

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCSE Linked Pair Pilot in Mathematics Methods in Mathematics (2MM01) Higher: (Calculator) Unit 2

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code 5MM2H_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

NOTES ON MARKING PRINCIPLES

- 1 All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- 2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- 3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- 4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- **5** Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- **6** Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labeling conventions.
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate.
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

7 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

If there is no answer on the answer line then check the working for an obvious answer.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect canceling of a fraction that would otherwise be correct

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra. Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

11 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5 - 4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

Guidance on the use of codes within this mark scheme
M1 – method mark A1 – accuracy mark B1 – Working mark C1 – communication mark QWC – quality of written communication oe – or equivalent cao – correct answer only ft – follow through sc – special case dep – dependent (on a previous mark or conclusion) indep – independent isw – ignore subsequent working

Question	Working	Answer	Mark	Notes
1 (a)	$52 \times 4 = 208$ $52 \times 5 = 260$	208, 260	2	M1 for $468 \div (4+5)$ (= 52) A1 cao
(b)		65	3	M1 for $\frac{13}{7+13}$ or $\frac{7}{7+13}$ oe M1 for a complete method to find percentage, eg. $\frac{13 \text{ (or 7)}}{7+13} \times 100$ A1 cao
2		19.80	2	M1 for $13.20 \div 8 (= 1.65) \times 12$ oe A1 for 19.80 (accept 19.8)

	N - 4
*3 120° with reasons 4 M1 for $180 - 90 - 30$ or	Notes
as 60 (could be on the di M1 for $180 - "60"$ oe (could be contracted on the di M1 for $180 - "60"$ oe (could be contracted on the di C2 for $120(^{\circ})$ and all reat e.g. ABG = 90 (correspondin AGB = 180 - 90 - 30 = 0 to 180) FGD = 60 (vertically op x = 180 - 60 (allied angle to 180) OR ADC = 180 - 90 - 30 = 0 to 180) FGD = 60(alternate angle	 an angle correctly identified iagram) could be on the diagram) could be on the diagram) asons clearly given angles are equal) 60 (angles in a triangle add angles or co-interior angles) add 60 (angles in a triangle add are equal) are equal) are equal) or co-interior angles) add reason for candidates out clearly with correct

PAPER: 5MM	2H_01			
Question	Working	Answer	Mark	Notes
4 (a)		$x \ge -3$	1	B1 for $x \ge -3$ or $-3 \le x$
(b)		0	2	M1 for: -2 +4
				Accept this line drawn with any length
				OR -2 +4
				Accept this line drawn with any length
				OR
				OR O •
				-2 +4
				A1 for a fully correct diagram
(c)		-1, 0, 1, 2, 3, 4	2	B2 for all 6 values and no others (B1 for 5 correct values and no others or all 6 correct values and one additional incorrect value)

PAPER: 5MN Question	 Working	Answer	Mark	Notes
5		1810 cm ³	3	M1 for $\pi \times 8^2 \times 9$ A1 for an answer in the range 1808 to 1811 B1 (indep) for cm ³
6 (a)	x + x + 5 + 4x = T	T = 6x + 5 oe	3	B3 for $T = 6x + 5$ oe (B2 for $6x + 5$ oe or $T = 6x + a$ oe, $a \neq 0$ or $T = bx + 5$ oe, $b \neq 0$ B1 for $x + 5$ or $4x$ or $T = a$ linear expression in x or $6x + a$ oe, $a \neq 0$ or $bx + 5$ oe, $b \neq 0$)
(b)	5w + 5x = 3x + 9 5w = 3x - 5x + 9 = 9 - 2x	$w = \frac{9-2x}{5}$	3	M1 for a correct first step, either expansion of the bracket or dividing both sides by 5, eg. $5w + 5x = 3x + 9$ or $w + x = \frac{3x+9}{5}$ M1 for isolating term in w, eg. $5w = 3x - 5x + 9$ oe A1 for $\frac{9-2x}{5}$

PAPER: 5MM	12H_01			
Question	Working	Answer	Mark	Notes
7	$2x + 2(x \pm 7) < 152$ $2x + 2x \pm 14 < 152$ $4x \pm 14 < 152$ 4x < 138 (or 166) x < 34.5 (x < 34.5, so width < 34.5) OR $152 \div 4 = 38$ $(7 + 7) \div 4 = 3.5$ 38 - 3.5 = 34.5 OR 152 - 14 = 138 $138 \div 4 = 34.5$	34	4	B1 for $x \pm 7$ oe seen (it could just be on a diagram) or a rectangle with length 7 cm greater than the width M1 for $2x + 2(x \pm 7)$ oe A1 for 34.5 B1 for answer of 34 OR M1 for $152 \div 4$ (=38) M1 for $(7 + 7) \div 4$ (=3.5) A1 for 34.5 B1 for answer of 34 OR M1 for $152 - 14$ (= 138) M1 for $138 \div 4$ A1 for 34.5 B1 for answer of 34 [SC: B3 for 34.5 seen from any method]

Question	Working	Answer	Mark	Notes
8		142	4	M1 for correct method to find sum of interior angles of a hexagon A1 for 720 M1 (dep on M1) for ['720' – (150 + 140 + 56 + 90)] ÷ 2 oe A1 cao OR
				M1 for $360 - (30 + 90 + 124 + 40)$ condone one incorrect exterior angle A1 for 76 M1 (dep on M1) for $180 - (`76' \div 2)$ A1 cao
*9		Yes (= 333)	5	M1 for finding the area of one section (blue or yellow), eg. 1480 × 0.4 (= 592) oe or 1480 ÷ 8 (= 185) oe M1 for finding the area of the second section (yellow or blue) or award M2 for finding the combined area of blue and yellow), Eg. $(\frac{4}{10} + \frac{1}{8}) \times 1480$ (= 777) M1 for finding the total area of three sections or four sections using white as 330 or subtracting the 3 sections from 1480 A1 1147 or 333 or 1477
				C1 (dep on at least M1) for correct conclusion based on their calculations relating their white area to 330 or "1147" to 1150 or "1477" to 1480

PAPER: 5MN	I2H_01			
Question	Working	Answer	Mark	Notes
10	$\pi \times (10 \div 2)^2 - 0.5 \times 8 \times 6$	54.5	5	M1 for $10 \div 2$ (=5) M1 for $\pi \times 5^{2}$ (=78.539) M1 for $0.5 \times 8 \times 6$ (=24) M1(dep on at least one previous M1) for 78.539' - '24' [ie their area of the circle – their area of the triangle] A1 for an answer in the range 54 to 55
11 (a)		0.6575(62462)	2	M1 for 3.4785 seen or 5.29 seen A1 for 0.6575(62462)
(b)		512	1	B1 cao
(c)		1	2	M1 for $(\sin 45^{\circ})^2 = 0.5$ or $(\cos 135^{\circ})^2 = 0.5$ A1 cao

PAPER: 5MM2 Question	Working	Answer	Mark	Notes
12 (a)		-1, -5, -4, 4	2	B2 for all correct (B1 for 2 or 3 correct)
(b)		Correct graph	2	B2 for fully correct graph Or M1 ft for 6 or 7 of their points plotted correctly A1 for correct graph
(c)		2.2, -2.2	2	B1ft graph for 2 to 2.4 B1ft graph for -2.4 to -2 SC: B1 ft for (2.2, 0), (-2.2, 0)
(d)		-1.8, 2.8	2	B1ft graph for 2.6 to 3 B1ft graph for -2 to -1.6 SC: B1 ft for (2.8, 0), (-1.8, 0)
13		240	3	M2 for (324 ÷ 135) × 100 oe (M1 for sight of 1.35 or 135%) A1 cao

PAPER: 5MM	2H_01			
Question	Working	Answer	Mark	Notes
14		23.7	5	M1 for method to find <i>BC</i> , eg tan $50 = \frac{3.4}{BC}$ or $\frac{BC}{\sin 40} = \frac{3.4}{\sin 50}$ M1 for $(BC=) \frac{3.4}{\tan 50}$ or $(BC=) \frac{3.4 \times \sin 40}{\sin 50}$ (= 2.85 to 2.86) M1 for complete method to find <i>BDC</i> , eg sin <i>BDC</i> = $\frac{BC'}{7.1}$ oe M1 for sin ⁻¹ $\frac{BC'}{7.1}$ A1 for 23.6(°) to 23.7(°) OR M1 for method to find <i>BF</i> , eg $\frac{BF}{\sin 90} = \frac{3.4}{\sin 50}$ M1 for $(BF =) \frac{3.4 \times \sin 90}{\sin 50}$ (= 4.44) M1 for $\frac{'4.44'}{\sin BDC} = \frac{7.1}{\sin 40}$ M1 for sin ⁻¹ ('4.44' × sin 40 ÷ 7.1) A1 for 23.6(°) to 23.7(°)

	stion	12H_01 Working	Answer	Mark	Notes
15	(a)		21012.5(0)	3	M2 for complete method to find value after 2 years, eg. $20\ 000 \times 1.025^2$ [M1 for method to find interest after one year, eg. $20\ 000 \times 0.025$ (= 500) or value after one year, eg. $20\ 000 \times 1.025$ (= 20500)] A1 cao
	(b)		$V = 20\ 000 \times 1.025^n$	2	B2 for $V = 20\ 000 \times 1.025^n$ [B1 for 20 000 × 1.025 ⁿ or $V = 20\ 000 \times 1.025$ or $V = P \times 1.025^n$]
	(c)	$20\ 000 \times 1.025 \times 1.$	10	2	M1 for 20 000 × 1.025 ⁿ where $n \ge 3$ A1 cao OR M1 for 1.025 = $\sqrt[n]{1.25}$ A1 cao
16			38.9 or 3.89×10^1	2	M1 for 3.38×10^5 (or 338000) A1 for $38.8(50574)$ or $3.88(50574) \times 10^1$
*17			Proof	3	M1 for $x = 0.16363$ or $10x = 1.636363$ or 1000x = 163.6363 oe M1 for $1000x - 10 x$ (= 990x) and $163.6363 1.6363$ (=162) C1 (dep on M2) for ($x=$) $\frac{9}{55}$ with full algebraic proof

PAPER: 5MM2 Question	Working	Answer	Mark	Notes
18 (a)		$y = -\frac{1}{2}x + 4$	3	M1 for gradient of perpendicular $= -\frac{1}{2}$ or a line drawn perpendicular to the given line and a y- intercept of 4 M1 for $5 = " - \frac{1}{2} " \times -2 + c$ or $y = mx+4$ oe with $m \neq -\frac{1}{2}$, $m \neq 2$, $m \neq 0$ or $y = -\frac{1}{2}x + a$ oe with $a \neq 4$ A1 for $y = -\frac{1}{2}x + 4$ oe
(b)		$\begin{array}{l} x = 0 \\ y = 1 \end{array}$	3	M1 for correct process to eliminate x or y (condone one arithmetic error) M1 (dep) for correct substitution of their found variable or for correct process to eliminate the other variable (condone one arithmetic error) A1 for both $x = 0$ and $y = 1$ OR M2 for $2y - 5x = 2$ drawn (M1 for a line drawn with gradient 2.5 or y-intercept of 1 A1 for both $x = 0$ and $y = 1$

PAPER: 5MM2H_01								
Question		Working	Answer	Mark	Notes			
19	(a)		F	1	B1 cao			
	(b)		D	1	B1 cao			
	(c)		Н	1	B1 cao			
20	(a)		35.5	2	M1 $\frac{1}{2} \times 12.4 \times 9.3 \times \sin 38^{\circ}$ or complete method to find area using trig and/or Pythagoras and ½ base × height A1 35.4 to 35.5			
	(b)		7.65	3	M1 $9.3^2 + 12.4^2 - 2 \times 9.3 \times 12.4 \times \cos 38^\circ$ M1 for correct order of evaluation or 58.503 A1 7.64 - 7.65			
21	(a)		$y = 6x^2$	3	M1 for $y \alpha x^2$ or $y = kx^2$ M1 for $96 = k \times 4^2$ oe A1 for $y = 6x^2$			
	(b) (c)		294 5 and -5	1 2	B1 for 294 or ft " k " × 7 ² M1 for 150 ÷ " k " (dependent upon a quadratic equation) A1 for 5 and -5			

PAPER: 5MM2H_01							
Question	Working	Answer	Mark	Notes			
*22 (a)		Proof	3	M1 for a correct statement with correct reason M1 for a second correct statement with correct reason C1 for complete proof justifying congruency, eg. SAS Reasons: Angle DAM = angle BCN , opposite angles of a parallelogram are equal AM = NC, M and N are midpoints of lines of equal length AD = BC, opposite sides of a parallelogram are equal AMD = CNB (SAS)			
(b)		Proof	1	C1 for relevant statement using congruency eg. <i>MD</i> and <i>BN</i> are corresponding sides of congruent triangles			

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom