no more than one decimal digit by an integer between 1 and 10, without the use of a calculator. Multiply and divide any number by 10,100 and 1000 without the use of a calculator.	
FIN4	N4.3	Multiply and divide a three-digit number by a two-digit number. Multiply numbers with up to two decimal places by an integer.	With or without a calculator. Eg (1) Multiply 142 by 58 ; (2) Find the cost of 12 bottles of cordial at $£ 2.95$ each.
FIN5	N2.6 N3.4	Calculate a fraction of a given quantity. Identify fractions of a shape.	
FIN6	N2.6 N4.2	Recall the fraction to decimal conversions of familiar simple fractions (tenths, hundredths, half, quarters, fifths). Convert simple fractions of a whole to percentages of the whole and vice versa.	This includes the conversion of simple decimals to percentages and vice versa.
FIN7	N2.5 N3.5	Calculate simple percentages of quantities, without the use of a calculator.	Simple percentages include multiples of 5\%.
FIN8	N4.2	Order decimals (ordering up to five decimals and knowing that, eg, 5•07 is smaller than $5 \cdot 3$).	
FIN9	N4.5	Solve problems using the four operations on integer and decimal numbers using a calculator.	Up to three decimal places.
FIN10	N3.6	Work out starting times, finishing times and intervals.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Number	
FIN11	N3.7	Perform calculations involving the use of brackets and the order of operations.	
FIN12	N2.1	Order positive and negative temperatures. Solve problems involving temperature changes.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FIA1	A1.1 A2.1	Algebra Continue simple sequences. Explain how to find the next number in a simple pattern. Recognise and describe patterns in number	Eg 1,4,7,10...or 1, 2, 4, 8 ... or continue the pattern $11 \times 11=121,111 \times 111=12321$, $1111 \times \ldots=1234321$ etc.
FIA2	A2.2 A3.2	Use formulae expressed in words or symbols, substituting positive numbers into the formula to find the value of the subject (usually in context).	
FIA3	A1.2 A3.1	Use simple function machines to deal with inputs and outputs, recognising basic inverse functions. Solve simple equations involving one operation.	
FIA4	S4.4	Use axes and coordinates in four quadrants, including using points identified by geometrical information.	May include types of triangle, square, rectangle and parallelogram but not other quadrilaterals in general.
FIA5	A3.3	Construct and interpret simple graphs, including conversion graphs.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Geometry and measures	
FIG1	$\begin{gathered} \text { S1.1 S2.2 } \\ \text { S3. } 2 \end{gathered}$	Use: kilometres, metres, centimetres and millimetres; kilograms and grams; litres and milliiitres. Convert measurements from one metric unit to another. Interpret scales on a range of measuring instruments.	
FIG2	S3.1	Make sensible estimates of a range of measures in everyday settings.	Eg (1) The height of a car given a diagram with a person standing next to the car, whose height is given; (2) The length of a bench seating three people; (3) How much a loaf of bread weighs, choosing from 80 g , $800 \mathrm{~g}, 8 \mathrm{~kg}, 80 \mathrm{~kg}$.
FIG3	S2.3 4.2	Measure and draw angles to the nearest degree. Identify acute, obtuse, reflex and right angles. Recall and use properties of angles at a point, angles at a point on a straight line (including right angles), perpendicular lines and opposite angles at a vertex.	
FIG4	S1.5 S2.4	Recognise regular polygons (pentagon, hexagon, octagon). Recognise simple solids (cube, cuboid, sphere, cylinder, cone). Recognise the terms circle, centre, radius, diameter and circumference. Recognise types of triangle (isosceles, equilateral, scalene).	
FIG5	$\begin{gathered} \text { S1.3 S1.4 } \\ \text { S4.3 } \end{gathered}$	Find the perimeter of straight-sided shapes. Find areas of irregular shapes and volumes of simple solids. Find the area of a rectangle.	
FIG6	S2.6 S1.7	Use and interpret street plans and simple maps, including: simple grid references (of the form A6, J3 etc), left and right, clockwise and anticlockwise and compass directions.	The compass directions N, E, S, W, NE, SE, NW and SW are included.
FIG7	s2.5	Recognise and complete reflection symmetry of 2-D shapes.	With or without a grid, as appropriate.
FIG8	S4.5	Understand that reflections are specified by a mirror line. Transform triangles and other 2-D shapes by reflection, using a given line.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FIS1	D1.1 D2.1	Statistics	Understand and use the vocabulary of probability, including terms such as 'fair'' 'evens', 'certain', 'likely', 'unlikely' and 'impossible'. Understand and use the probability scale.
FIS2	D1.2	Find all possible ways of listing up to four objects.	
FIS3	D2.2 D3.2	Calculate the mean, median, mode and range of discrete data.	
FIS4	D1.3 D3.3	Draw and interpret simple frequency tables, charts, pictograms and bar charts for discrete data.	Eg Use a tally chart to draw a bar chart.
FIS5	D2.3	Extract and use information from common two-way tables including timetables.	

2.2.2 Foundation Bronze Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FBN1	N4.4	Number Understand the concepts and vocabulary of factor, multiple and common factor and prime number.	
FBN2	N5.1	Round numbers to the nearest integer or to any given number of significant figures or decimal places. Estimate answers to one-stage calculations, particularly calculations involving measurement or money.	Candidates will be expected to round to one significant figure for these estimates, recognising where this makes the estimate greater or less than the actual value.
FBN3	N3.1 N5.2	Use the terms square and square root (positive square roots only) and the correct notation. Find squares and square roots. Use the term cube and find cubes of numbers, appreciating the link to the volume of a cube. Use index notation for simple integer powers.	
FBN4	N5.3 NEW	Understand equivalent fractions, simplifying a fraction by cancelling all common factors. Write improper fractions as mixed numbers and vice versa.	
FBN5	N6.4 NEW	Order fractions using a common denominator. Add and subtract simple fractions (using a common denominator).	Candidates will not be expected to add or subtract mixed numbers, but will be expected to write answers as mixed numbers where necessary.
FBN6	N5.4	Use the equivalence between fractions, decimals and percentages.	
FBN7	NEW	Find a percentage of a quantity, interpreting percentage as an operator.	
FBN8	N5.6	Use the four operations with positive and negative integers.	
FBN9	N4.5	Use simple proportion, particularly in the context of recipes.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FBA1	A4.2	Algebra	Continue and explain patterns in number and spatial arrangements. Generate terms of a sequence using term-to-term and position-to-term definitions of the sequence.
FBA2	A5.1 A4.1	Substitute positive numbers into simple algebraic formulae. Derive a simple formula.	Eg Find a formula for the perimeter, P, of a regular hexagon of side a.
FBA3	A5.3	Manipulate algebraic expressions by collecting like terms.	
FBA4	NEW	Solve simple equations involving two steps.	
FBA5	A4.3	Interpret information presented in a range of linear and non-linear graphs, including travel (distance/time) graphs.	Speed calculations will not be required.

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Geometry and measures	
FBG1	S4.2	Understand and use the angle properties of triangles, including equilateral, isosceles, right-angled and scalene triangles.	Questions may involve the exterior angle angle of a triangle, but knowledge of the the property that the exterior angle of a triangle is equal to the sum of the two interior opposite angles is not required.
FBG2	NEW	Understand that the sum of the interior angles of a quadrilateral is 360° and how this result is obtained. Use this angle property of a quadrilateral.	
FBG3	S3.3	Use isometric drawings and nets of 3-D shapes.	
FBG4	S5.4 S6.5	Find the volumes of cubes and cuboids, recalling the formula. Calculate volumes of shapes made from cubes and cuboids.	The generic formula for the volume of a prism is given on the formulae sheet.
FBG5	S5.3	Recall the geometric properties and definitions of the special types of quadrilateral, including square, rectangle, parallelogram, trapezium, kite and rhombus.	
FBG6	S5.2	Construct and interpret maps and scale drawings, including estimating distances and areas. Understand and use bearings to specify direction.	
FBG7	S4.6 S5.5	Recognise and visualise the rotation symmetry of 2-D shapes. Identify the order of rotation symmetry. Complete shapes and patterns to give a specified order of rotation symmetry.	A 2-D shape has rotation symmetry of order n when n is the largest positive integer for which a rotation of $360^{\circ} \div n$ produces an identical looking shape in the same position. Hence the order of rotation symmetry is the number of ways the shape will map on to itself in a rotation of 360°. Shapes with rotation symmetry order 1 are said to have no rotation symmetry.
FBG8	S3.5 NEW	Understand positive integer scale factors. Use such scale factors to produce scaled-up images on a grid without a specified centre. Understand that an enlarged shape is mathematically similar to the original shape. Understand and recognise the congruence of simple shapes.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FBS1	D3.1 D5.1	Statistics Understand and use measures of probability from equally likely outcomes. List all outcomes for two successive events in a systematic way and derive related probabilities.	
FBS2	D5.2	Use and interpret the statistical measures: mode, median, mean and range for discrete and continuous data, including comparing distributions.	
FBS3	D5.3	Construct and interpret pie charts.	
FBS4	D4.3	Interpret graphs representing real data, including recognising misleading diagrams.	

2.2.3 Foundation Silver Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FSN1	N6.4	Number	Multiply and divide simple fractions. Add and subtract mixed numbers.

division of mixed numbers.\end{array}\right]\)| FSN2 | N5.5 | Express one quantity as a fraction or percentage of another. |
| :---: | :---: | :--- |
| FSN3 | N5.4 | Increase and decrease quantities by a percentage. |

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Algebra	
FSA1	A7.1 A6.3	Use and generate formulae. Substitute positive and negative numbers into a formula or an expression.	$\mathrm{Eg}(1) 4 x-2 ;(2) 3 x^{2}+4 ;(3) V=2 a^{3}$.
FSA2	A6.2 A7.2	Set-up and solve linear equations with integer coefficients. This will include equations in which the unknown appears on both sides of the equation, or with brackets.	
FSA3	A6. 1	Manipulate algebraic expressions by multiplying a single term over a bracket and by taking out common factors.	
FSA4	A5.4	Use tables to plot graphs of linear functions given explicitly.	
FSA5	A7.7	Use trial and improvement to find approximate solutions of equations where there is no simple analytical method of solving them.	$\operatorname{Eg}(1) x^{3}-2 x=2$; (2) The positive solution of $x^{2}-4=\frac{1}{x}$; (3) I think of two numbers. They add together to equal 6. They multiply together to equal $8 \cdot 64$. Find the two numbers.

Ref	J517 ref	Subject content - Candidates should be able to..r	Notes and examples
FSG1	S6.1	Geometry and measures	Understand and use the angle properties of parallel and intersecting lines.
FSG2	s6.3	Construct triangles and other 2-D shapes using a ruler and a protractor, given information about their sides and angles. Use a straight edge and a pair of compasses to do constructions. Construct inscribed regular polygons. Construct nets of cubes, regular tetrahedra, square-based pyramids and other 3-D shapes.	
FSG3	s6.2	Recall the meaning of circle, chord, tangent, arc, sector and segment. Recall and use the formulae for the circumference and the area of a circle.	Candidates may be required to give answers in terms of π.
FSG4	s6.4	Recall and use the formula for the area of a parallelogram and a triangle. Use the formula for the area of a trapezium. Calculate perimeters and areas of shapes made from triangles and rectangles. Find the surface area of simple solid shapes using the area formulae for triangles and rectangles.	The formula for the area of a trapezium is given on the formulae sheet.
FSG5	S6.6	Use 2-D representations of 3-D shapes, including plans and elevations.	
FSG6	S6.8	Transform triangles and other 2-D shapes by rotation, reflection, or translation using column vectors. Recognise and visualise rotations, reflections and translations. Understand the properties preserved by these transformations; understand the congruence of these transformations.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FSS1	D6.1	Statistics Identify different mutually exclusive outcomes and know that the sum of the probabilities of all these outcomes is 1.	
FSS2	D6.3	Identify the modal class of grouped data. Calculate the mean of grouped discrete data.	
FSS3	D6.3	Draw and interpret a wide range of graphs and diagrams for discrete and continuous data, including frequency polygons and stem and leaf diagrams. Compare distributions and make inferences, using the shapes of the distributions and measures of average and range.	
FSS4	NEW	Design and use two-way tables for discrete and grouped data.	
FSS5	NEW	Design and criticise questions for use in a survey, taking possible bias into account.	

2.2.4 Foundation Gold Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FGN1	N7.2	Number	Use the index laws with numerical and algebraic expressions involving multiplication and division of positive integer powers. Use the terms cube root and negative square root.
FGN2	N8.4	Use the four operations on fractions, including mixed numbers.	
FGN3	N6.3 N7.1	Convert a simple fraction to a decimal using division. Use and understand terminating and recurring decimals including exact fraction equivalents.	This excludes converting a recurring decimal to a fraction (see HGN3).
FGN4	N7.6	Use percentages to compare proportion. Use and find percentage change.	Eg In financial contexts.
FGN5	N7.3	Check solutions to calculations using various methods including approximating, using inverse operations and recognising the effect of multiplying and dividing by numbers less than one and greater than one. Estimate answers using appropriate techniques.	
FGN6	N7.7	Use and understand the terms reciprocal, highest common factor, lowest common multiple, prime number. Find the prime factor decomposition of positive integers.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Algebra	
FGA1	A7.8	Generate integer sequences using a rule for the nth term. Use linear expressions to describe the nth term of an arithmetic sequence.	
FGA2	A7. 6	Solve simple linear inequalities in one variable and represent the solution set on a number line, using the convention for distinguishing \leq and \geq from $<$ and $>$.	For example, for these solution sets:
FGA3	A7.3	Change the subject of a formula in cases where the subject only appears once.	
FGA4	A6.4 NEW	Plot graphs of linear functions in which y is given explicitly or implicitly in terms of x. Find the gradient of linear graphs.	
FGA5	A6. 5	Draw and interpret graphs modelling real situations, which may be non-linear, including simple quadratic graphs.	
FGA6	A7. 5	Generate points and plot graphs of simple quadratic functions and use these to find approximate solutions of simple related equations.	Simple quadratic functions such as $y=3 x^{2}, y=x^{2}+5 x$. Simple equations such as solving (1) $x^{2}-3=0$ having drawn the graph of $y=x^{2}-3 ;(2) x^{2}+5 x=2$, having drawn the graph of $y=x^{2}+5 x$.

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Geometry and measures	
FGG1	S7.1	Recognise that a measurement given to the nearest whole unit may be inaccurate by up to one half of a unit in either direction.	
FGG2	S7.8	Understand and use rates and compound measures, for example speed, density, rate of flow.	
FGG3	s6.1	Calculate and use the sums of the interior and exterior angles of polygons, for both regular and irregular polygons.	
FGG4	S7.3	Understand, recall and use Pythagoras' theorem in 2-D contexts.	
FGG5	S7.5	Calculate the surface area and volume of right prisms, including cylinders. Convert between measures for area or for volume/capacity, for example between mm^{2} and cm^{2} or between cm^{3} and litres.	The generic formula for the volume of a prism is given on the formulae sheet.
FGG6	S7.7	Construct loci to show paths and shapes. Use straight edge and a pair of compasses to produce standard constructions, including the midpoint and perpendicular bisector of a line segment and the bisector of an angle.	
FGG7	S6.7	Recognise, visualise and construct enlargements of objects using positive integer scale factors and a centre of enlargement. Identify the centre and the scale factor of an enlargement. Understand the implications of enlargement for perimeter/length.	
FGG8	NEW	Transform 2-D shapes by simple combinations of transformations.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
FGS1	D7.1 NEW	Statistics	Understand and use estimates of probability from theoretical models or relative frequency. Compare experimental data and theoretical probabilities. Understand that if en experiment in repeated, the outcomes may - and usually will - be different, and that increasing the sample size generally leads to better estimates of probability and population characteristics.
FGS2	D7.2	Calculate the mean from grouped continuous data.	
FGS3	D7.3 D6.2		
NEW	Draw and interpret scatter graphs for discrete and continuous variables, including using and understanding lines of best fit. Understand the vocabulary of correlation, including: positive, negative and zero correlation; weak, strong and moderate correlation. Look at data to find patterns and exceptions.		

2.3 J567/03 and J567/04: Mathematics Paper 3 (Higher) and Mathematics Paper 4 (Higher)

The Higher tier subsumes the Foundation tier. The content of the Foundation tier Initial and Bronze stages will not be the focus of a question in Higher tier papers, but knowledge of them will be assumed.
2.3.1 Higher Initial Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Number	
HIN1	N6. 4	Multiply and divide simple fractions. Add and subtract mixed numbers.	This does not include multiplication and division of mixed numbers.
HIN2	N5.5	Express one quantity as a fraction or percentage of another.	
HIN3	N5.4	Increase and decrease quantities by a percentage.	
HIN4	N6. 3	Use the four operations on decimals without the use of a calculator.	
HIN5	N6. 2 N7. 4	Use ratio notation including reduction to its simplest form. Understand and use ratio and proportion, including dividing a quantity in a given ratio.	
HIN6	N6. 1 N6. 5	Use a calculator effectively and efficiently, entering a range of measures including 'time', interpreting the display and rounding off a final answer to a reasonable degree of accuracy. Perform calculations using the order of operations.	This includes using the memory and bracket keys, and function keys for squares and powers where appropriate.

Ref	J517 ref	Subject content - Candidates should be able to..r	Notes and examples
HIA1	A7.1 A6.3	Algebra Use and generate formulae. Substitute positive and negative numbers into a formula or an expression.	$\mathrm{Eg}(1) 4 x-2 ;(2) 3 x^{2}+4 ;(3) \mathrm{V}=2 a^{3}$.
HIA2	A6.2 A7.2	Set-up and solve linear equations with integer coefficients. This will include equations in which the unknown appears on both sides of the equation, or with brackets.	
HIA3	A6.1	Manipulate algebraic expressions by multiplying a single term over a bracket and by taking out common factors.	
HIA4	A5.4	Use tables to plot graphs of linear functions given explicitly.	Eg (1) $x^{3}-2 x=2 ;$ (2) The positive solution of $x^{2}-4=\frac{1}{x} ;$ (3) I think of two numbers. They add together to equal 6. They multiply together to equal 8.64. Find the two numbers.
HIA5	A7.7	Use trial and improvement to find approximate solutions of equations where there is no simple analytical method of solving them.	

Ref	J517 ref	Subject content - Candidates should be able to..r	Notes and examples
HIG1	s6.1	Geometry and measures	Understand and use the angle properties of parallel and intersecting lines.
HIG2	s6.3	Construct triangles and other 2-D shapes using a ruler and a protractor, given information about their sides and angles. Use a straight edge and a pair of compasses to do constructions. Construct inscribed regular polygons. Construct nets of cubes, regular tetrahedra, square-based pyramids and other 3-D shapes.	
HIG3	s6.2	Recall the meaning of circle, chord, tangent, arc, sector and segment. Recall and use the formulae for the circumference and the area of a circle.	Candidates may be required to give answers in terms of π.
HIG4	s6.4	Recall and use the formula for the area of a parallelogram and a triangle. Use the formula for the area of a trapezium. Calculate perimeters and areas of shapes made from triangles and rectangles. Find the surface area of simple solid shapes using the area formulae for triangles and rectangles.	The formula for the area of a trapezium is given on the formulae sheet.
HIG5	S6.6	Use 2-D representations of 3-D shapes, including plans and elevations.	
HIG6	S6.8	Transform triangles and other 2-D shapes by rotation, reflection, or translation using column vectors. Recognise and visualise rotations, reflections and translations. Understand the properties preserved by these transformations; understand the congruence of these transformations.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HIS1	D6.1	Statistics	Identify different mutually exclusive outcomes and know that the sum of the probabilities of all these outcomes is 1.
HIS2	D6.3	Identify the modal class of grouped data. Calculate the mean of grouped discrete data.	
HIS3	D6.3	Draw and interpret a wide range of graphs and diagrams for discrete and continuous data, including frequency polygons and stem and leaf diagrams. Compare distributions and make inferences, using the shapes of the distributions and measures of average and range.	
HIS4	NEW	Design and use two-way tables for discrete and grouped data.	
HIS5	NEW	Design and criticise questions for use in a survey, taking possible bias into account.	

2.3.2 Higher Bronze Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HBN1	N7.2	Number	Use the index laws with numerical and algebraic expressions involving multiplication and division of positive integer powers. Use the terms cube root and negative square root.
HBN2	N8.4	Use the four operations on fractions, including mixed numbers.	
HBN3	N6.3 N7.1	Convert a simple fraction to a decimal using division. Use and understand terminating and recurring decimals including exact fraction equivalents.	This excludes converting a recurring decimal to a fraction (see HGN3).
HBN4	N7.6	Use percentages to compare proportion. Use and find percentage change.	Eg In financial contexts.
HBN5	N7.3	Check solutions to calculations using various methods including approximating, using inverse operations and recognising the effect of multiplying and dividing by numbers less than one and greater than one. Estimate answers using appropriate techniques.	
HBN6	N7.7	Use and understand the terms reciprocal, highest common factor, lowest common multiple, prime number. Find the prime factor decomposition of positive integers.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Algebra	
HBA1	A7. 8	Generate integer sequences using a rule for the nth term. Use linear expressions to describe the nth term of an arithmetic sequence.	
HBA2	A7.6	Solve simple linear inequalities in one variable and represent the solution set on a number line, using the convention for distinguishing \leq and \geq from $<$ and $>$.	For example, for these solution sets:
HBA3	A7. 3	Change the subject of a formula in cases where the subject only appears once.	
HBA4	A6.4 NEW	Plot graphs of linear functions in which y is given explicitly or implicitly in terms of x. Find the gradient of linear graphs.	
HBA5	A6.5	Draw and interpret graphs modelling real situations, which may be non-linear, including simple quadratic graphs.	
HBA6	A7. 5	Generate points and plot graphs of simple quadratic functions and use these to find approximate solutions of simple related equations.	Simple quadratic functions such as $y=3 x^{2}, y=x^{2}+5 x$. Simple equations such as solving (1) $x^{2}-3=0$ having drawn the graph of $y=x^{2}-3 ;(2) x^{2}+5 x=2$, having drawn the graph of $y=x^{2}+5 x$.

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Geometry and measures	
HBG1	S7.1	Recognise that a measurement given to the nearest whole unit may be inaccurate by up to one half of a unit in either direction.	
HBG2	S7.8	Understand and use rates and compound measures, for example speed, density, rate of flow.	
HBG3	S6. 1	Calculate and use the sums of the interior and exterior angles of polygons, for both regular and irregular polygons.	
HBG4	S7.3	Understand, recall and use Pythagoras' theorem in 2-D contexts.	
HBG5	S7.5	Calculate the surface area and volume of right prisms, including cylinders. Convert between measures for area or for volume/capacity, for example between mm^{2} and cm^{2} or between cm^{3} and m^{3}.	The generic formula for the volume of a prism is given on the formulae sheet.
HBG6	S7.7	Construct loci to show paths and shapes. Use straight edge and a pair of compasses to produce standard constructions, including the midpoint and perpendicular bisector of a line segment and the bisector of an angle.	
HBG7	S6.7	Recognise, visualise and construct enlargements of objects using positive integer scale factors. Identify the centre and the scale factor of enlargement. Understand the implications of enlargement for perimeter/length.	
HBG8	NEW	Transform 2-D shapes by simple combinations of transformations.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HBS1	D7.1 NEW	Statistics	Understand and use estimates of probability from theoretical models or relative frequency. Compare experimental data and theoretical probabilities. Understand that if en experiment is repeated, the outcomes may - and usually will - be different, and that increasing the sample size generally leads to better estimates of probability and population characteristics.
HBS2	D7.2	Calculate the mean from grouped continuous data.	
HBS3	D7.3 D6.2 NEW	Draw and interpret scatter graphs for discrete and continuous variables, including using and understanding lines of best fit. Understand the vocabulary of correlation, including: positive, negative and zero correlation; weak, strong and moderate correlation. Look at data to find patterns and exceptions.	

2.3.3 Higher Silver Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HSN1	N8.1	Number	$\begin{array}{l}\text { Use a multiplier to solve percentage increase and decrease problems. } \\ \text { Calculate the original amount when given the transformed amount after a } \\ \text { percentage change. }\end{array}$

depreciation, etc.\end{array}\right]\)

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Algebra	
HSA1	A8.3	Solve harder linear equations including those with fractional coefficients.	
HSA2	$\begin{aligned} & \text { A9. } 3 \\ & A 8.2 \end{aligned}$	Manipulate algebraic expressions by expanding the product of two linear expressions, simplifying the result. Factorise quadratic expressions, including the difference of two squares. Solve quadratic equations of the form $a x^{2}+b x+c=0$ by factorisation. Simplify algebraic expressions by taking out common factors. Simplify rational expressions.	Solving quadratic equations by factorisation includes both the cases where where $a=1$ and where $a \neq 1$.
HSA3	A9.1	Rearrange formulae, including cases where the subject appears twice, or where a power of the subject appears.	
HSA4	A8. 4	Set up two linear simultaneous equations. Find the exact solution of two linear simultaneous equations in two unknowns by eliminating a variable; interpret the equations as lines and their common solution as the point of intersection.	Graphical solution of simultaneous equations is also included.
HSA5	A8. 5	Plot, sketch and recognise graphs of quadratics, simple cubic functions, and reciprocal functions $y=\frac{k}{x}$; with $x \neq 0$, including graphs arising from real situations and their interpretation.	Eg (1) $y=2 x^{2}-6 x+3$; (2) $y=x^{3}-2 x$.
HSA6	A8.6	Solve several linear inequalities in two variables and find the solution set, representing this on a suitable diagram. Shade such regions on a graph, using the convention for distinguishing \leq and \geq from $<$ and $>$. Construct the graphs of simple loci.	Where a line is included in the region, it will be solid; where it is not included, it will be dashed.
HSA7	A8.7	Understand that the form $y=m x+c$ represents a straight line and that m is the gradient of the line and c is the value of the y-intercept. Write the equation of a straight line in the form $y=m x+c$. Understand the gradients of parallel lines.	

Ref	J517 ref	Subject content - Candidates should be able to..r	Notes and examples
HSG1	s7.2 s9.1	Geometry and measures Understand and construct geometrical proofs using circle theorems: Understand that the tangent at any point on a circle is perpendicular to the radius at that point; understand that tangents from an external point are equal in length; understand that the angle subtended by an arc at the centre of the circle is twice the angle subtended at any point on the circumference; understand that the angle subtended at the circumference by a semicircle is a right angle; understand that angles in the same segment in a circle are equal; understand that opposite angles in a cyclic quadrilateral sum to 180; understand the alternate segment theorem.	
HSG2	s7.6	Understand and use 3-D coordinates.	
HSG3	s7.6 s9.2	Find the coordinates of the midpoint of a line segment AB given points A and B in 2-D. Use Pythagoras' theorem to find the length of a line segment AB given the points A and B in 2-D.	
HSG4	s8.3	Understand, recall and use trigonometrical ratios in right-angled triangles in 2-D.	Questions in context may include the use of bearings.
HSG5	s8.4	Understand similarity of triangles and other plane figures and use this to make geometrical inferences.	
HSG6	s8.2	Construct enlargements using any scale factor, including positive fractional and negative scale factors; identify scale factors.	
HSG7	s9.4	Understand and use the effect of enlargement on the area and volume of shapes and solids.	
HSG8	s8.2	Fully describe combinations of transformations (rotation, reflection, translation, enlargement) using a single transformation.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HSS1	D8.1	Statistics	Use tree diagrams to represent outcomes of combined events, recognising when events are independent. Find probabilities using tree diagrams.
HSS2	D8.2	Draw and interpret cumulative frequency tables and diagrams and box plots for grouped data. Find the median, quartiles and interquartile range.	
HSS3	D8.3	Compare distributions and make inferences, using the shapes of the distributions and measures of average and spread, including median and quartiles.	
HSS4	D8.4 D10.2	Calculate an appropriate moving average. Identify seasonality and trends in time series, from tables or diagrams.	

2.3.4 Higher Gold Stage

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HGN1	No.3	Number	Use the index laws with fractional, negative and zero powers in simplifying numerical and algebraic expressions.
HGN2	NEW N10.2	Use surds in exact calculations, without a calculator. Simplify expressions involving surds including rationalising a denominator.	
HGN3	N10.2	Convert a recurring decimal to a fraction and vice versa.	
HGN4	No.1	Use a calculator to find the upper and lower bounds of calculations, particularly in the context of measurement.	
HGN5	N10.1	Use calculators to explore exponential growth and decay.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
		Algebra	
HGA1	A9. 2	Form and use equations involving direct or inverse proportion (for $y \propto x, y \propto x^{2}, y \propto \frac{1}{x} y \propto \frac{1}{x^{2}}$).	
HGA2	A10.2	Solve quadratic equations by completing the square and using the quadratic equation formula.	The quadratic formula is given on the formulae sheet. The technique of completing the square may also be used to write quadratic expressions in the form $(x+a)^{2}+b$ and hence to find the minimum value of the expression and the value of x at which this occurs.
HGA3	A10.3	Solve exactly, by elimination of an unknown, two simultaneous equations in two unknowns, one of which is linear, the other equation quadratic in one unknown. Find the points of intersection of straight lines with quadratic curves, knowing that these are the approximate solutions of the corresponding simultaneous equations.	
HGA4	A10.1 NEW	Manipulate algebraic expressions including fractions and solve the related equations. Understand the difference between an equation and an identity.	
HGA5	A10.5 S10.4	Draw, sketch and recognise the function $y=k^{x}$ for integer values of x and simple positive values of k, the trigonometric functions $y=\sin x$ and $y=\cos x$ for any angle.	Trigonometric graphs may be used to find solutions of simple equations such as $\sin x=0 \cdot 4$, within a given interval.
HGA6	A10.4	Apply to the graph of $y=\mathrm{f}(x)$, for linear and quadratic $\mathrm{f}(x)$, the transformations $y=\mathrm{f}(x)+a, y=\mathrm{f}(a x), y=\mathrm{f}(x+a), \quad y=a \mathrm{f}(x)$.	Notation such as $y=\mathrm{f}(x), y=\mathrm{f}(x-2)$, $y=\mathrm{f}(x)+3$ may be used in questions.

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HGG1	S10.2	Geometry and measures Understand and use SSS, SAS, ASA and RHS condition to prove the congruence of triangles.	
HGG2	s9.2	Use Pythagoras' theorem and trigonometrical relationships in 3-D contexts, including using 3-D coordinates and finding the angles between a line and a plane.	
HGG3	S10.3	Calculate the area of a triangle using $1 / 2$ ab sin C. Use the sine and cosine rules in 2-D and 3-D contexts.	These are given on the formulae sheet.
HGG4	s9.3 s10.1	Find the lengths of arcs, areas of sectors and segments of circles, and the surface areas and volumes of pyramids, cones and spheres; use pi in exact calculations. Solve mensuration problems involving more complex shapes and solids.	The formulae sheet includes: volume of a sphere and a cone, and the surface area of a cone. Examples of mensuration problems include: (1) Finding the area of an arched window; (2) Finding the volume of a frustum.
HGG5	S10.5	Understand and use vector notation. Calculate, and represent graphically: the sum of two vectors, the difference of two vectors and a scalar multiple of a vector. Callulate the resultant of two vectors. Understand and use the commutative and associative properties of vector addition. Use vector methods in 2-D.	

Ref	J517 ref	Subject content - Candidates should be able to...	Notes and examples
HGS1	D9.1 D10.3	Statistics Know when to add or multiply probabilities: if A and B are mutually exclusive,, then the probability of A or B occurring is $P(A)+P(B)$. If A and B are independent events, the probability of A and B occurring is $P(A) \times P(B)$.Harder questions may include the use of conditional probabilities and/or more than two successive events.	
HGS2	D9.2	Draw and interpret histograms for grouped data. Understand frequency density.	
HGS3	D10.1	Interpret and compare a wide range of data sets (including grouped discrete and continuous data) and draw conclusions.	
HGS4	D9.3	Select a representative sample from a population using random and stratified sampling. Criticise sampling methods.	

3.1 Overview of the assessment in GCSE Mathematics B

3.2 Tiers

This scheme of assessment consists of two tiers: Foundation tier and Higher tier. Foundation tier assesses Grades C to G and Higher tier assesses Grades A^{*} to $D(E)$. Candidates will be entered for either the Foundation tier or the Higher tier.

3.3 Assessment Objectives

All GCSE Mathematics specifications for first teaching from September 2010 have the same set of assessment objectives:

Candidates are expected to demonstrate the following in the context of the content described:

AO1	Assessment Objectives	Weighting (\%)
RO2	Select and apply mathematical methods in a range of contexts	$25-35$
AO3	Interpret and analyse problems and generate strategies to solve them	$15-25$

AO weightings - GCSE Mathematics B

The relationship between the question papers and the assessment objectives in terms of raw marks is shown in the following grid.

Question paper	A01	A02	A03	Total
J567/01: Mathematics Paper 1 (Foundation)	$45-55$	$25-35$	$15-25$	$\mathbf{1 0 0}$
J567/02: Mathematics Paper 2 (Foundation)	$45-55$	$25-35$	$15-25$	$\mathbf{1 0 0}$
J567/03: Mathematics Paper 3 (Higher)	$45-55$	$25-35$	$15-25$	$\mathbf{1 0 0}$
J567/04: Mathematics Paper 4 (Higher)	$45-55$	$25-35$	$15-25$	$\mathbf{1 0 0}$

3.4 Grading and awarding grades

GCSE results are awarded on the scale A* to G. Grades are indicated on certificates. However, results for candidates who fail to achieve the minimum grade for the tier will be recorded as unclassified (U) and this is not certificated.
This GCSE is a linear scheme. Candidates must take both of the components for the tier in the same series.

Awarding grades

The written papers have a total weighting of 100%.
A candidate's mark for each paper is weighted and combined to give a total weighted mark for the specification. The candidate's grade is determined by the total weighted mark. (In this GCSE specification, the total raw mark equals the total weighted mark.)

3.5 Grade descriptions

Grade descriptions are provided to give a general indication of the standards of achievement likely to have been shown by candidates awarded particular grades. The descriptions must be interpreted in relation to the content in the specification; they are not designed to define that content. The grade awarded will depend in practice upon the extent to which the candidate has met the assessment objectives overall. Shortcomings in some aspects of the assessment may be balanced by better performance in others.
The grade descriptors have been produced by the regulatory authorities in collaboration with the awarding bodies.

Grade F

Candidates use some mathematical techniques, terminology, diagrams and symbols from the foundation tier consistently, appropriately and accurately. Candidates use some different representations effectively and can select information from them. They complete straightforward calculations competently with and without a calculator. They use simple fractions and percentages, simple formulae and some geometric properties, including symmetry.
Candidates work mathematically in everyday and meaningful contexts. They make use of diagrams and symbols to communicate mathematical ideas. Sometimes, they check the accuracy and reasonableness of their results.
Candidates test simple hypotheses and conjectures based on evidence. Candidates are able to use data to look for patterns and relationships. They state a generalisation arising from a set of results and identify counter-examples. They solve simple problems, some of which are nonroutine.

Grade C

Candidates use a range of mathematical techniques, terminology, diagrams and symbols consistently, appropriately and accurately. Candidates are able to use different representations effectively and they recognise some equivalent representations eg numerical, graphical and algebraic representations of linear functions; percentages, fractions and decimals. Their numerical skills are sound and they use a calculator accurately. They apply ideas of proportionality to numerical problems and use geometric properties of angles, lines and shapes. Candidates identify relevant information, select appropriate representations and apply appropriate methods and knowledge. They are able to move from one representation to another, in order to make sense of a situation. Candidates use different methods of mathematical communication.
Candidates tackle problems that bring aspects of mathematics together. They identify evidence that supports or refutes conjectures and hypotheses. They understand the limitations of evidence and sampling, and the difference between a mathematical argument and conclusions based on experimental evidence.
They identify strategies to solve problems involving a limited number of variables. They communicate their chosen strategy, making changes as necessary. They construct a mathematical argument and identify inconsistencies in a given argument or exceptions to a generalisation.

Grade A

Candidates use a wide range of mathematical techniques, terminology, diagrams and symbols consistently, appropriately and accurately. Candidates are able to use different representations effectively and they recognise equivalent representations for example numerical, graphical and algebraic representations. Their numerical skills are sound, they use a calculator effectively and they demonstrate algebraic fluency. They use trigonometry and geometrical properties to solve problems.
Candidates identify and use mathematics accurately in a range of contexts. They evaluate the appropriateness, effectiveness and efficiency of different approaches. Candidates choose methods of mathematical communication appropriate to the context. They are able to state the limitations of an approach or the accuracy of results. They use this information to inform conclusions within a mathematical or statistical problem.
Candidates make and test hypotheses and conjectures. They adopt appropriate strategies to tackle problems (including those that are novel or unfamiliar), adjusting their approach when necessary. They tackle problems that bring together different aspects of mathematics and may involve multiple variables. They can identify some variables and investigate them systematically; the outcomes of which are used in solving the problem.
Candidates communicate their chosen strategy. They can construct a rigorous argument, making inferences and drawing conclusions. They produce simple proofs and can identify errors in reasoning.

3.6 Quality of written communication

Quality of written communication (QWC) is assessed in all four papers.
Candidates are expected to:

- Present their answers in an appropriate form, which may involve the correct use of formulae, equations, expressions, or labelled diagrams.
- Organise their answers clearly and coherently.
- Use correct spelling, punctuation, and grammar where writing is required.

Questions assessing QWC will be indicated by an asterisk (*).

In order to help you implement this GCSE Mathematics B specification effectively, OCR offers a comprehensive package of support. This includes:

4.1 Free resources available from the OCR website

The specification and specimen assessment materials are available to download free of charge from the OCR website. Additionally, OCR provides a Teachers' Guide, sample scheme of work and sample lesson plans.
Mock examination papers, and sample assessments for the stages, are available to download free of charge from OCR Interchange.

GCSE Mathematics Newsletter

A newsletter for GCSE Mathematics is produced biannually and made available to centres on the OCR website.

4.2 Other resources

OCR offers centres a wealth of quality published support with a choice of 'Official Publisher Partner' and 'Approved Publication' resources, all endorsed by OCR for use with OCR specifications.

Publisher partners

OCR works in close collaboration with Publisher Partners to ensure centres have access to:

- Published support materials available when you need them, tailored to OCR specifications.
- High quality resources produced in consultation with OCR subject teams, which are linked to OCR's teacher support materials.

Official Publisher Partnership
Hodder Education is the publisher partner for OCR GCSE Mathematics B.
We're working with our publisher partner Hodder Education to produce an exciting new range of resources. These have been written and edited by experienced examiners and authors, combining their teaching and examining expertise to provide relevant and meaningful coverage of the course.
The resources will include three Student Books, three Teacher and Assessment Packs, and three Homework Books. You'll also be able to access full digital support. This includes interactive online assessment that allows you to track learners' progress, highlighting the best way to achieve success. The reports not only identify students' areas of strength and weakness, but provide links to print and digital resources that will help them improve their knowledge and skills.
Visit www.hoddereducation.co.uk/ocrgcsemathsb to find out more, or visit www.ocr.org.uk/gcse2010, select your subject and choose published resources from the menu on the right.

GCSE Mathematics B publisher pack

9781444110159
OCR GCSE Mathematics B Evaluation Pack
FREE

Student Books

- OCR Mathematics for GCSE Specification B - Higher Silver \& Gold Student Book
- OCR Mathematics for GCSE Specification B - Foundation Silver \& Gold / Higher Initial \& Bronze Student Book
- OCR Mathematics for GCSE Specification B - Foundation Initial \& Bronze Student Book

Teacher and Assessment Packs

- OCR Mathematics for GCSE Specification B - Higher Silver \& Gold Teacher and Assessment Pack
- OCR Mathematics for GCSE Specification B - Foundation Silver \& Gold / Higher Initial \& Bronze Teacher and Assessment Pack
- OCR Mathematics for GCSE Specification B - Foundation Initial \& Bronze Teacher and Assessment Pack

Homework Books

- OCR Mathematics for GCSE Specification B - Higher Silver \& Gold Homework Book
- OCR Mathematics for GCSE Specification B - Foundation Silver \& Gold / Higher Initial \& Bronze Homework Book
- OCR Mathematics for GCSE Specification B - Foundation Initial \& Bronze Homework Book

Dynamic Learning

- Support for each stage in the shape of Personal Tutor presentations
- Interactive Assessment Tasks with associated reporting and remediation
- Additional assessment resources for teachers

Endorsed publications

OCR endorses a range of publisher materials to provide quality support for centres delivering its qualifications. You can be confident that materials branded with OCR's "Official Publishing Partner" or "Approved publication" logos have undergone a thorough quality assurance process to achieve endorsement. All responsibility for the content of the publisher's materials rests with the publisher.

These endorsements do not mean that the materials are the only suitable resources available or necessary to achieve an OCR qualification.

4.3 Training

Get Started...towards successful delivery of the new specifications

These full-day events will run until December 2010 and will look at the new specifications in more depth, with emphasis on first delivery.

- Visit www.ocr.org.uk/training/ for more details.

Mill Wharf Training

Additional events are also available through our partner, Mill Wharf Training. It offers a range of courses on innovative teaching practice and whole-school issues - www.mill-wharf-training.co.uk.

4.4 OCR support services

Active Results

Active Results is available to all centres offering OCR's GCSE Mathematics specifications.

activeresults

Active Results is a free results analysis service to help teachers review the performance of individual candidates or whole schools.
Devised specifically for the UK market, data can be analysed using filters on several categories such as gender and other demographic information, as well as providing breakdowns of results by question and topic.
Active Results allows you to look in greater detail at your results:

- Richer and more granular data will be made available to centres including item level data available from e-marking.
- You can identify the strengths and weaknesses of individual candidates and your centre's cohort as a whole.
- Our systems have been developed in close consultation with teachers so that the technology delivers what you need.
Further information on Active Results can be found on the OCR website.

OCR Mathematics Support Team

A direct number gives access to a dedicated and trained support team handling all queries relating to GCSE Mathematics and other Mathematics qualifications - 03004563142.

OCR Interchange

OCR Interchange has been developed to help you to carry out day-to-day administration functions online, quickly and easily. The site allows you to register and enter candidates online. In addition, you can gain immediate and free access to candidate information at your convenience. Sign up at https://interchange.ocr.org.uk.

5.1 Disability Discrimination Act information relating to GCSE Mathematics B

GCSEs often require assessment of a broad range of competences. This is because they are general qualifications and, as such, prepare candidates for a wide range of occupations and higher level courses.
The revised GCSE qualifications and subject criteria were reviewed by the regulators to identify whether any of the competences required by the subject presented a potential barrier to any disabled candidates. If this was the case, the situation was reviewed again to ensure that such competences were included only where essential to the subject. The findings of this process were discussed with disability groups and with disabled people.
Reasonable adjustments are made for disabled candidates in order to enable them to access the assessments and to demonstrate what they know and can do. For this reason, very few candidates will have a complete barrier to the assessment. Information on reasonable adjustments is found in Access Arrangements, Reasonable Adjustments and Special Consideration, produced by the Joint Council for Qualifications (www.jcq.org.uk).
Candidates who are unable to access part of the assessment, even after exploring all possibilities through reasonable adjustments, may still be able to receive an award based on the parts of the assessment they have taken.

The access arrangements permissible for use in this specification are in line with QCA's GCSE subject criteria equalities review and are as follows:

	Yes/No
Readers	Yes
Scribes	Yes
Practical assistants	Yes
Word processors	Yes
Transcripts	Yes
BSL interpreters	Yes
Oral language modifiers	Yes
MQ papers	Yes
Extra time	Yes

5.2 Arrangements for candidates with particular requirements

All candidates with a demonstrable need may be eligible for access arrangements to enable them to show what they know and can do. The criteria for eligibility for access arrangements can be found in the JCQ document Access Arrangements, Reasonable Adjustments and Special Consideration. Candidates who have been fully prepared for the assessment but who have been affected by adverse circumstances beyond their control at the time of the examination may be eligible for special consideration. Centres should consult the JCQ document Access Arrangements, Reasonable Adjustments and Special Consideration.

6.1 Availability of assessment

This qualification will be first certificated in June 2012. Availability is shown in the following table.

	June 2012	November 2012	March 2013	June 2013	November 2013
J567 (all components)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Availability in subsequent years will be the same as in 2013.

6.2 Making entries

Centres must be registered with OCR in order to make any entries, including estimated entries. It is recommended that centres apply to OCR to become a registered centre well in advance of making their first entries.
It is essential that entry codes are quoted in all correspondence with OCR.
Candidates may enter for:

- OCR GCSE in Mathematics B - J567

All candidates must be entered for J567 and either option F or option H. Centres must enter each of their candidates for ONE of the options. It is not possible for centres to offer both options to the same candidate in the same series. Entering candidates for one of the options automatically enters them for the two assessments for the tier, as shown below.

Entry code and option	Assessment type	Assessment codes and titles
J567 option F	Written paper	J567/01: Mathematics Paper 1 (Foundation)
	Written paper	J567/02: Mathematics Paper 2 (Foundation)
J567 option H	Written paper	J567/03: Mathematics Paper 3 (Higher)
	Written paper	J567/04: Mathematics Paper 4 (Higher)

GCSE certification is available from June 2012.

6.3 Terminal rule

This is a linear GCSE: an entry for J567 with either of the two options automatically satisfies the terminal rule. Candidates will take both components for the appropriate tier in the same series.

6.4 Qualification re-sits

Candidates may enter for the qualification an unlimited number of times. Candidates wishing to re-sit the qualification must re-sit both components for the appropriate tier. This does not have to be the same tier as for any previous entries.

6.5 Enquiries about results

Under certain circumstances, a centre may wish to query the result issued to one or more candidates. Enquiries about Results for GCSE examinations must be made immediately following the series in which the assessment was taken (by the Enquiries about Results deadline).
Please refer to the JCQ Post-Results Services booklet and the OCR Admin Guide for further guidance about action on the release of results. Copies of the latest versions of these documents can be obtained from the OCR website.

6.6 Prohibited qualifications and classification code

Every specification is assigned a national classification code indicating the subject area to which it belongs. The classification code for this specification is 2210.
Centres should be aware that candidates who enter for more than one GCSE qualification with the same classification code will have only one grade (the highest) counted for the purpose of the School and College Performance Tables.
Centres may wish to advise candidates that, if they take two specifications with the same classification code, schools and colleges are very likely to take the view that they have achieved only one of the two GCSEs. The same view may be taken if candidates take two GCSE specifications that have different classification codes but have significant overlap of content. Candidates who have any doubts about their subject combinations should seek advice, for example from their centre or the institution to which they wish to progress.

7.1 Overlap with other qualifications

There is a small degree of overlap between the content of this specification and those for GCSE Statistics and Free Standing Mathematics Qualifications.

7.2 Progression from this qualification

GCSE qualifications are general qualifications that enable candidates to progress either directly to employment, or to proceed to further qualifications.
Progression to further study from GCSE will depend upon the number and nature of the grades achieved. Broadly, candidates who are awarded mainly Grades D to G at GCSE could either strengthen their base through further study of qualifications at Level 1 within the National Qualifications Framework or could proceed to Level 2. Candidates who are awarded mainly Grades A* to C at GCSE would be well prepared for study at Level 3 within the National Qualifications Framework.
This specification provides progression from the OCR Entry Level Certificate in Mathematics available from www.ocr.org.uk/maths.

7.3 Avoidance of bias

OCR has taken great care in preparation of this specification and the assessment materials to avoid bias of any kind.

7.4 Code of Practice/Common Criteria Requirements/Subject Criteria

This specification complies in all respects with the current GCSE, GCE and AEA Code of Practice as available on the Ofqual website, The Statutory Regulation of External Qualifications 2004, and the subject criteria for GCSE Mathematics.

7.5 Language

This specification and associated assessment materials are in English only.

7.6 Spiritual, moral, ethical, social, legislative, economic and cultural issues

This specification offers opportunities which can contribute to an understanding of these issues in the following topics.

Issue	Opportunities for developing an understanding of the issue during the course
Spiritual issues	Spiritual development: helping candidates obtain an insight into the infinite, and through explaining the underlying mathematical principles behind natural forms and patterns.
Moral issues	Moral development: helping candidates recognise how logical reasoning can be used to consider the consequences of particular decisions and choices and helping them learn the value of mathematical truth.
Social issues	Social development: helping candidates work together productively on complex mathematical tasks and helping them see that the result is often better than any of them could achieve separately.
Economic issues	Economic development: helping candidates make informed decisions about the management of money.
Cultural issues	Cultural development: helping candidates appreciate that mathematical thought contributes to the development of our culture and is becoming increasingly central to our highly technological future, and through recognising that mathematicians from many cultures have contributed to the development of modern day mathematics.

7.7 Sustainable development, health and safety considerations and European developments, consistent with international agreements

This specification supports these issues, consistent with current EU agreements, through questions set in relevant contexts.

- Sustainable development issues could be supported through questions set on carbon emissions or life expectancy, for example.
- Health and safety considerations could be supported through questions on maximum safe loads or a nutrition analysis, for example.
- European developments could be supported through questions on currency and foreign exchange, for example.
OCR encourages teachers to use appropriate contexts in the delivery of the subject content.

7.8 Key Skills

This specification provides opportunities for the development of the Key Skills of Communication, Application of Number, Information Technology, Working with Others, Improving Own Learning and Performance and Problem Solving at Levels 1 and/or 2. However, the extent to which this evidence fulfils the Key Skills criteria at these levels will be totally dependent on the style of teaching and learning adopted.

The following table indicates where opportunities may exist for at least some coverage of the various Key Skills criteria at Levels 1 and/or 2 .

Specification	C		AON		IT		WwO		IoLP		PS	
	1	2	1	2	1	2	1	2	1	2	1	2
J567	\checkmark											

Detailed opportunities for generating Key Skills evidence through this specification are posted on the OCR website (www.ocr.org.uk). A summary document for Key Skills Coordinators showing ways in which opportunities for Key Skills arise within GCSE courses has been published.

7.9 ICT

In order to play a full part in modern society, candidates need to be confident and effective users of ICT. Where appropriate, candidates should be given opportunities to use ICT in order to further their study of mathematics.
The assessment of this course requires candidates to:

- Use calculators effectively and efficiently, knowing how to
- enter complex calculations,
- use an extended range of function keys, including trigonometrical and statistical functions relevant to the programme of study.
Questions will be set in Papers 2 and 4 that specifically test the use of calculators.
In addition, the programme of study requires candidates to:
- Become familiar with a range of resources, including ICT such as spreadsheets, dynamic geometry, graphing software and calculators, to develop mathematical ideas.

7.10 Citizenship

Since September 2002, the National Curriculum for England at Key Stage 4 has included a mandatory programme of study for Citizenship. Parts of the programme of study for Citizenship (2007) may be delivered through an appropriate treatment of other subjects.
This section offers examples of opportunities for developing knowledge, skills and understanding of citizenship issues during this course.
This Mathematics specification aids candidates in analysing how information is used in public debate and policy formation, including information from the media and from pressure and interest groups, through its statistical content.
The key process of critical thinking and enquiry can be developed, for example, where candidates have to decide for themselves how to solve a mathematical problem, or decide which information is relevant and redundant.

A. 1 Conventional presentation of specification content

GCSE Mathematics B is a linear scheme. The content is listed in section 2 in four stages within each of the two tiers. The stages are graduated in the level of demand of the content. This allows teachers to use the stages to target teaching to the level of ability of the students.
This Appendix is for teachers who want to use the scheme in a more traditional linear way. The content for each tier is listed in four main sections (Number, Algebra, Geometry and Measures, Statistics). Within each of these the content is grouped under sub-headings that reflect previous linear GCSE Mathematics specifications.
Some statements within a heading may repeat or extend certain aspects. For example, in foundation tier Number (Powers and roots) FBN3 states "Use the terms square and square root (positive square roots only) and the correct notation." Within the same heading there is also FGN1 "Use the terms cube root and negative square root." This is entirely deliberate and the statements both appear in order to give an indication of demand.

- For the foundation tier, statements prefaced by FI or FB address content in the lower stages of the foundation tier. Statements prefaced by FS or FG show the more challenging content of the foundation tier; such content also "overlaps" with the higher tier.
- For the foundation tier question papers, approximately 70 marks will assess FI and FB statements and approximately 30 marks will assess FS and FG statements.
- For the higher tier, statements prefaced by HI or HB address material in the lower stages of the tier. This is the same content as that labelled FS and FG respectively (ie the "overlapping" content). Statements prefaced by HS or HG show the content which is exclusive to the higher tier; this is shown in bold type.
- For the higher tier question papers, approximately 50 marks will assess HI and HB statements and approximately 50 marks will assess HS and HG statements.
- The higher tier subsumes the foundation tier. Statements prefaced by FI or FB in the foundation tier will not be the focus of a question in higher tier papers, but knowledge of them will be assumed.

A. 2 J567/01 and J567/02: Mathematics Paper 1 (Foundation) and Mathematics Paper 2 (Foundation)

Number Topic	Ref	Subject content - Candidates should be able to...
Number operations	FIN2 FIN3 FIN4 FIN11 FIN10	Add and subtract three-digit numbers, without the use of a calculator. Add and subtract using numbers with up to two decimal places without the use of a calculator. Multiply and divide numbers with no more than one decimal digit by an integer between 1 and 10 , without the use of a calculator. Multiply and divide any number by 10, 100 and 1000 without the use of a calculator. Multiply and divide a three-digit number by a two-digit number. Multiply numbers with up to two decimal places by an integer, with or without a calculator. (Eg (1) Multiply 142 by 58 ; (2) Find the cost of 12 bottles of cordial at $£ 2 \cdot 95$ each.) Perform calculations involving the use of brackets and the order of operations. Work out starting times, finishing times and intervals.
	FIN1 FBN2 FGN5	Round numbers to a given power of 10 . Round numbers to the nearest integer or to any given number of significant figures or decimal places. Estimate answers to one-stage calculations, particularly calculations involving measurement or money. (Candidates will be expected to round to one significant figure for these estimates, recognising where this makes the estimate greater or less than the actual value.) Check solutions to calculations using various methods including approximating, using inverse operations and recognising the effect of multiplying and dividing by numbers less than one and greater than one. Estimate answers using appropriate techniques.
	FIN12 FBN8	Order positive and negative temperatures. Solve problems involving temperature changes. Use the four operations with positive and negative integers.
	$\begin{aligned} & \text { FBN1 } \\ & \text { FGN6 } \end{aligned}$	Understand the concepts and vocabulary of factor, multiple and common factor and prime number. Use and understand the terms reciprocal, highest common factor, lowest common multiple, prime number. Find the prime factor decomposition of positive integers.

Number Topic	Ref	Subject content - Candidates should be able to...
Powers and roots	FBN3 FGN1	Use the terms square and square root (positive square roots only) and the correct notation. Find squares and square roots. Use the term cube and find cubes of numbers, appreciating the link to the volume of a cube. Use index notation for simple integer powers. Use the index laws with numerical and algebraic expressions involving multiplication and division of positive integer powers. Use the terms cube root and negative square root.
Fractions	FIN5 FBN4 FBN5 FSN1 FSN2 FGN2	Calculate a fraction of a given quantity. Identify fractions of a shape. Understand equivalent fractions, simplifying a fraction by cancelling all common factors. Write improper fractions as mixed numbers and vice versa. Order fractions using a common denominator. Add and subtract simple fractions (using a common denominator). Multiply and divide simple fractions (not mixed numbers). Add and subtract mixed numbers. Express one quantity as a fraction of another. Use the four operations on fractions, including mixed numbers.
Decimals	FIN6 FIN8 FSN4 FGN3	Recall the fraction to decimal conversions of familiar simple fractions (tenths, hundredths, half, quarters, fifths). Order decimals (ordering up to five decimals and knowing that, eg, $5 \cdot 07$ is smaller than $5 \cdot 3$). Use the four operations on decimals without the use of a calculator. Convert a simple fraction to a decimal using division. Use and understand terminating and recurring decimals including exact fraction equivalents (this excludes converting a recurring decimal to a fraction).

Number Topic	Ref	Subject content - Candidates should be able to...
Percentages	FIN6	Convert simple fractions of a whole to percentages of the whole and vice versa. (Includes the conversion of simple decimals to percentages and vice versa)
	FIN7 Calculate simple percentages (includes multiples of 5\%) of quantities, without the use of a calculator. FBN6 FBN7 FSN2 FSN3 FGN4	Use the equivalence between fractions, decimals and percentages. Find a percentage of a quantity, interpreting percentage as an operator. Express one quantity as a percentage of another. Increase and decrease quantities by a percentage. Use percentages to compare proportion. Use and find percentage change.
Ratio and proportion	FBN9 FSN5	Use simple proportion, particularly in the context of recipes. Use ratio notation including reduction to its simplest form. Understand and use ratio and proportion, including dividing a quantity in a given ratio.
Use of calculators	FIN9	Solve problems using the four operations on integer and decimal numbers using a calculator. (Up to three decimal places.) Use a calculator effectively and efficiently, entering a range of measures including 'time', interpreting the display and rounding off a final answer to a reasonable degree of accuracy. (This includes using the memory and bracket keys, and function keys for squares and powers where appropriate.)

Algebra Topic	Ref	Subject content - Candidates should be able to...
Use of symbols	$\begin{aligned} & \text { FBA3 } \\ & \text { FSA3 } \end{aligned}$	Manipulate algebraic expressions by collecting like terms. Manipulate algebraic expressions by multiplying a single term over a bracket and by taking out common factors.
Inequalities	FGA2	Solve simple linear inequalities in one variable and represent the solution set on a number line, using the convention for distinguishing \leq and \geq from $<$ and $>$. For example, for these solution sets:
Linear equations	FIA3 FBA4 FSA2	Use simple function machines to deal with inputs and outputs, recognising basic inverse functions. Solve simple equations involving one operation. Solve simple equations involving two steps. Set-up and solve linear equations with integer coefficients. This will include equations in which the unknown appears on both sides of the equation, or with brackets.
Formulae and expressions	FIA2 FBA2 FSA1 FGA3	Use formulae expressed in words or symbols, substituting positive numbers into the formula to find the value of the subject (usually in context). Substitute positive numbers into simple algebraic formulae. Derive a simple formula. (Eg Find a formula for the perimeter, P, of a regular hexagon of side a.) Use and generate formulae. Substitute positive and negative numbers into a formula or an expression. (Eg (1) $4 x-2$; (2) $3 x^{2}+4$; (3) $V=2 a^{3}$.) Change the subject of a formula in cases where the subject only appears once.

Algebra Topic	Ref	Subject content - Candidates should be able to...
Numerical methods	FSA5	Use trial and improvement to find approximate solutions of equations where there is no simple analytical method of solving them. (Eg (1) $x^{3}-2 x=2$; (2) The positive solution of $x^{2}-4=\frac{1}{x}$; (3) I think of two numbers. They add together to equal 6. They multiply together to equal $8 \cdot 64$. Find the two numbers.)
Direct and inverse proportion		Not included in the foundation tier
Simultaneous linear equations		Not included in the foundation tier
Quadratic equations		Not included in the foundation tier
Simultaneous linear and quadratic equations		Not included in the foundation tier
Sequences	FBA1 FBA1 FGA1	Continue simple sequences. Explain how to find the next number in a simple pattern. Recognise and describe patterns in number. (Eg 1, 4, 7, 10... or 1, 2, 4, $8 \ldots$; or continue the pattern $11 \times 11=121,111 \times 111=12321$ etc.) Continue and explain patterns in number and spatial arrangements. Generate terms of a sequence using term-to-term and position-to-term definitions of the sequence. Generate integer sequences using a rule for the nth term. Use linear expressions to describe the nth term of an arithmetic sequence.

Algebra Topic	Ref	Subject content - Candidates should be able to...
Graphs of linear functions	FIA4	FSA4
	FGA4	Use axes and coordinates in four quadrants, including using points identified by geometrical information. Use tables to plot graphs of linear functions given explicitly. Plot graphs of linear functions in which y is given explicitly or implicitly in terms of x. Find the gradient of linear graphs.
Interpreting graphical information	FIA5	Construct and interpret simple graphs, including conversion graphs. Interpret information presented in a range of linear and non-linear graphs, including travel (distance/time) graphs. Draw and interpret graphs modelling real situations, which may be non-linear, including simple quadratic graphs.
Quadratic functions	FGA5	Generate points and plot graphs of simple quadratic functions and use these to find approximate solutions of simple related equations. (Simple quadratic functions such as $y=3 x^{2}, y=x^{2}+5 x$. Simple equations such as solving (1) $x^{2}-3=0$ having drawn the graph of $y=x^{2}-3 ;(2) x^{2}+5 x=2$, having drawn the graph of $\left.y=x^{2}+5 x.\right)$
Other functions		Not included in the foundation tier
Transformation of functions	Not included in the foundation tier	
Graphs of loci		Not included in the foundation tier

Geometry and Measures Topic	Ref	Subject content - Candidates should be able to...
Angles	FIG3 FSG1	Measure and draw angles to the nearest degree. Identify acute, obtuse, reflex and right angles. Recall and use properties of angles at a point, angles at a point on a straight line (including right angles), perpendicular lines and opposite angles at a vertex. Understand and use the angle properties of parallel and intersecting lines.
Properties of triangles and other rectilinear shapes	$\begin{aligned} & \text { FIG4 } \\ & \text { FBG5 } \\ & \text { FGG3 } \end{aligned}$	Recognise regular polygons (pentagon, hexagon, octagon). Recognise types of triangle (isosceles, equilateral, scalene). Recall the geometric properties and definitions of the special types of quadrilateral, including square, rectangle, parallelogram, trapezium, kite and rhombus. Calculate and use the sums of the interior and exterior angles of polygons, for both regular and irregular polygons.
	FGG4	Understand, recall and use Pythagoras' theorem in 2-D contexts.
	$\begin{aligned} & \text { FBG1 } \\ & \text { FBG2 } \end{aligned}$	Understand and use the angle properties of triangles, including equilateral, isosceles, right-angled and scalene triangles. (Questions may involve the exterior angle of a triangle, but knowledge of the property that the exterior angle of a triangle is equal to the sum of the two interior opposite angles is not required.) Understand that the sum of the interior angles of a quadrilateral is 360° and how this result is obtained. Use this angle property of a quadriateral.
Properties of circles	$\begin{gathered} \text { FIG4 } \\ \text { FSG3 } \end{gathered}$	Recognise the terms circle, centre, radius, diameter and circumference. Recall the meaning of chord, tangent, arc, sector and segment. Recall and use the formulae for the circumference and the area of a circle. (Candidates may be required to give answers in terms of π.)
Properties of 3-D shapes	$\begin{gathered} \text { FIG4 } \\ \text { FBG3 } \\ \text { FSG5 } \end{gathered}$	Recognise simple solids (cube, cuboid, sphere, cylinder, cone). Use isometric drawings and nets of 3-D shapes. Use 2-D representations of 3-D shapes, including plans and elevations.

$\left.\begin{array}{|l|l|l|}\hline \begin{array}{l}\text { Geometry and } \\ \text { Measures Topic }\end{array} & \text { Ref } & \text { Subject content - Candidates should be able to.." } \\ \hline \text { Mensuration } & \text { FIG5 } & \begin{array}{l}\text { Find the perimeter of straight-sided shapes. } \\ \text { Find areas of irregular shapes and volumes of simple solids. } \\ \text { Find the area of a rectangle. }\end{array} \\ \text { Recall and use the formula for the area of a parallelogram and a triangle. } \\ \text { Use the formula for the area of a trapezium. (The formula for the area of a trapezium is given on the formulae } \\ \text { sheet.) } \\ \text { Calculate perimeters and areas of shapes made from triangles and rectangles. } \\ \text { Find the surface area of simple solid shapes using the area formulae for triangles and rectangles. } \\ \text { Find the volumes of cubes and cuboids, recalling the formula. } \\ \text { Calculate volumes of shapes made from cubes and cuboids. } \\ \text { Calculate the surface area and volume of right prisms, including cylinders. (The generic formula for the volume } \\ \text { of a prism is given on the formulae sheet.) } \\ \text { Convert between measures for area or for volume/capacity, for example between mm² and cm² or between cm³ } \\ \text { and litres. }\end{array}\right]$

Geometry and Measures Topic	Ref	Subject content - Candidates should be able to...
Measures	FIG1	Use: kilometres, metres, centimetres and millimetres; kilograms and grams; litres and millilitres. Convert measurements from one metric unit to another. Interpret scales on a range of measuring instruments. Make sensible estimates of a range of measures in everyday settings. (Eg (1) The height of a car given a diagram with a person standing next to the car, whose height is given. (2) The length of a bench seating three people; (3) How much a loaf of bread weighs, choosing from $80 \mathrm{~g}, 800 \mathrm{~g}, 8 \mathrm{~kg}, 80 \mathrm{~kg}$.) Recognise that a measurement given to the nearest whole unit may be inaccurate by up to one half of a unit in either direction. Understand and use rates and compound measures, for example speed, density, rate of flow.
Constructions and loci	FGG2	FGG2
FGG2 Construct triangles and other 2-D shapes using a ruler and a protractor, given information about their sides and angles. Use a straight edge and a pair of compasses to do constructions. Construct inscribed regular polygons. Construct nets of cubes, regular tetrahedra, square-based pyramids and other 3-D shapes. Construct loci to show paths and shapes. Use straight edge and a pair of compasses to produce standard constructions, including the midpoint and perpendicular bisector of a line segment and the bisector of an angle.		

Geometry and Measures Topic	Ref	Subject content - Candidates should be able to...
Symmetry, transformations and their properties	$\begin{gathered} \text { FIG7 } \\ \text { FIG8 } \\ \text { FBG7 } \end{gathered}$	Recognise and complete reflection symmetry of 2-D shapes. (With or without a grid, as appropriate.) Understand that reflections are specified by a mirror line. Transform triangles and other 2-D shapes by reflection, using a given line. Recognise and visualise the rotation symmetry of 2-D shapes. Identify the order of rotation symmetry. Complete shapes and patterns to give a specified order of rotation symmetry. (A 2-D shape has rotation symmetry of order n when n is the largest positive integer for which a rotation of 360° $\div n$ produces an identical looking shape in the same position. Hence the order of rotation symmetry is the number of ways the shape will map on to itself in a rotation of 360°. Shapes with rotation symmetry order 1 are said to have no rotation symmetry.)
	FBG8 FSG6 FGG7 FGG8	Understand positive integer scale factors. Use such scale factors to produce scaled-up images on a grid without a specified centre. Understand that an enlarged shape is mathematically similar to the original shape. Understand and recognise the congruence of simple shapes. Transform triangles and other 2-D shapes by rotation, reflection, or translation using column vectors. Recognise and visualise rotations, reflections and translations. Understand the properties preserved by these transformations; understand the congruence of these transformations. Recognise, visualise and construct enlargements of objects using positive integer scale factors and a centre of enlargement. Identify the centre and the scale factor of an enlargement. Understand the implications of enlargement for perimeter/length. Transform 2-D shapes by simple combinations of transformations.
Coordinates	-	See FIA4 (in Graphs of linear functions, in Algebra) for coordinates content on foundation tier.

Statistics Topic	Ref	Subject content - Candidates should be able to...
Probability	FIS1 FIS2 FBS1 FSS1 FGS1	Understand and use the vocabulary of probability, including terms such as 'fair', 'evens', 'certain', 'likely', 'unlikely' and 'impossible'. Understand and use the probability scale. Find all possible ways of listing up to four objects. Understand and use measures of probability from equally likely outcomes. List all outcomes for two successive events in a systematic way and derive related probabilities. Identify different mutually exclusive outcomes and know that the sum of the probabilities of all these outcomes is 1 . Understand and use estimates of probability from theoretical models or relative frequency. Compare experimental data and theoretical probabilities. Understand that if an experiment is repeated, the outcomes may - and usually will - be different, and that increasing the sample size generally leads to better estimates of probability and population characteristics.
Collecting data	FSS5	Design and criticise questions for use in a survey, taking possible bias into account.
Statistical calculations	FIS3 FBS2 FSS2 FSS4 FGS2	Calculate the mean, median, mode and range of discrete data. Use and interpret the statistical measures: mode, median, mean and range for discrete and continuous data, including comparing distributions. Identify the modal class of grouped data. Calculate the mean of grouped discrete data. Design and use two-way tables for discrete and grouped data. Calculate the mean from grouped continuous data.

Statistics Topic Ref Subject content - Candidates should be able to... data	FIS4	Draw and interpret simple frequency tables, charts, pictograms and bar charts for discrete data. (Eg Use a tally chart to draw a bar chart.)
	FIS5	Extract and use information from common two-way tables including timetables. FBS3 Construct and interpret pie charts.
	FBS4	Interpret graphs representing real data, including recognising misleading diagrams. FSS3 Draw and interpret a wide range of graphs and diagrams for discrete and continuous data, including frequency polygons and stem and leaf diagrams. Compare distributions and make inferences, using the shapes of the distributions and measures of average and range.
	FGS3Draw and interpret scatter graphs for discrete and continuous variables, including using and understanding lines of best fit. Understand the vocabulary of correlation, including: positive, negative and zero correlation; weak, strong and moderate correlation. Look at data to find patterns and exceptions.	

Number Topic	Ref	Subject content - Candidates should be able to.".
Number operations	HBN5	Check solutions to calculations using various methods including approximating, using inverse operations and recognising the effect of multiplying and dividing by numbers less than one and greater than one. Estimate answers using appropriate techniques. Check the order of magnitude of compound calculations using estimation methods, without the use of a calculator. (Methods to include rounding numbers of any size to one significant figure and simplifying calculations using standard index form.) Use and understand the terms reciprocal, highest common factor, lowest common multiple, prime number. Find the prime factor decomposition of positive integers. Use a calculator to find the upper and lower bounds of calculations, particularly in the context of measurement.
Powers and roots	HBN6 HBN1	Use the index laws with numerical and algebraic expressions involving multiplication and division of positive integer powers. Use the terms cube root and negative square root. Use standard index form expressed in conventional notation and on a calculator display. Convert between ordinary and standard index form representations. Calculate with standard index form. Use the index laws with fractional, negative and zero powers in simplifying numerical and algebraic expressions. Use surds in exact calculations, without a calculator. Simplify expressions involving surds including rationalising a denominator.
Fractions	HGN1	HGN2
HIN1	Multiply and divide simple fractions (not mixed numbers). Add and subtract mixed numbers. Express one quantity as a fraction of another. Use the four operations on fractions, including mixed numbers.	

Number Topic	Ref	Subject content - Candidates should be able to...
Decimals	HIN4	Use the four operations on decimals without the use of a calculator.
	HBN3	Convert a simple fraction to a decimal using division. Use and understand terminating and recurring decimals including exact fraction equivalents. Convert a recurring decimal to a fraction and vice versa.
Percentages	HIN2 HIN3 HBN4	Express one quantity as a percentage of another. Increase and decrease quantities by a percentage. Use percentages to compare proportion. Use and find percentage change. Use a multiplier to solve percentage increase and decrease problems. (Eg Compound interest, population change, depreciation, etc.) Calculate the original amount when given the transformed amount after a percentage change.
Ratio and proportion	HSN1	Use ratio notation including reduction to its simplest form. Understand and use ratio and proportion, including dividing a quantity in a given ratio. Use repeated proportional or percentage changes. Represent repeated proportional change using a multiplier raised to a power.
Use of calculators	HIN6	Use a calculator effectively and efficiently, entering a range of measures including 'time', interpreting the display and rounding off a final answer to a reasonable degree of accuracy. (This includes using the memory and bracket keys, and function keys for squares and powers where appropriate.) Use calculators to explore exponential growth and decay.

Algebra Topic	Ref	Subject content - Candidates should be able to...
Use of symbols	HIA3 HSA2 HGA4	Manipulate algebraic expressions by multiplying a single term over a bracket and by taking out common factors. Manipulate algebraic expressions by expanding the product of two linear expressions, simplifying the result. Factorise quadratic expressions, including the difference of two squares. (Includes both the cases where $a=1$ and where $a \neq 1$). Simplify algebraic expressions by taking out common factors. Simplify rational expressions. Manipulate algebraic expressions including fractions and solve the related equations. (Also listed in Linear equations) Understand the difference between an equation and an identity.
Inequalities	HBA2 HSA6	Solve simple linear inequalities in one variable and represent the solution set on a number line, using the convention for distinguishing \leq and \geq from $<$ and $>$. For example, for these solution sets: Solve several linear inequalities in two variables and find the solution set, representing this on a suitable diagram. Shade such regions on a graph, using the convention for distinguishing \leq and \geq from <and $>$. (Where a line is included in the region, it will be solid; where it is not included, it will be dashed.)
Linear equations	HIA2 HSA1 HGA4	Set-up and solve linear equations with integer coefficients. This will include equations in which the unknown appears on both sides of the equation, or with brackets. Solve harder linear equations including those with fractional coefficients. Manipulate algebraic expressions including fractions and solve the related equations. (Also listed in Use of symbols)

Algebra Topic	Ref	Subject content - Candidates should be able to...
Formulae and expressions	HIA1 HBA3 HSA3	Use and generate formulae. Substitute positive and negative numbers into a formula or an expression. (Eg (1) $4 x-2$; (2) $3 x^{2}+4$; (3) $V=2 a^{3}$.) Change the subject of a formula in cases where the subject only appears once. Rearrange formulae, including cases where the subject appears twice, or where a power of the subject appears.
Numerical methods	HIA5	Use trial and improvement to find approximate solutions of equations where there is no simple analytical method of solving them. (Eg (1) $x^{3}-2 x=2$; (2) The positive solution of $x^{2}-4=\frac{1}{x}$; (3) I think of two numbers. They add together to equal 6. They multiply together to equal $8 \cdot 64$. Find the two numbers.)
Direct and inverse proportion	HGA1	Form and use equations involving direct or inverse proportion (for $y \propto x, y \propto x^{2}, y \propto \frac{1}{x}, y \propto \frac{1}{x^{2}}$).
Simultaneous linear equations	HSA4	Set up two linear simultaneous equations. Find the exact solution of two linear simultaneous equations in two unknowns by eliminating a variable; interpret the equations as lines and their common solution as the point of intersection. (Graphical solution of simultaneous equations is also included.)
Quadratic equations	HSA2 HGA2	Solve quadratic equations of the form $a x^{2}+b x+c=0$ by factorisation (includes both the cases where $a=1$ and where $a \neq 1$). Solve quadratic equations by completing the square and using the quadratic equation formula. (The quadratic equation formula is given on the formulae sheet.) The technique of completing the square may also be used to write quadratic expressions in the form $(x+a)^{2}+b$ and hence to find the minimum value of the expression and the value of x at which this occurs.)
Simultaneous linear and quadratic equations	HGA3	Solve exactly, by elimination of an unknown, two simultaneous equations in two unknowns, one of which is linear, the other equation quadratic in one unknown. Find the points of intersection of straight lines with quadratic curves, knowing that these are the approximate solutions of the corresponding simultaneous equations.

Algebra Topic	Ref	Subject content - Candidates should be able to...
Sequences	HBA1	Generate integer sequences using a rule for the nth term. Use linear expressions to describe the nth term of an arithmetic sequence.
Graphs of linear functions	HIA4 HBA4 HSA7	Use tables to plot graphs of linear functions given explicitly. Plot graphs of linear functions in which y is given explicitly or implicitly in terms of x. Find the gradient of linear graphs. Understand that the form $y=m x+c$ represents a straight line and that m is the gradient of the line and c is the value of the y-intercept. Write the equation of a straight line in the form $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$. Understand the gradients of parallel lines.
Interpreting graphical information	HBA5	Draw and interpret graphs modelling real situations, which may be non-linear, including simple quadratic graphs.
Quadratic functions	HBA6	Generate points and plot graphs of simple quadratic functions and use these to find approximate solutions of simple related equations. (Simple quadratic functions such as $y=3 x^{2}, y=x^{2}+5 x$. Simple equations such as solving (1) $x^{2}-3=0$ having drawn the graph of $y=x^{2}-3$; (2) $x^{2}+5 x=2$, having drawn the graph of $y=x^{2}+5 x$.)
Other functions	HSA5 HGA5	Plot, sketch and recognise graphs of quadratics, simple cubic functions, and reciprocal functions $y=\frac{k}{x}$ with $x \neq 0$, including graphs arising from real situations and their interpretation. (Eg (1) $y=2 x^{2}-6 x+3$; (2) $y=x^{3}-2 x$.) Draw, sketch and recognise the function $y=k^{x}$ for integer values of x and simple positive values of \boldsymbol{k}, the trigonometric functions $y=\sin x$ and $y=\cos x$ for any angle. (Trigonometric graphs may be used to find solutions of simple equations such as $\sin x=0.4$, within a given interval.)
Transformation of functions	HGA6	Apply to the graph of $y=f(x)$, for linear and quadratic $f(x)$, the transformations $y=f(x)+a, y=f(a x)$, $y=\mathrm{f}(x+a), y=a \mathrm{f}(x)$. (Notation such as $y=\mathrm{f}(x), y=\mathrm{f}(x-2), y=\mathrm{f}(x)+3$ may be used in questions.)
Graphs of loci	HSA6	Construct the graphs of simple loci.

Geometry and Measures Topic	Ref	Subject content - Candidates should be able to...
Angles	HIG1	Understand and use the angle properties of parallel and intersecting lines.
Properties of triangles and other rectilinear shapes	$\begin{aligned} & \text { HBG3 } \\ & \text { HSG5 } \\ & \text { HGG1 } \end{aligned}$	Calculate and use the sums of the interior and exterior angles of polygons, for both regular and irregular polygons. Understand similarity of triangles and other plane figures and use this to make geometrical inferences. Understand and use SSS, SAS, ASA and RHS condition to prove the congruence of triangles.
	HBG4 HSG3 HSG4 HGG2 HGG3	Understand, recall and use Pythagoras' theorem in 2-D contexts. Use Pythagoras' theorem to find the length of a line segment $A B$ given the points A and B in 2-D. Understand, recall and use trigonometrical ratios in right-angled triangles in 2-D. (Questions in context may include the use of bearings.) Use Pythagoras' theorem and trigonometrical relationships in 3-D contexts, including using 3-D coordinates and finding the angles between a line and a plane. Calculate the area of a triangle using $1 / 2 a b \sin C$. (Given on the formulae sheet.) Use the sine and cosine rules in 2-D and 3-D contexts. (Given on the formulae sheet.)
Properties of circles	HIG3 HSG1	Recall the meaning of chord, tangent, arc, sector and segment. Recall and use the formulae for the circumference and the area of a circle. (Candidates may be required to give answers in terms of π.) Understand and construct geometrical proofs using circle theorems: Understand that the tangent at any point on a circle is perpendicular to the radius at that point; understand that tangents from an external point are equal in length; understand that the angle subtended by an arc at the centre of the circle is twice the angle subtended at any point on the circumference; understand that the angle subtended at the circumference by a semicircle is a right angle; understand that angles in the same segment in a circle are equal; understand that opposite angles in a cyclic quadrilateral sum to 180°; understand the alternate segment theorem.
Properties of 3-D shapes	HIG5	Use 2-D representations of 3-D shapes, including plans and elevations.

Geometry and Measures Topic	Ref	Subject content - Candidates should be able to...
Mensuration	HIG4 HBG5 HGG4 HBG5	Recall and use the formula for the area of a parallelogram and a triangle. Use the formula for the area of a trapezium. (The formula for the area of a trapezium is given on the formulae sheet.) Calculate perimeters and areas of shapes made from triangles and rectangles. Find the surface area of simple solid shapes using the area formulae for triangles and rectangles. Calculate the surface area and volume of right prisms, including cylinders. (The generic formula for the volume of a prism is given on the formulae sheet.) Find the lengths of arcs, areas of sectors and segments of circles, and the surface areas and volumes of pyramids, cones and spheres; use pi in exact calculations. Solve mensuration problems involving more complex shapes and solids. (The formulae sheet includes: volume of a sphere and a cone, and the surface area of a cone. Examples of mensuration problems include: (1) Finding the area of an arched window; (2) Finding the volume of a frustum.) Convert between measures for area or for volume/capacity, for example between mm^{2} and cm^{2} or between cm^{3} and litres.
Maps, scales and bearings		No additional content at higher tier, but bearings may be used as a context for trigonometry.
Vectors	HGG5	Understand and use vector notation. Calculate, and represent graphically: the sum of two vectors, the difference of two vectors and a scalar multiple of a vector. Calculate the resultant of two vectors. Understand and use the commutative and associative properties of vector addition. Use vector methods in 2-D.
Measures	HBG1 HBG2	Recognise that a measurement given to the nearest whole unit may be inaccurate by up to one half of a unit in either direction. Understand and use rates and compound measures, for example speed, density, rate of flow.

Geometry and Measures Topic	Ref	Subject content - Candidates should be able to...
Constructions and loci	HIG2 HBG6	Construct triangles and other 2-D shapes using a ruler and a protractor, given information about their sides and angles. Use a straight edge and a pair of compasses to do constructions. Construct inscribed regular polygons. Construct nets of cubes, regular tetrahedra, square-based pyramids and other 3-D shapes. Construct loci to show paths and shapes. Use straight edge and a pair of compasses to produce standard constructions, including the midpoint and perpendicular bisector of a line segment and the bisector of an angle.
Symmetry, transformations and their properties	HIG6 HBG7 HBG8 HSG6 HSG7 HSG8	Transform triangles and other 2-D shapes by rotation, reflection, or translation using column vectors. Recognise and visualise rotations, reflections and translations. Understand the properties preserved by these transformations; understand the congruence of these transformations. Recognise, visualise and construct enlargements of objects using positive integer scale factors and a centre of enlargement. Identify the centre and the scale factor of an enlargement. Understand the implications of enlargement for perimeter/length. Transform 2-D shapes by simple combinations of transformations. Construct enlargements using any scale factor, including positive fractional and negative scale factors; identify scale factors. Understand and use the effect of enlargement on the area and volume of shapes and solids. Fully describe combinations of transformations (rotation, reflection, translation, enlargement) using a single transformation.
Coordinates	$\begin{aligned} & \text { HSG2 } \\ & \text { HSG3 } \end{aligned}$	Understand and use 3-D coordinates. Find the coordinates of the midpoint of a line segment $A B$ given points A and B in 2-D.

Statistics Topic	Ref	Subject content - Candidates should be able to...
Probability	HIS1	Identify different mutually exclusive outcomes and know that the sum of the probabilities of all these outcomes is 1.
	HBS1	Understand and use estimates of probability from theoretical models or relative frequency.
		Compare experimental data and theoretical probabilities.
		Understand that if an experiment is repeated, the outcomes may - and usually will - be different, and that increasing the sample size generally leads to better estimates of probability and population characteristics.
	HSS1	Use tree diagrams to represent outcomes of combined events, recognising when events are independent. Find probabilities using tree diagrams.
	HGS1	Know when to add or multiply probabilities: if A and B are mutually exclusive, then the probability of A or B occurring is $P(A)+P(B)$. If A and B are independent events, the probability of A and B occurring is $P(A) \times P(B)$. (Harder questions may include the use of conditional probabilities and/or more than two successive events.)
Collecting data	HIS5	Design and criticise questions for use in a survey, taking possible bias into account.
	HGS4	Select a representative sample from a population using random and stratified sampling. Criticise sampling methods.
Statistical calculations	HIS2	Identify the modal class of grouped data. Calculate the mean of grouped discrete data.
	HIS4	Design and use two-way tables for discrete and grouped data.
	HBS2	Calculate the mean from grouped continuous data.
	HSS4	Calculate an appropriate moving average.

Statistics Topic	Ref	Subject content - Candidates should be able to...
Representing data	HIS3	Draw and interpret a wide range of graphs and diagrams for discrete and continuous data, including frequency polygons and stem and leaf diagrams. Compare distributions and make inferences, using the shapes of the distributions and measures of average and range.
	HBS3	Draw and interpret scatter graphs for discrete and continuous variables, including using and understanding lines of best fit.
		Understand the vocabulary of correlation, including: positive, negative and zero correlation; weak, strong and moderate correlation.
		Look at data to find patterns and exceptions.
	HSS2	Draw and interpret cumulative frequency tables and diagrams and box plots for grouped data. Find the median, quartiles and interquartile range.
	HSS3	Compare distributions and make inferences, using the shapes of the distributions and measures of average and spread, including median and quartiles.
	HSS4	Identify seasonality and trends in time series, from tables or diagrams.
	HGS2	Draw and interpret histograms for grouped data. Understand frequency density.
	HGS3	Interpret and compare a wide range of data sets (including grouped discrete and continuous data) and draw conclusions.

We're developing a wide range of resources to ensure there is support for you at every stage of your preparation for the new GCSE Maths 2010 specifications. In developing the support, we are talking to teachers and other key stakeholders to make sure we are offering you the most practical help we can. Below, you will find a brief guide to the support that will be available for you.

- Specimen assessment materials

- Guide to curriculum planning for Maths
- Teacher's handbook
- Sample schemes of work and lesson plans
- Mock papers - only via Interchange
- Learner/Parent's Guide
- Dedicated problem solving guide
- Active Results
- Endorsed publisher materials

> OCR (ך HODDER

- Interchange
- INSET (free until December 2010)
- Continual Professional Development

Need more help?

Our aim is to assist you however we can.

As well as giving you a toolkit of support services and resources to pick and choose from, we're also here to help you with specialist advice, guidance and support for those times when you simply need a more individual service.

Here's how to contact us for specialist advice:
By phone: 03004563142
By email: maths@ocr.org.uk
By fax: 02476851633
By post: Customer Contact Centre, OCR, Progress House, Westwood Business Park, Coventry CV4 8JQ

IMPORTANT NOTICE

Please note this specification and the information contained in it was correct at the time of going to print.
The latest version will always be available on www.ocr.org.uk/maths/gcse2010

www.ocr.org.uk

OCR customer contact centre

GCSE Maths

Dedicated Maths Support Line 03004563142
Facsimile 02476851633
Email maths@ocr.org.uk

