GCSE

Mathematics B (Linear)

General Certificate of Secondary Education

Mark Scheme for June 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
$\stackrel{3}{ }$	Incorrect
BOD	Benefit of doubt
FT	Follow through
15w	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B, etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

1. $\quad \mathbf{M}$ marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage. SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ' $5^{2}+7^{2 \prime}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working after correct answer obtained and applies as a default.
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. In questions with no final answer line, make no deductions for wrong work after an acceptable answer (ie isw) unless the mark scheme says otherwise, indicated by the instruction 'mark final answer'.
7. In questions with a final answer line following working space,
(i) if the correct answer is seen in the body of working and the answer given on the answer line is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation \checkmark next to the correct answer.
(ii) if the correct answer is seen in the body of working but the answer line is blank, allow full marks. Place the annotation \checkmark next to the correct answer.
(iii) if the correct answer is seen in the body of working but a completely different answer is seen on the answer line, then accuracy marks for the answer are lost. Method marks could still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation x next to the wrong answer.
8. In questions with a final answer line:
(i) If one answer is provided on the answer line, mark the method that leads to that answer.
(ii) If more than one answer is provided on the answer line and there is a single method provided, award method marks only.
(iii) If more than one answer is provided on the answer line and there is more than one method provided, award zero marks for the question unless the candidate has clearly indicated which method is to be marked.
9. In questions with no final answer line:
(i) If a single response is provided, mark as usual.
(ii) If more than one response is provided, award zero marks for the question unless the candidate has clearly indicated which response is to be marked.
10. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for A and B marks. Deduct 1 mark from any A or B marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
11. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
12. Ranges of answers given in the mark scheme are always inclusive.
13. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
14. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct

Question		Answer	Marks	Part Marks and Guidance	
1	(a)	ruled line $A C=6 \mathrm{~cm}$ and ruled line $C B=$ 9 cm joined to form the correct triangle	2	allow $\pm 2 \mathrm{~mm}$ for lines M1 for one correct line SC1 for correct triangle AC 9cm and BC 6 cm	lines must meet, allow 2mm gap and take this point as C , use the ruler centred on C to check the lengths 6 cm from A or 9 cm from B Condone reflection in line $A B$
	(b)	correct pentagon with ruled lines	2	allow angle at centre to be $72^{\circ} \pm 3^{\circ}$ M1 for 72 seen or any pentagon drawn on or inside the circle, condone freehand lines	for 2 marks, condone lines just missing a point (intention to join)
2		8.5	3	M1 for 11284 - 10400 implied by 884 M1 for their ' 884 ' $\div 10400$ [$\times 100$] or 0.085 alternative method M2 for $11284 \div 10400$ implied by 1.085 or 108.5	allow trial and improvement with M1 for each of two trials, correct answer scores 3 marks even without trials.
3	(a)	$-2.5,-\frac{5}{2} \mathbf{o e}$	3	M1 for $7 x-3 x+6=-4$ (dealing with x, condone $=4$) or better M1 for $7 x=3 x-4-6$ (dealing with numbers) or better M1 for $x=b / a$ after $a x=b, a \neq 1$ (maximum of M2 awarded)	these must be equations and accept embedded answer unless contradicted
	(b)	$[W=] \frac{T+8}{5} \text { oe }$	2	M1 for as answer $\frac{T-8}{5}$ or $\frac{T}{5}+8$ or $\frac{-T-8}{5}$ or $T+8 / 5$ or first step correct eg $T+8=5 W$ oe	

| Question | | Answer | Marks | Part Marks and Guidance | |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| $\mathbf{8}$ | (a) | 0.22 oe | | M1 for $1-0.42-0.25-0.11$ oe | $\begin{array}{l}\text { in (a), (b) and (c) accept } \\ \text { percentages providing } \% \text { seen eg } \\ 22 \% \\ 0.22 / 1 \text { etc }\end{array}$ |
| | (b) | | 0.67 oe and also BOD | | |$]$

Question		Answer	Marks	Guidance
$\mathbf{1 0} \mathbf{(a)}^{*}$		The response "No" supported by a fully correct calculation of the cost of the holiday. The figure 1895.2[0] is obtained from 980×2 + 50×2 [=2060]. The 8\% reduction is made. Clear annotation and explanation of reasoning. Correct spelling, punctuation and grammar. Alternatives include fully correct numerical solution but no summary or no clear reasoning. It could be one error in working out the total cost followed by a correct response (yes or no) from their answer or evidence of correct working of four of the lines below (FT incorrect reading from table).	$4-3$	Three correct lines of working from the method such as the figure 980 selected, doubled and the 8\% discount applied correctly to it or the correct answer with incomplete working. liwo correct lines of working from the method such as the

Example method;
980
$980+50$ (=1030)
1030×0.92 oe $(=947.6[0])$
947.6×2 (=1895.2[0])
No [since 1895.2 > 1850]

Question		Answer	Marks	Part Marks and Guidance	
10	(b)	1550	3	M2 for $1643 \div 1.06$ oe could be implied by figs 155 or B1 for 106 or 1.06 seen	allow trial and improvement with M1 for each of two correct trials
11		$(x=) 6$ $(y=)^{-2}$ with supporting algebraic working	4	this is one example: M2 for \times eq 1 by 4 and for \times eq 2 by 3,or any pair of numbers which will eliminate a variable, allowing 1 error in each or M1 for one equation multiplied with at most one error M1FT for adding or subtracting as appropriate to eliminate one variable, allow 1 error A1 $(x=) 6 \quad(y=)-2$ if 0 scored allow SC1 for the correct answers seen	accept any correct method eg \times eq 1 by 3 and \times eq 2 by 5 and subtract or use of substitution: M1 for rearranging one equation eg $y=(24-5 x) \div 3$ allow one error M1FT for correct substitution into the other equation eg $3 x-4\{(24-$ $5 x) \div 3\}=26$ M1FT for rearranging to separating the variable and numbers eg $29 x=$ 174
12		Indicates AEC or 302.[11...] as the shortest distance with both correctly calculated	5	```B2 for \(\mathrm{AEC}=\sqrt{160^{2}+175^{2}}+65\) or 302.[11...] or M1 for \(A E=\sqrt{160^{2}+175^{2}}\) implied by 237.[11...] and B2 for AFC \(=\sqrt{240^{2}+110^{2}}+50\) or 314.[00...] or M1 for \(\mathrm{AF}=\sqrt{240^{2}+110^{2}}\) or 264.[00...] if \(\mathbf{0}\) scored then \(\mathbf{S C} \mathbf{1}\) for any 2D Pythagorean statement eg \(x^{2}=240^{2} \pm\) \(160^{2}\)```	accept any correct method

Question			Answer	Marks	Part Marks and Guidance	
13	(a)		288	3	B2 for 288000 or M1 for $60 \times 60 \times 80$ implied by figs 288 and M1 their ' $60 \times 60 \times 80$ ' $\div 1000$	
	(b)		960	2	B1 for 2^{3} or 8 seen	
	(c)		86 or 87 or 86.5[34...]	3	B1 for $\sqrt[3]{3}$ or $1.44[22 \ldots]$ soi M1 for attempt to multiply any side by $\sqrt[3]{3}$ or SC2 for 64.901... or 79.323... as the answer rot to at least 3 sf	
14	(a)	(i)	336.5	2	$\begin{aligned} & \text { M1 for }(928+286+4+128) \div 4 \text { or } \\ & 344+(128-158) \div 4 \end{aligned}$ or B1 for 336 or 337 as answer	
		(ii)	(a)(i) correctly plotted	1	correct or FT their (a)(i) tolerance: it must be in or on the boundary of the correct square	

Question			Answer	Marks	Part Marks and Guidance	
	(b)	(i)	Two relevant comments eg the greatest rainfall is in the first quarter, the least rainfall is in the third quarter	1 1	Mark the best comment and accept any correct statements for the variation amongst the quarters/seasons	condone winter for quarter 1 , spring for quarter 2 , summer for quarter 3 , etc and mark best comment
		(ii)	the rainfall falls steadily/slightly over the three years	1	accept any correct statement for the general pattern in the moving averages	mark best comment
	(c)		902	2	M1 for 330 $\times 4-286-4-128$ or $\frac{x+286+4+128}{4}=330$ oe	
15			$3.49[05 \ldots$..] or 3.5 or 3.491	3	M2 for $5.8 \times \sin 37$ or any complete correct method or M1 for $\sin 37=\frac{A B}{5.8}$ or $\cos 53=\frac{A B}{5.8}$ or $\frac{A B}{\sin 37}=\frac{5.8}{\sin 90}$ etc	accept explicit use of sine rule or 53° etc
16	(a)		4.705	1	condone 4.70499...	
	(b)		11.49[0]	2	B1 for 6.785 or $6.78499 .$. seen	condone 11.4899... for 2 marks
	(c)		2.07[00...]	2	B1 for 4.705 or 4.70499... or 6.775 seen in this part	nfww
17	(a)		1-0.05 oe	1	accept any correct explanation which involves, or implies, subtraction from 1 or 100\%	
	(b)		12349[.54...] or 12349.6 or 12350	1		

Question		Answer	Marks M2	Part Marks and Guidance				
	(c)			M1 for one correct attempt beyond				
		Two correct attempts$2024 \text { or } 2025$	B1	2010 rot to at least 2sf if $\mathbf{0}$ then SC1 for correct answer and no correct working rot to at least 2sf means eg 7783.293 accept $7700,7800,7780,7783$, 7783.2, 7783.3 and condone 7790, 7784 , etc	10(0)	16800	18	11145.46
					11(1)	15960	19	10588.19
					12(2)	15162	20	10058.78
					13(3)	14403.9	21	9555.842
					14(4)	13683.71	22	9078.049
					15(5)	12999.52	23	8624.147
					16	12349.54	24	8192.94
					17	11732.07	25	7783.293
18		$-1.85,0.18$	3	M2 for $\frac{-5 \pm \sqrt{5^{2}-4 \times 3 \times-1}}{2 \times 3}$ or $\frac{-5 \pm \sqrt{37}}{2 \times 3}$ (allow one error) or one correct solution or both solutions to more than 2 dp or M1 for the formula with two errors or -1.8 and 0.2 as answers with no working	Eg fuller solutions are $-1.847127 \ldots$, 0.1804604...			
19	(a)	$y=x^{2}-1$ oe	1					
	(b)	$y=(x-4)^{2}$ oe	1					
20	(a)	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~F} \end{aligned}$	1					
	(b)	$\begin{aligned} & 32 \\ & 148 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	if $\mathbf{0}$ scored SC1 for both angles adding to 180 or 32,148 together with any other angle(s) within range	ignore units and ignore angles outside the given range condone an embedded answer or condone 32 seen			

APPENDIX 1

Exemplar responses for question 14(b)(i)

Response	Mark awarded
the greatest rainfall is in the first quarter	$\mathbf{1}$
the rainfall is high in quarters 1 and 2	$\mathbf{1}$
the first season shows high rainfall	$\mathbf{1}$
The rainfall rises from autumn to winter	$\mathbf{1}$
In the first quarter there is always more than 900 mm	$\mathbf{1}$
From quarter 1 to quarter 4 it continues to rain less where there is a small increase on quarter 3	
Until the 3 $3^{\text {rd }}$ quarter rainfall falls rapidly	$\mathbf{1}$
Rainfall rises from 3 ${ }^{\text {rd }}$ to $4^{\text {h }}$ quarter or Rainfall rises from 3 $3^{\text {rd }}$ quarter	$\mathbf{1}$
the least rainfall is in the third quarter	$\mathbf{1}$
the rainfall is low in quarters 3 and 4	$\mathbf{1}$
it drops in the third season	$\mathbf{1}$
In the third quarter there is always less than 15mm	$\mathbf{1}$
There is always more rainfall in winter than summer	$\mathbf{1}$
There is less amounts of rainfall each year	$\mathbf{1}$
There is less rain in summer	$\mathbf{1}$
The rainfall decreases in the last two seasons of each year	$\mathbf{1}$
Every season there is a large peak	$\mathbf{0}$
It begins to lower towards the 4 ${ }^{\text {th }}$ quarter	$\mathbf{0}$
In the spring the rain is heavy and then decreases to autumn	$\mathbf{0}$

Exemplar responses for question 14(b)(ii)

Response	Mark awarded
Rainfall slightly dropping in all quarters in 2012 compared to previous years	
The trend slightly increases and then decreases	$\mathbf{1}$
the rainfall drops over the three years	$\mathbf{1}$
starts off high before falling twice then increasing again	$\mathbf{1}$
no sudden increases or decreases	$\mathbf{1}$
Any comment only comparing quarters	$\mathbf{1 ~ B O D}$
highest in first quarter	$\mathbf{0}$

Exemplar responses for question 17(a)

Response	Mark awarded
subtract 0.05 from 1	$\mathbf{1}$
$100-5$	$\mathbf{1}$
take 5% away from 1	$\mathbf{1}$
As to find 5% less of the population you take 0.05 which is 5% as a decimal away from 1 which is 100% to find the rate of decrease in population	$\mathbf{1}$
95% is a decrease of 5% (100\% implied)	$\mathbf{1}$
Because the population is decreasing by 5% each year so you times 16800 by 0.95 to get 95% of the original value	$\mathbf{1}$
5% less than the original amount (not enough for 1 or 100)	$\mathbf{0}$
Because 0.95 is the 5%	$\mathbf{0}$
Because its 5% less	$\mathbf{0}$
Because it represents the number of birds decreasing every year	$\mathbf{0}$
is the percentage left after 5\%	$\mathbf{0}$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

