SPECIMEN

RECOGNISING ACHIEVEMENT

GENERAL CERTIFICATE OF SECONDARY EDUCATION
MATHEMATICS A
Higher Paper 3

SPECIMEN

Candidates answer on the question paper.
Additional Materials:
Geometrical instruments
Tracing paper (optional)
\square
Candidate
Name

Centre
Number

Candidate Number

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers on the dotted lines unless the question says otherwise.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- There is a space after most questions. Use it to do your working. In many questions marks will be given for a correct method even if the answer is incorrect.
- Do not write in the bar code.
- Do not write outside the box bordering each page.
- WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 100 .

WARNING

You are not allowed to use a calculator in this paper.

For Examiner's Use	
Total	

This document consists of $\mathbf{2 4}$ printed pages and $\mathbf{1}$ blank page.

FORMULAE SHEET

Volume of prism = (area of cross-section) x length

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=1 / 2 a b \sin C$

Volume of sphere $=4 / 3 \pi r^{3}$

Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=1 / 3 \pi r^{2} h$

Curved surface area of cone $=\pi r l$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

1 A gardener records the rainfall in the growing season and the weight of apples that his trees produce each year. The scatter diagram shows his results for six years.

The information for two more years is given.

Rainfall (cm)	52	86
Weight of apples (kg)	60	88

(a) Add this information to the diagram.
(b) (i) Draw a line of best fit on the diagram.
(ii) Describe the correlation.
(b)(ii)
(c) (i) In another year, 64 cm of rain fell in the growing season.

Estimate the weight of apples produced that year.
(c)(i)
(ii) Another year the trees produced 80 kg of apples.

Estimate the rainfall in that growing season.
(ii)
cm[1]

2 (a) Calculate the area of this triangle.

(a)
cm^{2} [1]
(b) The triangle is the cross-section of a prism of length 10 cm .

Calculate the volume of the prism.
Give the units of your answer.
(b)

3 Calculate.
(a) $\frac{3}{5}-\frac{1}{4}$
\qquad
(b) $\frac{3}{5}+\frac{1}{2}$
(b)

4

(a) Enlarge triangle T by scale factor 3 , centre the origin.

Label the image A.
(b) Reflect triangle T in the line $x=4$.

Label the image B.

5 (a) Some of the probabilities of obtaining the numbers on a biased, 6 -sided die are shown in the table below.

Number	1	2	3	4	5	6
Probability	0.25	0.1	0.1		0.1	0.25

(i) Work out the probability of obtaining a 4.
(a)(i)
(ii) Work out the probability of obtaining a 5 or a 6 when this die is thrown.
(ii)
(b) A bag contains red counters, blue counters and green counters.

The table shows the probability of each colour counter being taken at random from the bag.

Colour	red	blue	green
Probability	0.2	0.25	0.55

Tom thinks that there are 10 red counters in the bag. He is wrong.
Explain, using calculations, why he is wrong.
\qquad
\qquad
\qquad

6 James grows sunflowers.
He measures the height in centimetres of 18 sunflowers.
Here are the measurements.

149	169	154	156	161	153
166	172	163	167	173	175
159	170	164	158	168	167

(a) Show this information in an ordered stem and leaf diagram.

Key $14 \mid 9$ represents 149 cm.
(b) Use your stem and leaf diagram to find the median.

Explain how you found your answer.

Median \qquad because \qquad
\qquad
\qquad
\qquad

7 Draw the graph of $y=2 x-1$.

8 Helen took six maths tests.
Her marks in the first four tests were $4,6,7$ and 8.
When she had completed the six tests the mode of her marks was 8 and the mean of her marks was 7.
(a) Find her marks in the other two tests.
(a) \qquad and
(b) What is the range of her marks?
(b)

9 Rachael bought a tray of 60 plants.
The 60 plants each produced flowers of a single colour.
The plants produced red flowers, white flowers and blue flowers in the ratio $2: 3: 5$.

How many plants produced white flowers?

1020 can be expressed as a product of prime factors as

$$
20=2^{2} \times 5
$$

(a) Write 72 as a product of prime factors.
(a)
(b) What is the highest common factor (HCF) of 20 and 72 ?
(b)
(c) What is the lowest common multiple (LCM) of 20 and 72?
(c)

11 (a) Solve.

$$
7 x-1<20
$$

(a)
(b) In each part, give one example to show that the statement is false.

You must show your working.
(i) For every non-zero number y, $2 y>y$.
(ii) For every non-zero number x, $x^{2}>x$.
\qquad

12 The diagram shows a pentagon.
The length of each side is marked on the diagram.

NOT TO SCALE

The perimeter of the pentagon is 40 cm .
(a) Show that $9 x+4=40$
(b) (i) Solve.

$$
9 x+4=40
$$

(b)(i)
(ii) Find the length of the longest side of the pentagon.
(ii)

13 (a) Rearrange this formula to make x the subject.

$$
y=\frac{x^{2}}{5}
$$

(a)
(b) Solve algebraically these simultaneous equations.

$$
\begin{aligned}
& 2 x-3 y=7 \\
& 8 x+y=2
\end{aligned}
$$

(b) $x=$.
$y=$
[3]

14 The diagram shows the graph of $y=5-x^{2}$.

(a) Use the graph to solve the equation $5-x^{2}=0$.
(a)
(b) By drawing a straight line on the graph, solve the equation $5-x^{2}=x$.
(b)

15 JKL and MNL are similar triangles.
M lies on JL and N lies on KL.
MN is parallel to JK .
$\mathrm{JK}=5 \mathrm{~cm}, \mathrm{MN}=4 \mathrm{~cm}, \mathrm{NL}=10 \mathrm{~cm}$.

(a) Find length KN.
(a)
(b) Write down the ratio

Area of triangle MNL : Area of triangle JKL
(b)

16 A is the point $(3,3)$.
B is the point $(15,8)$.

(a) Write down the coordinates of the midpoint of $A B$.
(a)
(b) Calculate the length $A B$.
(b)
$17 y$ is proportional to x^{2} when $y=18$ and $x=3$.
Find an equation for y in terms of x.
$18 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$ and D are points on the circumference of a circle.
AC and BD intersect at E .
Angle ABD $=43^{\circ}$ and angle $\mathrm{BAC}=32^{\circ}$.

NOT TO SCALE

(a) Find the size of angle ACD.

Give a reason for your answer.
Angle ACD = \qquad - Reason \qquad
(b) Explain how you know that E is not the centre of the circle.
\qquad
\qquad
\qquad

19 (a) Evaluate.

$$
4^{0.5} \times 2^{-2}
$$

(a)
(b) Show that $(\sqrt{3}+\sqrt{12})^{2}=27$
(b)

20 Jerome records the time it takes a snail to cross a step.
He finds that the snail travels a distance of 140 mm , correct to the nearest 10 mm , in a time of 3 minutes, correct to the nearest minute.
Calculate the maximum possible average speed, in mm per minute, of the snail.
$21 O A B$ is a triangle.
P is the midpoint of $A B$.

$$
\overrightarrow{O A}=\mathbf{a} \quad \overrightarrow{O P}=\mathbf{p}
$$

Find the following vectors in terms of \mathbf{a} and \mathbf{p}.
(a) $\overrightarrow{\mathrm{AP}}$
(a)
(b) $\overrightarrow{\mathrm{OB}}$
(b)

22 Solve.

$$
\frac{3}{x+3}+\frac{2}{3 x-1}=1
$$

BLANK PAGE

OXFORD CAMBRIDGE AND RSA EXAMINATIONS GENERAL CERTIFICATE OF SECONDARY EDUCATION
MATHEMATICS A J512/3

Higher Paper 3
Specimen Mark Scheme

The maximum mark for this paper is 100 .

1 (a) (b) (i) (ii) (c) (i) (ii)	Two correct plots Line of best fit for $45<x<80$ and +ve gradient Positive \checkmark from graph \checkmark from graph	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	5	$\pm 1 \mathrm{~mm}$ Ruled with no more than 1 point on either side than the other Ignore qualifiers $\begin{aligned} & \pm 1 \mathrm{~mm} \\ & \pm 1 \mathrm{~mm} \end{aligned}$
2 (a) (b)	$\begin{aligned} & 6 \\ & 60 \text { or (their } 6) \times 10 \\ & \mathrm{~cm}^{3} \end{aligned}$	$\begin{array}{\|c} \mathrm{B} 1 \\ \mathrm{~B} 1 \sqrt{ } \\ \mathrm{U} 1 \end{array}$	3	
3 (a) (b)	$\begin{aligned} & \frac{7}{20} \\ & 1 \frac{1}{10} \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \end{aligned}$	4	M1 for $\frac{12}{20}$ or $\frac{5}{20}$ seen M1 for $\frac{6}{10}$ or $\frac{5}{10}$ seen
4 (a) (b)	Correct enlargement Correct reflection	B3 B1	4	B2 for two vertices correct or any enlargement s.f. 3 or SC1 for any enlargement centre O
5 (a) (i) (ii) (b)	$\begin{aligned} & 0.2 \text { oe } \\ & 0.35 \text { oe } \\ & \text { total of } 50 \\ & 0.25 \times 50 \text { oe } \\ & =12.5 \& \text { can't have half a counter } \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	6	M1 for 1-(0.25+....) soi by 0.47
6 (a) (b)	$\begin{aligned} & 149 \\ & 1534689 \\ & 1613467789 \\ & 170235 \\ & 165 \\ & \text { between } 9^{\text {th }} \text { and } 10^{\text {th }} \text { values } \end{aligned}$	$\begin{gathered} \text { B3 } \\ \\ \text { B1 } \\ \text { R1 } \\ \hline \end{gathered}$	5	B2 for one error or omission or B1 for two errors or omissions
7	Straight line with +ve grad. or -ve intercept Ruled through $(0,-1)$ for $-1 \leq x$ ≤ 2 Ruled with gradient 2 for $-1 \leq x \leq 2$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	3	

8 (a) (b)	8 uses total of marks 9 5 or their max. value - 4	$\begin{array}{\|c} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \sqrt{ } \end{array}$	4	
9	$\begin{aligned} & 60 \div(2+3+5) \\ & \text { multiply by } 3 \\ & 18 \end{aligned}$	M1 DM1 A1	3	
$\begin{array}{r} 10 \text { (a) } \\ \\ \text { (b) } \\ \text { (c) } \end{array}$	$\begin{array}{\|l} 2^{3} \times 3^{2} \\ 4 \\ 360 \end{array}$	B2 B1 B1	4	M1 for at least two correct steps for factors
11 (a) (b) (i) (ii)	$(x)<3$ Negative value identified Correctly evaluated \& conclusion $0<x \leq 1$ Correctly evaluated \& conclusion	$\begin{gathered} 2 \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	6	M1 for correct first step $7 x<21$, or division by 7
$12 \text { (a) }$ (b) (i) (ii)	$2 x+5+2 x-3+x+2+3 x+x=$ 40 $9 x+4=0$ correctly established $(x=) 4$ 13	M1 E1 B2 B1 $\sqrt{1}$	5	M1 for $9 x=40-4$ oe \checkmark for their (i) in $2 x+5$
13 (a) (b)	$x=(\pm) \sqrt{5 y}$ $x=1 / 2, y=-2$ after correct algebra	B2 B3	5	M1 for multiplying by 5 or SC1 for $5 \sqrt{y}$ M1 for equating coeffs. Allow one error and $\mathbf{A 1}$ for $26 x=13$ or $-13 x=26$ oe or SC1 for both solutions with wrong or no working
14 (a) (b)	$\begin{aligned} & -2 \cdot 3 \text { to }-2 \cdot 2 \text { and } 2 \cdot 2 \text { to } 2 \cdot 3 \\ & -2 \cdot 9 \text { to }-2.7 \text { and } 17 \text { to } 1 \cdot 9 \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B3 } \end{aligned}$	5	B1 for one correct value M1 for attempt to draw $y=x$ and B1 for one correct value
15 (a) (b)	$21 ⁄ 2$ 16:25 or 1:1:5625 or 0.64:1	B4 B2	6	B3 for $K L=121 / 2$ or M2 for $\mathrm{KL}=\frac{5}{4} \times \mathrm{NL}$ or M1 for KL:NL = 5:4 oe M1 (their s.f) ${ }^{2}$ seen

$16 \text { (a) }$ (b)	$\left\{\begin{array}{l} \left(9,5^{1 / 2}\right) \\ 13 \end{array}\right.$	$\begin{aligned} & \text { B2 } \\ & \text { B3 } \end{aligned}$	5	B1 for either correct M2 for $\sqrt{(15-3)^{2}+(8-3)^{2}}$ or M1 for any attempt at using Pythagoras eg. $A B^{2}=(15-3)^{2}+(8-3)^{2}$
17	$y=2 x^{2}$	B3	3	M1 for $y=k x^{2}, \mathrm{k} \neq 1$ and M1 for substituting in $y=k x^{2}$ or $y=\mathrm{k} \sqrt{x}$
18 (a) (b)	43° angles in same segment oe angle $\mathrm{AED}=75^{\circ}$ seen angle $A E D \neq 2 \times$ angle ABD	$\begin{aligned} & \mathrm{B} 1 \\ & \text { R1 } \\ & \text { B1 } \\ & \mathrm{B} 1 \end{aligned}$	4	or EBA not an isosceles triangle oe
19 (a) (b)	$1 / 2$ oe www $\begin{aligned} & (\sqrt{3}+2 \sqrt{3})^{2} \text { or } 3+2 \sqrt{36}+12 \\ & (3 \sqrt{3})^{2} \text { or } 3+12+12=27 \end{aligned}$	B3 M1 E1	5	B1 for $4^{0.5}=2$ and $\mathbf{B 1}$ for $2^{-2}=1 / 4$ oe
20	135 or 145 or $2 \frac{1}{2}$ or $31 / 2$ seen 145 and $21 / 2$ used their $145 \div$ their $21 / 2$ 58 (mm / m)	M1 M1 M1 A1	4	Dep on first M1
21 (a) (b)	$\begin{aligned} & \text { p-a oe } \\ & 2 p-a \text { oe } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { B2 } \end{aligned}$	4	M1 for $\overrightarrow{\mathrm{AP}}=\overrightarrow{A O}+\overrightarrow{\mathrm{OP}}$ oe seen M1 for $\overrightarrow{\mathrm{OB}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}$ or $\overrightarrow{O A}+2 \overrightarrow{\mathrm{AP}}$ oe seen If consistent column vectors used, penalise only once
22	$(x=)-1$ and 2	7	7	M1 for multiplying by $x+3$ soi by $2(x+3)$ and M1 for mult. by $3 x-1$ soi by $3(3 x-1)$ and M1 for RHS $=(x+3)(3 x-1)$ and $\mathbf{B 2}$ for $3 x^{2}+8 x-3$ seen and M1 factorising their quadratic = 0 or use of formula or SC2 for both correct after wrong or no working

Assessment Objectives Grid

Question	AO2	AO3	AO4	Total
1			5	5
2		3		3
3	4			4
4		4		4
5			6	6
6			5	5
7	3			3
8			4	4
9	3			3
10	4			4
11	6			6
12	5			5
13	5			5
14	5			5
15		6		6
16		5		5
17	3			3
18		4		4
19	5			5
20	4			4
21		4		4
22	7			7
Totals	54	26	20	100

