GCSE

Mathematics B

Mark Scheme for November 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
\mathbf{x}	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

These should be used whenever appropriate during your marking.
The M, A, B, etc annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate these scripts to show how the marks have been awarded.
It is not mandatory to use annotations for any other marking, though you may wish to use them in some circumstances.

Subject-Specific Marking Instructions

1. \mathbf{M} marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding M (method) marks. Therefore M0 A1 cannot be awarded.
\mathbf{B} marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage. SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times\left(\right.$ their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their ' $5^{2}+7^{2}$). Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working after correct answer obtained and applies as a default.
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated.
- \quad seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. In questions with no final answer line, make no deductions for wrong work after an acceptable answer (ie isw) unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. In questions with a final answer line following working space,
(i) if the correct answer is seen in the body of working and the answer given on the answer line is a clear transcription error allow full marks unless the mark scheme says 'mark final answer'. Place the annotation \checkmark next to the correct answer.
(ii) if the correct answer is seen in the body of working but the answer line is blank, allow full marks. Place the annotation \checkmark next to the correct answer.
(iii) if the correct answer is seen in the body of working but a completely different answer is seen on the answer line, then accuracy marks for the answer are lost. Method marks could still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation x next to the wrong answer.
8. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
9. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. M marks are not deducted for misreads.
10. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

Question		Answer	Marks	Part Marks and Guidance	
1	(a)	$\begin{array}{llllllll} 16 & 1 & 1 & 3 & 7 & 9 & & \\ 17 & 0 & 0 & 1 & 2 & 6 & 7 & 9 \\ 18 & 0 & 4 & 5 & 5 & 8 & & \\ 19 & 1 & 3 & & & & & \end{array}$	3	M2 for correct ordered diagram with one error or omission OR M1 for correct ordered diagram with at most three errors or omissions or correct unordered diagram	161 etc counts as one error
	(b)	176	1		
2	(a)	7134 or 7130	2	M1 for $\frac{1}{2} \times 164 \times 87$ or 82×87	May be done in stages
	(b)	281.6 or 282	2	M1 for $\frac{1}{2}(14.8+20.4) \times 16$	May be done in stages
3	(a)	$6 n-2$ oe final answer	2	B1 for $6 n$ seen eg 6($n-1$)	Equivalents include 6($n-1$) +4 Condone other letters and $n 6$ and $n \times 6$ for $6 n$
	(b)	118	1	Correct or FT their linear expression in (a)	
4		3 nfww	4	M1 for $6 \div(1+3)$ or can be implied by 1.5 or 1500 M1 for their ' 1.5 ' $\times 3$ or 4.5 or 4500 seen M1 for their ' 4.5 ' - their ' 1.5 ' can be implied	6 l could be 6000 (ml) accept any correct method Allow 3000 ml as answer

Question			Answer	Marks	Part Marks and Guidance	
8	(a)		0.14 oe	2	M1 for $1-(0.38+0.17+0.31)$ implied by 14 and [0]. 14	0.24 is BOD for M1
	(b)		2.48[...] or 2.5	3	M1 for attempt at $\Sigma p f$ or 278 soi by eg 3 of these $26,76,72,64,40$ with an attempt to add or answer of 238.3[5...] M1dep for their ' 278 ' \div (their ' Σf^{\prime} or 112)	Look for the correct answer in working if the answer has been rounded too much Σf implied by a number at the base of the frequency column, not 5 or 15
	(c)	(i)	stopped	1	Accept any comment that implies a stop	
		(ii)	EF or return journey or 1300 to 1400	1		
	(d)		50 nfww or 49.99[9...]	2	M1 for either 885 or 835 seen	Condone 884.99[9...]

\left.| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- |
| 9* figs 60 | | | | |$\right]$| Calculation : |
| :--- |

Question			Answer	Marks	Part Marks and Guidance	
11	(a)		68	1		
	(b)		correct ruled line from $x=0$ to $x=3$	2	B1 for three points correctly plotted FT their table	Tolerance $\pm 1 \mathrm{~mm}$ by eye ie centre of cross within 'circle'
	(c)		2	1	Correct or FT their ruled line Condone $(2,10)$	Be generous in tolerance
12	(a)		(5.5, 8) nfww	2	B1 for either ordinate correct or for a clear attempt to add together two ordinates and divide by 2 or any other correct method	Accept fractional equivalents for 5.5
	(b)		9.4[3...] or 9 with supportive working	3	M2 for $\sqrt{(8-3)^{2}+(12-4)^{2}}$ or better OR M1 for 8 - 3 and $12-4$ or 5 and 8 marked on a diagram as lengths or for a correct Pythagorean statement using their figures eg $5^{2}+8^{2}$.	$\pm 9.4[3 \ldots]$ or $\sqrt{89}$ scores M2
13	(a)	(i)	-18	1		
		(ii)	45	1		
	(b)		1.6 oe	2	M1 for $11-3=5 x$ oe or for $x=a \div 5$ after $5 x=a$ if M0 then SC1 for answer ${ }^{-1.6}$ or correct embedded solution	$\text { eg accept } \frac{8}{5}$
	(c)		$(n=) 2 T+5$ final answer	2	M1 for $2 T=n-5$ or an answer of $2 T-5$ or $2(T+5)$ oe or $\frac{T}{2}+5$	Allow $2 \times T$ and $T 2$ for $2 T$ and t for T

Question		Answer	Marks	Part Marks and Guidance	
14	(a)	18471.79 or $18471.8[0]$ or 18472	3	M2 for $16800 \times(1.024)^{4}$ oe or 18471 [.795...] or implied by 1671.79 or 1671.[80] OR M1 for 16800×1.024 or 17 203.2[0]	Simple interest is 1612.8[0] and total 18412.8[0] scores 0
	(b)	1.2×10^{13} or ${ }^{-1.2 \times 10^{13}}$	3	M2 for 1.202×10^{13} or 12000000000000 oe OR M1 for $1.42 \times 10^{13}-2.18 \times 10^{12}$ oe or 12020000000000 oe or figs 12[02] AND B1 for their standard form answer rounded to 2sf	Accept numbers subtracted in either order You must see both the unrounded and rounded numbers

Question			Answer	Marks	Part Marks and Guidance	
15	(a)		$(x+10)(x-3)$	2	M1 for $(x \pm 10)(x \pm 3)$ or two factors that have two terms correct eg $(x+5)(x-6)$	Condone missing final bracket and $1 x$
	(b)	(i)	$x(y+2)$	1		Condone missing final bracket
		(ii)	$(x=) \frac{3 y+15}{y+2}$ oe	3	M1 for $x y+2 x=3 y+15$ and M1FT for $x(y+2)=3 y+15$ or their $(\mathrm{b})(\mathrm{i})=3 y+15$ or $x(y-2)=3 y+15$ better or SC2 for $\frac{3 y+15}{y-2}$	Ignore attempts to simplify a correct answer
	(c)		$(x=)^{-5} \quad(y=) 3$ with correct supporting algebraic working	4	M1 for \times eq 1 by eg 2, allow 1 error M1 for \times eq 2 by eg 3 , allow 1 error (or M2 if they multiply one equation) M1 for eg subtract, allow 1 error A1 for $(x=)^{-5} \quad(y=) 3$ If no correct working seen allow SC1 for the correct answers seen Accept any correct method eg \times eq 1 by 5 and \times eq 2 by 2 and add or substitution	Must get equal coefficients of x or y, mark best effort Substitution: M1 for rearranging one equation to make x or y the subject allowing one error M1 for correct substitution into the other equation M1 for rearranging their equation to $a x=b$ allowing one error

Question		Answer	Marks	Part Marks and Guidance	
16	(a)	$\frac{4}{10}$ oe on first branch and $\frac{5}{9}$ and $\frac{4}{9}$ after 'Girl' and $\frac{6}{9}$ and $\frac{3}{9}$ after 'Boy'	2	B1 for $\frac{4}{10}$ on first branch or one correct pair on the second branch	all probabilities are oe
	(b)	$\frac{48}{90} \text { oe or } 0.53[3 \ldots]$	3FT	FT their tree, providing branches have probabilities clearly written ($\neq 0.5$) M2 for $\frac{6}{10} \times \frac{4}{9}+\frac{4}{10} \times \frac{6}{9}$ Allow decimal equivalents such as 0.44 for $\frac{4}{9}$ (at least two dp rot) OR M1 for both branches identified or for one branch calculation seen eg $\frac{6}{10} \times \frac{4}{9}$	Equivalents include $\frac{24}{45}$ and $\frac{8}{15}$ and 53[.3....]\%. Replacement answer would be $\frac{48}{100}$ oe Ignore subsequent simplification of their correct answer
17	(a)	6.9	1	allow 6.9 billion or 6900000000	
	(b)	1.2 oe	1		
	(c)	2017 with at least one correct attempt or 2016 with correct attempts at years 2016 and 2017	3	M1 for one correct attempt beyond 2010, results rot correct to 2 sf or better M1 for a second correct attempt nearer(years) to the solution OR B2 for ($n=$) 7 with at least one correct attempt OR B1 for 2017 and no correct working	$(n=1) 2011$ $6.98(.)$. $(n=2) 2012$ $7.06(.)$. $(n=3) 2013$ $7.15(.)$. $(n=4) 2014$ $7.23(.)$. $(n=5) 2015$ $7.32(.)$. $(n=6) 2016$ $7.41(.)$. $(n=7) 2017$ $7.50(.)$.

Question		Answer	Marks	Part Marks and Guidance	
18	(a)	122[.02...] or 122.03	2	$\begin{aligned} & \text { M1 for } \\ & (189+91+88+112+90+110+174) \\ & \div 7 \\ & \text { oe eg } 120.6+\frac{174-164}{7} \end{aligned}$	Condone missing brackets
	(b)	196	3	$\begin{aligned} & \text { M2 for } 123 \times 7- \\ & (91+88+112+90+110+174) \text { oe } \\ & \text { OR } \\ & \text { M1 for } 123 \times 7 \text { or } \\ & (91+88+112+90+110+174) \text { oe } \end{aligned}$	$\text { eg } 189+7 \times(123-\text { their }(\mathrm{a}))$ M1 for $7 \times(123$ - their (a)) Watch out for 195 or 195.8
19	(a)	$(x-3)^{2}-7$ final answer	3	$\begin{aligned} & \text { B1 for }(x-3)^{2} \\ & \text { B2FT for }-7 \text {, FT their }-3 \text { ' eg }(x-6)^{2}- \\ & 34 \end{aligned}$	
	(b)	7	1	Correct or FT their '+ b'	
20	(a)	$(c=)^{-5}$	1	Condone correct vector	
	(b)	$(d=)^{-1}$	1	Condone correct vector	
21	(a)	$\begin{aligned} & 11.5[\ldots] \text { or } 12 \\ & \text { and } \\ & 168.4[\ldots] \text { or } 168.5 \text { or } 168 \end{aligned}$	$\begin{gathered} 1 \\ 2 F T \end{gathered}$	FT 180 - their ' 11.5 ' If $\mathbf{0}$ scored $\mathbf{M 1}$ for 180 - their ' 11.5 ' seen	rads $0.20[1 \ldots$] and 2.9[4...] grads 12.8[...] and 187[.] score B1 B1

Questi	Answer	Marks	Part Marks and Guidance	
(b)	$27.9[\ldots]$ or 28 with correct supporting trig working	4	M1 for $\sin \mathrm{CAB}=\frac{38.6+66.8}{164}$ or (0.642[..]) M1 for the sight of valid inverse trig function (39.99[..]) M1 for their '39.99[..]' - 12 OR M1 for $\frac{\sin C D A}{164}=\frac{\sin 12}{38.6}$ M1 for sight of valid inverse trig function eg \sin CDA $=0.8833$ then CDA $=117.95$ M1 117.95-90 (answer 27.95) OR M1 $\sqrt{164^{2}-105.4^{2}}(=125.6456)$ M1 $\tan x=\frac{66.8}{\text { their '125.64' }}$ M1 for the sight of valid inverse trig function OR M1 for finding $A B$ then $A D$ $\mathbf{M 1}$ for $\sin x=\frac{66.8}{\text { their } \mathrm{AD}}$ M1 for the sight of valid inverse trig function OR M1 for correct sight of sin rule in any triangle A1 for angle ADC (=117.9[...]) M1 for ADC - 90 OR SC2 for unsupported answer of 28 Scale drawing scores 0 marks	Use of 105 can score max M3 In any method accept any correct trig working Answer in radians ${ }^{-11.3 \text { (from }}$ angle $C A B=0.697-12)$ in grads 32.4[...] (from 44.4[...] 12) can score all the \mathbf{M} marks so max 3 Note: in some other methods use of rads leads to math error in calculator If their method has an error in eg treating triangle ADC as a rightangled triangle then the max marks they can get is 2 marks.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

