	MENT		SPECI	MEN		
GENERAL CER	TIFICATE OF SECONDAF	RY EDUCATION	J512	2/3		
Higher Paper	3					
SPECIMEN						
Candidates answ Additional Materi Geom Tracir	er on the question paper. als: letrical instruments lg paper (optional)			Time: 2 hours		
Candidate Name						
Centre Number		Can Nur	didate nber			
 INSTRUCTIONS TO CANDIDATES Write your name, centre number and candidate number in the boxes above. Answer all the questions. Write your answers on the dotted lines unless the question says otherwise. Use blue or black ink. Pencil may be used for graphs and diagrams only. Read each question carefully and make sure you know what you have to do before starting your answer. There is a space after most questions. Use it to do your working. In many questions marks will be given for a correct method even if the answer is incorrect. Do not write in the bar code. Do not write outside the box bordering each page. WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. ANSWERS WRITTEN ELSEWHERE WILL NOT BE MARKED. 						
The number of n The total numbe	narks is given in bracket r of marks for this paper	ts [] at the end of r is 100.	each question or part	question.		
You are not allowe	d to use a calculator i	in this paper.		Total		
	This document consis	ts of 24 printed pa	ages and 1 blank bage	2.		
SP (SLM) T12103	© OCR 2007	00	R is an exempt Charity	[Turn Over		

Number	1	2	3	4	5	6
Probability	0.25	0.1	0.1		0.1	0.25
(i) Work ou	ut the proba	bility of obta	aining a 4. (a)(i)		
(ii) Work ou	ut the proba	bility of obta	iining a 5 or a (ii	6 when this	die is thrown.	
A bag contai	ins red cou	nters, blue c	ounters and g	reen counte	rs.	
			ach colour ac	unter being t	taken at rando	om from the b
The table sh	ows the pro	bability of e		anter being		
The table sh	ows the pro	bability of e		anter being		
The table sh	ows the pro	ed	blue		green	
The table sh Colour Probability	ows the pro	ed	blue		green 0.55	
The table sh Colour Probability Tom thinks t Explain, usir	ows the pro	re 10 red cor ons, why he	unters in the biling	bag. He is wr	green 0.55 rong.	
The table sh Colour Probability Tom thinks t Explain, usir	ows the pro	re 10 red con ons, why he	unters in the billing	bag. He is wi	green 0.55 rong.	
The table sh Colour Probability Tom thinks t Explain, usir	ows the pro	ed .2 ons, why he	unters in the billing	bag. He is wr	green 0.55 rong.	
The table sh Colour Probability Tom thinks t Explain, usin	ows the pro	ed .2 Te 10 red com ons, why he	unters in the billing	bag. He is wr	green 0.55	
The table sh Colour Probability Tom thinks t Explain, usir	ows the pro	ed 2 re 10 red colors, why he	unters in the t	bag. He is wr	green 0.55	
The table sh Colour Probability Tom thinks t Explain, usir	ows the pro	ed 2 re 10 red cor ons, why he	unters in the billing	bag. He is wi	green 0.55 rong.	
The table sh Colour Probability Tom thinks t Explain, usir	ows the pro	re 10 red cor ons, why he	unters in the billing	bag. He is wi	green 0.55	

Jame	s grows	s sunflo	wers.					
He m	easures	s the he	eight in d	centime	tres of 18	inflowers.		
Here are the measurements.								
149	169	154	156	161	153			
166	172	163	167	173	175			
159	170	164	158	168	167			
(a) S	Show th	is inforr	mation i	n an oro	dered ster	and leaf diagram.		
		-						
Key 1	4 9 re	present	ts 149 c	m.		[(
Key 1	4 9 re	present	ts 149 c	:m.		[(
Key 1	4 9 re	present	ts 149 c	m.		[3		
Кеу 1 (b) Ц	4 9 re Jse you	present	ts 149 c and leat	m. f diagra	m to find t	[۵ median.		
Key 1 (b) L	4 9 re Jse you Explain	present r stem a	ts 149 c and leat u found	m. f diagrai your ar	m to find t nswer.	e median.		
Key 1 (b) L E	4 9 re Jse you Explain	present r stem how yo	ts 149 c and leat u found	m. f diagrai your ar	m to find t nswer.	e median.		
Key 1 (b) L E Media	4 9 re Jse you Explain	present r stem how yo	ts 149 c and leat u found bec	m. f diagrai your ar cause	m to find t ารwer.	e median.		
Key 1 (b) L E Media	4 9 re Jse you Explain	present r stem how yo	ts 149 c and leat u found bec	m. f diagrai your ar cause	m to find t nswer.	e median.		
Key 1 (b) L E Media	4 9 re Jse you Explain	present r stem how yo	ts 149 c and leat u found	m. f diagrai your ar cause	m to find t nswer.	e median.		
Key 1 (b) L E Media	4 9 re Jse you Explain	present	ts 149 c and leat u found	m. f diagrai your ar cause	m to find t nswer.	e median.		
Key 1 (b) L Media	4 9 re Jse you Explain	present	ts 149 c and leat u found	m. f diagrai your ar	m to find t nswer.	e median.		
Key 1 (b) U E Media	4 9 re Jse you Explain	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t nswer.	e median.		
Key 1 (b) U E Media	4 9 re Jse you Explain	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t	e median.		
Key 1 (b) U E Media	4 9 re Jse you Explain	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t	e median.		
Key 1 (b) U E Media	4 9 re Jse you Explain	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t	e median.		
Key 1 (b) U E Media	4 9 re Jse you Explain	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t	e median.		
Key 1 (b) L E Media	4 9 re Jse you Explain	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t	e median.		
Key 1 (b) L E Media	4 9 re	present	ts 149 c and leaf u found	m. f diagrai your ar	m to find t	e median.		

[3]

8	Helen took six maths tests							
U	Her marks in the first four tests were 4 6 7 and 8							
	When she had completed the six tests the mode of her marks was 9 and the mean of her marks							
	when she had completed the six tests the mode of her marks was 8 and the mean of her marks was 7.							
	(a) Find her marks in the other two tests.							
		(a)[3]						
	(b) what is the range of her marks?	/-> [4]						
		(b)[1]						
٩	Pachael bought a tray of 60 plants							
5	The 60 plants each produced flowers of a single of	colour						
	The plants produced red flowers, white flowers an	ad blue flowers in the ratio 2 : 3 : 5						
	How many plants produced white flowers?							
		[3]						
© OC) OCR 2007							

9

1	0
10 20 can be expressed as a product of prime factor	ors as
20 = 2	$2^2 \times 5.$
(a) Write 72 as a product of prime factors.	
	(a)[2]
(b) What is the highest common factor (HCF) o	of 20 and 72?
	(b)[1]
(c) What is the lowest common multiple (I CM)	of 20 and 722
	(c)
	., .,
© OCR 2007	

			11	
11 (a)	Solv	e.		
	7	7x - 1 < 20		
			(a)	[2]
(b)	In e	ach part, give one example to show t	that the statement is false .	
	Υοι	ı must show your working.		
	(i)	For every non-zero number <i>y</i> ,	2y > y.	
				[2]
			2	
	(ii)	For every non-zero number <i>x</i> ,	<i>x</i> [∠] > <i>x</i> .	
				[2]

A, B, C and	D are poi	ints on the	circumferen	ce of a circle.		
AC and BD	intersect	at E.				
Angle ABD :	= 43° and	angle BA	C = 32°.			
		B 43° 329	E	C	NOT TO SCA	LE
a) Find the Give a	e size of a reason fo	angle ACD). wer			
Angle ACD	=	know that	eason	centre of the cir	cle	
Angle ACD	=	know that	eason E is not the	e centre of the cir	cle.	
Angle ACD	= n how you	know that	E is not the	e centre of the cir	cle.	
Angle ACD	= n how you	know that	E is not the	e centre of the cir	cle.	
Angle ACD	=	know that	E is not the	e centre of the cir	cle.	
Angle ACD	= n how you	know that	E is not the	e centre of the cir	cle.	
Angle ACD	=	know that	E is not the	e centre of the cir	cle.	
Angle ACD	=	know that	E is not the	e centre of the cir	cle.	
Angle ACD	=	know that	E is not the	e centre of the cir	cle.	
Angle ACD	=	know that	E is not the	e centre of the cir	cle.	
b) Explain	=	know that	E is not the	e centre of the cir	cle.	

	18	
19 (a) Evaluate.		
$4^{0.5} \times 2^{-2}$		
	(a)	[3]
(b) Show that $(\sqrt{3} + \sqrt{12})^2 = 27$		
	(b)	[2]
20 Jerome records the time it takes a snail to cro	oss a step.	
He finds that the snail travels a distance of 1- minutes, correct to the nearest minute.	40 mm, correct to the nearest	10 mm, in a time of 3
Calculate the maximum possible average spe	eed, in mm per minute, of the s	nail.
		mm/minute [4]

ſ

BLANK PAGE

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

GENERAL CERTIFICATE OF SECONDARY EDUCATION

MATHEMATICS A

J512/3

Higher Paper 3

Specimen Mark Scheme

The maximum mark for this paper is 100.

1	(a)	Two correct plots	B1		±1 mm
	(b) (i	Line of best fit for 45< <i>x</i> <80 and +ve gradient	B1		Ruled with no more than 1 point on either side than the other
	(ii	Positive	B1		Ignore qualifiers
	(c) (i	$\sqrt[]{}$ from graph	B1		±1 mm
	(ii	$\sqrt[]{}$ from graph	B1	5	±1 mm
2	(a)	6	B1		
	(b)	60 or (their 6) × 10	В1√		
		cm ³	U1	3	
3	(a)	$\frac{7}{20}$	B2		M1 for $\frac{12}{20}$ or $\frac{5}{20}$ seen
	(b)	$1\frac{1}{10}$	B2	4	M1 for $\frac{6}{10}$ or $\frac{5}{10}$ seen
4	(a)	Correct enlargement	B 3		B2 for two vertices correct
					or any enlargement s.f. 3
	(h)	Correct reflection	D1		or SC1 for any enlargement centre O
_	(d)		DI	4	
5	(a) (i (ii	0.2 oe	B2 B1		M1 for 1–(0.25+) sol by 0.47
	(5.		
	(b)	total of 50	M1		
		0.25 x 50 oe	M1		
		=12.5 & can't have half a counter	A1	6	
6	(a)	14 9	B 3		B2 for one error or omission
		15 3 4 6 8 9			or B1 for two errors of omissions
		17 0235			
	(b)	165	B1		
		between 9 th and 10 th values	R1	5	
7		Straight line with +ve grad. or			
		-ve intercept	M1		
		Kulea (infough (0, −1) for −1≤ X $ $ ≤2	ΑΊ Δ1		
		Ruled with gradient 2 for $-1 \le x \le 2$		3	

8	(a)	8	B1		
	()	uses total of marks	M1		
		9	A1		
	(b)	5 or their max. value – 4	В1√	4	
9		60÷(2+3+5)	M1		
		multiply by 3	DM1		
		18	A1	3	
10	(a)	$2^3 \times 3^2$	B2		M1 for at least two correct steps for factors
	(b)	4	B1		
	(c)	360	B1	4	
11	(a)	(<i>x</i>) < 3			M1 for correct first step
			2		7x < 21, or division by 7
	(b) (Negative value identified	M1		
		Correctly evaluated & conclusion	A1		
	(i) 0< x ≤ 1	M1		
		Correctly evaluated & conclusion	A1	6	
12	(a)	2x + 5 + 2x - 3 + x + 2 + 3x + x =	M1		
		9x + 4 = 0 correctly established	E1		
	(b) ((x =) 4	B2		M1 for 9 <i>x</i> = 40 – 4 oe
	(i	13	B1√	5	$\sqrt{1}$ for their (i) in 2x + 5
13	(a)		B2	-	M1 for multiplying by 5
	(u)	$\mathbf{x} = (\pm)\sqrt{5}\mathbf{y}$			or SC1 for $5\sqrt{y}$
	(b)	$x = \frac{1}{2}, y = -2$ after correct algebra	B3		M1 for equating coeffs.
					Allow one error and $\mathbf{A1}$ for $26x = 13$ or $13x = 26$ or
					and AT for $20x = 1301 = 13x = 200e$
				5	wrong or no working
14	(a)	-2.3 to -2.2 and 2.2 to 2.3	B2		B1 for one correct value
	(b)	-29 to -27 and 17 to 19	B 3		M1 for attempt to draw $y = x$
				5	and B1 for one correct value
15	(a)	21/2	B4		B3 for KL = 12 ¹ / ₂
					or M2 for KL = $\frac{5}{4}$ × NL
					or M1 for KL:NL = 5:4 oe
	(b)	16:25 or 1:15625 or 064:1	B2	6	M1 (their s.f) ² seen

16 (a)	(9, 51/2)	B2		B1 for either correct
	10	-	_	
(d)	13	B3	5	M2 for $\sqrt{(15-3)^2 + (8-3)^2}$
				or M1 for any attempt at using
				Pythagoras eq. $AB^2 = (15 - 3)^2 + (8 - 3)^2$
47	$y = 2y^2$	D 2		$\frac{1}{100} = \frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}{100} + \frac{1}{100} = \frac{1}{100} + \frac{1}$
17	y - 2x	БЗ		MI IOI $y = KX$, $K \neq I$ and M1 for substituting in $y = ky^2$
			2	or $v = k_{3}\sqrt{r}$
18 (2)	43°	P1	5	
10 (a)	angles in same segment of	R1		
(h)	angle $\Delta ED = 75^{\circ}$ score			
(0)	angle AED $\neq 73$ seen	B1	4	or EBA not an isosceles triangle op
10 (0)		D 1	-	$\mathbf{P4} \text{ for } 4^{0.5} = 2$
19 (a)	72 OE WWW	БЗ		B 1 101 4 - 2 and B1 for $2^{-2} = 1/2$ on
(b)				
(0)	$(\sqrt{3} + 2\sqrt{3})^2$ or $3 + 2\sqrt{36} + 12$	M1		
	$(3\sqrt{3})^2$ or $3 + 12 + 12 = 27$	E1	5	
20	135 or 145 or 2½ or 3½ seen	M1		
	145 and 21/2 used	M1		
	their 145 \div their 2 ¹ / ₂	M1		Dep on first M1
	58 (mm/m)	A1	4	
21 (a)	p – a oe	B2		M1 for $\overrightarrow{AP} = \overrightarrow{AO} + \overrightarrow{OP}$ oe seen
(b)	2 p – a oe	B2	4	M1 for $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$
				or \overrightarrow{OA} +2 \overrightarrow{AP} oe seen
				If consistent column vectors used,
				penalise only once
22	(x =) -1 and 2	7		M1 for multiplying by $x + 3$ soi by $2(x + 3)$
				and M1 for mult. by $3x - 1$ soi by $3(3x - 1)$
				and M1 for RHS = $(x + 3)(3x - 1)$
				and B2 for $3x^2 + 8x - 3$ seen
				and M1 factorising their
				quadratic = 0
				or use of formula
			7	or SC2 for both correct after wrong or no working

Question	AO2	AO3	AO4	Total
1			5	5
2		3		3
3	4			4
4		4		4
5			6	6
6			5	5
7	3			3
8			4	4
9	3			3
10	4			4
11	6			6
12	5			5
13	5			5
14	5			5
15		6		6
16		5		5
17	3			3
18		4		4
19	5			5
20	4			4
21		4		4
22	7			7
Totals	54	26	20	100

Assessment Objectives Grid