Monday 16 January 2012 – Morning # GCSE MATHEMATICS SYLLABUS A J512/04 Paper 4 (Higher Tier) Candidates answer on the Question Paper. OCR supplied materials: None #### Other materials required: - Electronic calculator - Geometrical instruments - Tracing paper (optional) **Duration:** 2 hours | Candidate forename | | | Candidate surname | | | | | | | |--------------------|-----|--|-------------------|--|--|--------------|-------|--|--| | Centre numb | per | | | | | Candidate nu | ımber | | | #### **INSTRUCTIONS TO CANDIDATES** - Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters. - Use black ink. HB pencil may be used for graphs and diagrams only. - Answer all the questions. - Read each question carefully. Make sure you know what you have to do before starting your answer. - Show your working. Marks may be given for a correct method even if the answer is incorrect. - Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s). - Do not write in the bar codes. #### **INFORMATION FOR CANDIDATES** - The number of marks is given in brackets [] at the end of each question or part question. - You are expected to use an electronic calculator for this paper. - Use the π button on your calculator or take π to be 3.142 unless the question says otherwise. - The total number of marks for this paper is 100. - This document consists of 24 pages. Any blank pages are indicated. ## Formulae Sheet: Higher Tier Area of trapezium = $\frac{1}{2}(a+b)h$ **Volume of prism** = (area of cross-section) \times length In any triangle ABC Sine rule $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$ **Cosine rule** $$a^2 = b^2 + c^2 - 2bc \cos A$$ Area of triangle = $$\frac{1}{2}ab\sin C$$ Volume of sphere = $\frac{4}{3}\pi r^3$ Surface area of sphere = $4\pi r^2$ Volume of cone = $\frac{1}{3}\pi r^2 h$ Curved surface area of cone = πrl The Quadratic Equation The solutions of $ax^2 + bx + c = 0$, where $a \neq 0$, are given by $$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$ ## PLEASE DO NOT WRITE ON THIS PAGE 1 Find the perimeter and area of this shape. | | 7 cm | | | | |------|------|---------|-----------------|-----| | 1 | | 1 cm | | | | 6 cm | 3 cm | 1 | NOT TO
SCALE | | | | | 2 cm | | | | · | 7 cm | <u></u> | | | | | | | | • • | Perimeter_____ cm Area_____ cm² [4] | 2 Calculate | | |-------------|--| | | | | (a) $\frac{19.7 - 3.64}{5.2 + 3.85}$ Give your answer correct to one decimal place. (a) | (b) | $\sqrt{5.92 + 7.2^2}$ | | | |--|-----|---------------------------|---------------|-----| | Give your answer correct to one decimal place. | (b) | $\sqrt{5.00 \cdot 7.0^2}$ | (a) | [2] | | | | | | | | | (a) | | ecimal place. | | - **3** A lifeboat, B, is 9 km from a lighthouse, L, on a bearing of 320°. A dinghy, D, is 5 km from the lighthouse, L, on a bearing of 075°. - (a) Make a scale drawing to show the positions of the lifeboat and the dinghy. Use a scale of 1 cm represents 1 km. (b) How far, and on what bearing, is the dinghy from the lifeboat? (b) _____ km and _____° [2] | 4 | Hank, an American shopping in London, wishes to buy a T-shirt. | |---|--| | | The price of the T-shirt is either £28 or €32. | The exchange rates for American dollars are: \$1 = €0.697 | Which currency represents the lower price for the T-shirt? Show your calculations. | | | | | |--|----|--|--|--| | niow your calculations. | [5 | | | | Mr Patel walked for 3 hours. During that time he took 7800 steps. 5 | km/h [4] | |--| | | | | | | | | | | | | | Give your answer in kilometres per hour. | | Work out Mr Patel's average speed. | | The length of each step was 90 cm. | 6 Here is a sequence of diagrams. (a) Draw Diagram 4. [1] | (b) | How many Cs and how many Hs will be in Diagram 7? | |-----|---| | | | | | | | | | | | (b) C | | | H[2] | | (c) | Write down expressions in terms of <i>n</i> for the number of Cs and Hs in Diagram <i>n</i> . | | | | |-----|---|--|--|--| | | | | | | | | | | | | | | | | | | (c) C _____ H_____[3] 7 Jonah drew shape P on a square grid. He then transformed shape P to shape Q. (a) Describe fully the single transformation that maps shape P onto shape Q. _____[3] (b) Draw the reflection of shape **P** in the line y = -1. Label the image **R**. [2] | 8 Thi | is is a formula fo | changing temperatures | in degrees Celsius, | , C, into degrees | Fahrenheit, F. | |-------|--------------------|-----------------------|---------------------|-------------------|----------------| |-------|--------------------|-----------------------|---------------------|-------------------|----------------| $$F = \frac{9}{5} \times C + 32$$ | There is a temperature when the numerical value of F is equal to the numerical value of C. | |--| | Find the temperature when $F = C$. | | | | | | | | | | | | | | degrees [3] | 9 Items are advertised for sale on an internet site. The cost of the advert for each item is a percentage of the selling price. 2% on each item sold for £50 or less 7% on each item sold for over £50 | Carrie received | pence more for selling | [4] | |--|------------------------------------|-----| Tiew mach more and one receive. | | | | After paying for the adverts, for which ite How much more did she receive? | m did Carrie receive more? | | | Carrie uses the site to sell a pair of shoe | es for £52 and a dress for £49.50. | | 10 (a) Here is an empty container. Water is poured into the container at a constant rate. Which of these graphs represents the depth of water in the container as water is poured in? (a) Graph _____ [1] (b) Here is an empty cylinder. Water is poured into the cylinder at a constant rate. Sketch a graph to represent the depth of water in the cylinder as water is poured in. [1] 11 90 people each exercised for 30 minutes. Each person's recovery time was measured. The results are summarised in this table. | Recovery time (<i>m</i> minutes) | Number of people | |-----------------------------------|------------------| | 0 < m ≤ 4 | 2 | | 4 < m ≤ 8 | 7 | | 8 < <i>m</i> ≤ 12 | 29 | | 12 < <i>m</i> ≤ 16 | 26 | | 16 < <i>m</i> ≤ 20 | 16 | | 20 < m ≤ 24 | 10 | | (a) | Calculate an | estimate | of the mean | recovery | time. | |-----|--------------|----------|-------------|----------|-------| |-----|--------------|----------|-------------|----------|-------| |
 |
 |
 |
 | |------|------|------|------| |
 |
 |
 |
 | |
 |
 |
 |
 | |
 |
 |
 |
 | | | | | | | | | | | (a) _____ minutes [4] (b) Write down the modal class. (b) _____ [1] (c) Draw a frequency polygon for the data in the table. (d) Complete this cumulative frequency table for the recovery times. | Recovery time (m minutes) | Number of people | |---------------------------|------------------| | 0 < m ≤ 4 | 2 | | 0 < m ≤ 8 | | | 0 < <i>m</i> ≤ 12 | | | 0 < <i>m</i> ≤ 16 | | | 0 < <i>m</i> ≤ 20 | | | 0 < <i>m</i> ≤ 24 | | [1] [3] (e) Draw a cumulative frequency graph for the recovery times. (f) Use your graph to estimate | (i) the median recovery time |) , | |------------------------------|------------| |------------------------------|------------| (f)(i) _____ minutes [1 (ii) the number of people who took longer than 15 minutes to recover. (ii)______[2] | (g) | Which of mean, median or modal class is the most appropriate to use as the average recovery time? Give a reason for your choice. | | |-----|---|-----| | | because | | | | | [2] | | (h) | One week later these people were asked to see how an energy drink affected their recovery time. | | | | Write a question, with a response section, that they could be asked. | | | | | | | | | | | | | [2] | | 12 | (a) | Fac | torise. | | | |----|-----|------|---|--------|-----------| | | | | $x^2 - 16$ | | | | | | | | | | | | | | | (a) | | | | (b) | Rea | arrange this formula to make $\it u$ the subject. | | | | | | | $v^2 = u^2 + 2as$ | (b) |
_ [2] | | | (c) | Sim | pplify. | | | | | | (i) | $s^2t^8 \times s^3t^2$ | (c)(i) | _ [2] | | | | (ii) | $(x^3y)^4$ | | | | | | | | | | © OCR 2012 Turn over (ii)_____[2] 13 The diagram shows the graphs of y = x - 2 and y = 3x + 1. (a) The line y = x - 2 cuts the x-axis at A. B is on the line y = 3x + 1 such that the line AB is parallel to the y-axis. Work out the coordinates of B. (a) (______, _____) [3] (b) Work out the coordinates of the point where the lines y = x - 2 and y = 3x + 1 cross. (b) (______, ____) [3] 14 (a) NOT TO SCALE | | Calculate x. | |-----|--------------------| | | | | | | | | (a)[3] | | (b) | NOT TO SCALE | | | Calculate angle y. | | | | | | | | | | | | | | | | | | | © OCR 2012 Turn over (b)____ ____ ° [4] **15** (a) Draw accurately the graph of $x^2 + y^2 = 25$. [2] **(b)** (i) Show that the curve $x^2 + y^2 = 25$ and the line y = 3x - 1 intersect when $5x^2 - 3x - 12 = 0$. _____[3] | | (iii) | [2] | | | | |-------|--|-----|--|--|--| (iii) | Hence find the coordinates of the points where the curve and the line intersect. | | | | | | | (b)(ii) | [3] | (ii) | Solve algebraically $5x^2 - 3x - 12 = 0$.
Give your answers correct to 2 decimal places. | | | | | 16 Ian has 160 metal cylinders each of length 36 cm and radius r cm. The 160 cylinders are melted down and made into a sphere of radius 30 cm. | Calculate r. | | |--------------|--| 17 | The total resistance, | T | of an | electrical | circuit is | given by | v this formula | |----|-----------------------|----|--------|------------|-------------|----------|----------------| | | THE WILL TESISIANCE, | Ι, | oi aii | Ciccilicai | CII CUIL IS | GIVEII D | y uno iomina. | $$\frac{1}{T} = \frac{1}{A} + \frac{1}{B}$$ A = 1.5 and B = 5.6, each correct to the nearest 0.1. Work out the maximum possible value of *T*. Show clearly the values you use. _____[4] ## PLEASE DO NOT WRITE ON THIS PAGE #### Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1GE.$ OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © OCR 2012