

Mark Scheme (Results)

November 2012

GCSE Mathematics Linked Pair Pilot Application of Mathematics (2AM01) Higher (Calculator) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012 Publications Code UG033658 All the material in this publication is copyright © Pearson Education Ltd 2012

NOTES ON MARKING PRINCIPLES

- **1** All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- 2 Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- **3** All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- 4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- **5** Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- **6** Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
 - i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear Comprehension and meaning is clear by using correct notation and labelling conventions.
 - ii) select and use a form and style of writing appropriate to purpose and to complex subject matter Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
 - iii) organise information clearly and coherently, using specialist vocabulary when appropriate.
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

7 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

If there is no answer on the answer line then check the working for an obvious answer.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

10 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

11 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

12 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers

Unless otherwise stated, when an answer is given as a range (e.g. 3.5 - 4.2) then this is inclusive of the end points (e.g. 3.5, 4.2) and includes all numbers within the range (e.g. 4, 4.1)

M1 – method mark A1 – accuracy mark B1 – Working mark C1 – communication mark QWC – quality of written communication oe – or equivalent cao – correct answer only ft – follow through sc – special case dep – dependent (on a previous mark or conclusion) indep – independent isw – ignore subsequent working	Guidance on the use of codes within this mark scheme
	M1 – method mark A1 – accuracy mark B1 – Working mark C1 – communication mark QWC – quality of written communication oe – or equivalent cao – correct answer only ft – follow through sc – special case dep – dependent (on a previous mark or conclusion) indep – independent isw – ignore subsequent working

5AM2H	5AM2H_01							
Ques	tion	Working	Answer	Mark	Notes			
1 QWC		eg $\langle DGF = 60 $ (line = 180) $\langle AFG = 80 $ ($\langle \sin \Delta AFG \rangle$ $\langle EFC = 100 = \langle BCA $ (corresponding angles) eg $\langle DGF = 60 $ (line = 180) $\langle AFG = 80 $ ($\langle \sin \Delta AFG \rangle$ $\langle DCF = 100 $ (opposite $\langle s \rangle$) (co-interior $\langle s \ sum \ to \ 180$)	Yes with reasons	3	 B1 for at least two correct angles given or marked on the diagram C1 for any one reason given from angles on a line = 180 angles in a triangle = 180 vertically opposite angles are equal angles in a quadrilateral add to 360 exterior angle of a triangle = sum of interior opposite angles C1 for Yes with clearly identified angles with fully correct reasons that define the parallel lines e.g. identified alternate angles equal, identified corresponding angles equal , identified allied or co-interior angles sum to 180 			

5AM2H 01							
Ques	tion	Working	Answer	Mark	Notes		
2	(a)	y = 2x + 10 $x y$ 10 30 20 50 30 70 40 90 50 110 60 130	Line	3	TABLE OF VALUESM1for at least 2 correct attempts to find points by substituting values of xM1 ftfor plotting at least 2 points (any points plotted from their table must be correct)A1for correct straight line between $x = 10$ and $x = 50$ (accept dotted line or complete line)NO TABLE OF VALUESM2for at least 2 correct points (and no incorrect points) plotted OR line segment of $2x + 10$ drawn (ignore any additional incorrect segments)(M1for at least 3 correct points with no more than 2 incorrect points)A1for correct straight line between $x = 10$ and $x = 50$ (accept dotted line or complete line)USE OF $y = mx + c$ M1for line drawn with gradient of 2M1for line drawn with a y intercept of 10A1for correct straight line between $x = 10$ and $x = 50$ (accept dotted line or complete line)		

5AM2H	H_01				
Ques	tion	Working	Answer	Mark	Notes
2	(b)	y = x + 25 $x 0 10 20 30$ $y 25 35 45 55$ OR $2x + 10 = x + 25$ $2x - x = 25 - 10$	15	3	Draw Line M2 draw $y = x + 25$ between $x = 10$ and $x = 30$ (M1 for at least 2 correct attempts to find points and plotting them correctly or Line through (0, 25) with positive gradient) A1 (dep on M1) ft for '15' OR Table of values M1 trials at least 3 values in $y = x + 25$ M1 for an attempt at interpolation between $x = 10$ and $x = 20$ A1 cao OR Algebraic Method M1 for $2x + 10 = x + 25$ M1 for $2x - x = 25 - 10$ A1 cao
3		2 cm 4 cm	side elevation	2	B2 for 8 cm by 6 cm side elevation with horizontal line at ht 4 cm (B1 for any rectangle base 8 cm or height 6 cm)

5AM2H	5AM2H_01						
Ques	tion Working	Answer	Mark	Notes			
4	12 are red. $\frac{1}{3}$ are red $12 \times 3 =$ OR 2 blue for 1 red 24 blue for 12 red 24 + 12 =	36	3	M1 for $P(red) = \frac{1}{3}$ M1 for $\frac{1}{3} \times 36 = 12$ red or 12×3 A1 for 36 cao OR M1 for 2 blue for 1 red M1 for 24 blue for 12 red or 24 + 12 A1 for 36 cao			
5	$ \begin{array}{c} x + x - 5 + 2x < 30 \\ x + x + 2x < 30 + 5 \\ 4x < 35 \\ x < 35 \div 4 \end{array} $	8	4	M1for $x-5$ for Martin or $2x$ for JamesM1 (dep on M1)for $x + x - 5 + 2x < 30$ (or = 30)M1 (dep on M2)for complete correct method to solve their equality or inequality or 8.75 oe seenA1 cao			
	S 10 9 8 M 5 4 3 J 20 18 16 Sum 35 31 27 no no yes			 OR for trial and improvement method M1 for x - 5 for Martin or 2x for James (can be implied by 1 correct trial) M1 for 3 trials with correct ages (totals not needed) or 2 trials with correct ages and totals M1 for a trial total < 30 and a trial total > 30 or 8, 3, 16 identified as answer A1 cao 			

5AM2H_01	5AM2H_01							
Question	Working	Answer	Mark	Notes				
6	Area cross section is $\frac{1}{2}(1.2 + 1.8) \times 1.5$ = 1.5 × 1.5 = 2.25 OR 1.5 × 1.2 + $\frac{1}{2}$ 1.5 × (1.8 - 1.2) 1.8 + 0.45 = 2.25 OR 1.5 × 1.8 - $\frac{1}{2}$ 1.5 × (1.8 - 1.2) 2.7 - 0.45 = 2.25 Volume = 2.25 × 2 =	4.5	4	Volume from Area of cross section × length M2 for $\frac{1}{2}(1.2 + 1.8) \times 1.5$ oe or $1.5 \times 1.2 + \frac{1}{2}(1.5 \times (1.8 - 1.2))$ or $1.5 \times 1.8 - \frac{1}{2}(1.5 \times (1.8 - 1.2))$ or 2.25 given as cross sectional area (M1 for $(1.2 + 1.8) \times 1.5$ or $1.5 \times 1.2 + 1.5 \times (1.8 - 1.2)$ or $1.5 \times 1.8 - 1.5 \times (1.8 - 1.2)$) M1 for "2.25" × 2 A1cao SC: B2 for answer of 9 if this method is used				
	OR Cuboid volume is $1.2 \times 2 \times 1.5 = 3.6$ Triangular prism volume is $\frac{1}{2} \times 1.5 \times (1.8 - 1.2) \times 2 = 0.9$ 3.6 + 0.9 OR			 OR Volume from cuboid volume + triangular prism volume M1 for 1.2 × 2 × 1.5 or 3.6 given as volume of cuboid M1 for 1/2 × 1.5 × (1.8 - 1.2) × 2 or 0.9 given as volume of triangular prism M1 for "3.6" + "0.9" where "3.6" and "0.9" are volumes A1cao SC: B2 for answer of 5.4 if this method is used OR Volume from cuboid volume - triangular prism volume 				
	Outer cuboid volume is $2 \times 1.5 \times 1.8 = 5.4$ Triangular prism volume is $\frac{1}{2} \times 1.5 \times (1.8 - 1.2) \times 2 = 0.9$ 5.4 - 0.9			M1 for $2 \times 1.5 \times 1.8$ or 5.4 given as volume of outer cuboid M1 for $\frac{1}{2} \times 1.5 \times (1.8 - 1.2) \times 2$ or 0.9 given as volume of triangular prism M1 for "5.4" - "0.9" where "5.4" and "0.9" are both volumes A1 cao SC: B2 for answer of 3.6 if this method is used				

5AM2H	H_01				
Ques	stion	Working	Answer	Mark	Notes
7			T = 36x + 24y	3	B3 for $T = 36x + 24y$ oe (B2 for $36x + 24y$ or $T = Ax + By$ with A and $B > 1$) (B1 for $T =$ an expression in x and/or y eg $T = x + y$
8	(a)	$16^2 - 13^2 = 256 - 169 = 87$	9.33	3	or $36x$ or $24y$ seen) M1 for $16^2 - 13^2$ (= 87)
		√ <u>87</u> = 9.327379			M1 for √ ¹ 87' A1 for 9.327
	(b)	$28 \div \sqrt{87} = 3$ $16 \div 8 = 2 \qquad 26 \div 13 = 2$ $3 \times 2 \times 2 \times 2$	24	3	M1 for two of $16 \div 8$ $26 \div 13$ $28 \div `x`$ or $`3` \times 2 \times 2$ M1 for $(`3` \times `2` \times `2`) \times 2$ A1 cao
		OR Big V = $26 \times 16 \times 28 = 11648$ Small V = $\frac{1}{2} \times 13 \times 8 \times \sqrt{87} = 485.0237$ $11648 \div 485.0237 = 24.01532$			OR M2 for $26 \times 16 \times 28 \div \frac{1}{2} \times 13 \times 8 \times \sqrt{87'}$ (M1 for $26 \times 16 \times 28$ or 11648 or $\frac{1}{2} \times 13 \times 8 \times \sqrt{87'}$ or 485) A1 cao

5AM2H_01				
Question	Working	Answer	Mark	Notes
9	$4 \longrightarrow 80 \qquad 5 \longrightarrow 145$ $4.5 \longrightarrow 109.125$	4.4	4	B2 for a trial between 4 and 5 exclusive (B1 for any correct trial x≠0)
	$\begin{array}{rcl} 4.4 & \longrightarrow & 102.784 \\ 4.3 & \longrightarrow & 96.707 \\ 4.35 & \longrightarrow & 99.712 \end{array}$			 B1 for a different trial between 4.3 and 4.4 exclusive B1 (dep on at least one previous B1) for 4.4 only NB Trials where x has 1 dp or more should be rounded or
10	$D = 1.25 \times 0.4 = 0.5$ $h = 1.5 \times 0.4 = 0.6$ $V = [2(0.6)(0.5)^2 - 0.6(0.4)^2] \div 4$	0.099	4	M3 for { 2 (1.5×0.4) (1.25×0.4) ² + (1.5×0.4) 0.4 ² } ÷ 4 (M2 for 2 (1.5×0.4) (1.25×0.4) ² or 0.3 or (1.5×0.4) 0.4 ² or 0.096 or 0.396)
	$= [0.3 + 0.096] \div 4$ OR $V = \frac{2(1.5d)(1.25d)^2 + (1.5d)d^2}{4}$ $= [4.6875d^3 + 1.5d^3] \div 4$ $= 6.1875d^3 \div 4$ $= 1.546875 \times 0.4^3 \div 4$			(M1 for $h = 1.5 \times 0.4$ or 0.6 or $D = 1.25 \times 0.4$ or 0.5) A1 cao (accept 99000 cm ³ with m ³ crossed out) OR M2 for [$(2(1.5d)(1.25d)^{2} + (1.5d) d^{2})$] $\div 4$ (M1 for $2(1.5d)(1.25d)^{2}$ or $(1.5d) d^{2}$) M1 dep on M1 for substituting $d = 0.4$ eg 1.25×0.4 or 0.5 or 1.5×0.4 or 0.6 A1 cao (accept 99000 cm ³ with m ³ crossed out)

5AM2H	5AM2H_01								
Ques	stion	Working	Answer	Mark	Notes				
5AM2F Ques *11	1_01 (a) (b)	Working $3 + 1 + 3 + 2 + 1 = 10$ $3 \div 10 \times 50$ $3 \times 20 + 10 + 3 \times 5 + 2 \times 2 + 1$ $90 \div 10 = 9p$ $90 \div 10 = 9p$ $9p < 10p$ OR Loses $10p + 10p + 10p$ $30p < 40p$	Answer 15 Yes reason	Mark 2 3	NotesM1 for $\frac{3}{'3+1+3+2+1'} \times 50$ oe or $\frac{3}{10}$ oeA1 caoM1 for $f \times$ prize value oe (at least 3 correct)M1 for $\sum (f \times$ prize value) $\div 10$ (= 9)C1 for Yes with a reason from correct calculations eg 9p < 10p				
		OR In : 50 people = 500p Out: $\frac{3}{10} \times 50 \times 20 + \frac{1}{10} \times 50 \times 10 + \frac{3}{10} \times 50 \times 5$ $+ \frac{2}{10} \times 50 \times 2 + \frac{1}{10} \times 50 \times 1$ = 300 + 50 + 75 + 20 + 5 = 450p 450p < 500p OR In: 10 people = 10 × 10p = 100p Out: each prize happens once = 3×20 + 10 + 3×5 + 2×2 + 1 = 90p 90p < 100p			eg makes 10p every 10 goes; eg $30p < 40p$ OR M1 for $\frac{f}{10} \times 50 \times \text{prize value for out}$ (at least 3 correct) M1 for $\sum (\frac{f}{10} \times 50 \times \text{prize value})$ (= 450 or 4.5) C1 for Yes with a reason from correct calculations eg 450p < 500p OR M1 for $f \times \text{prize value oe}$ (at least 3 correct) M1 for $\sum (f \times \text{prize value})$ (= 90) C1 for Yes with a reason from correct calculations eg 90p < 100p				

5AM2H_01							
Question	Working	Answer	Mark	Notes			
12	$425 \div 17 = 25$ Flour : $8 \times 25 = 200g$ Butter : $4 \times 25 = 100g$ Jam : $5 \times 25 = 125g$ Total weight for 200 rolls: = total grams × 200 ÷ 1000 Flour: $200 \times 0.2 = 40 \text{ kg}$ Butter : $100 \times 0.2 = 20 \text{ kg}$ Jam : $125 \times 0.2 = 25 \text{ kg}$ Total cost = $40 \times 40p$ $+ 20 \times \text{\pounds}2.50 + 25 \times \text{\pounds}1$ = $\text{\pounds}16 + \text{\pounds}50 + \text{\pounds}25$	91	6	M1 for $425 \div `8+4+5'$ or 25 seen M1 for two of 8×25 (=200,) 4×25 (=100), 5×25 (=125) M1 for two of $`200' \times 200$ (= 40 000), $`100' \times 200$ (= 20 000) $`125' \times 200$ (= 25 000) M1 for converting g to kg (at least two ingredients) (= 40, 20, 25) M1 for `40' $\times 40p$ + `20' $\times £2.50$ + `25' $\times £1$ (= £16 + £50 + £25) A1 for 91 or 91.00			
	OR $200 \times 425 (= 85000g = 85kg)$ $85 \div 17 = 5$ Flour: $8 \times 5 = 40 kg$ Butter: $4 \times 5 = 20 kg$ Jam: $5 \times 5 = 25 kg$ Total cost = $40 \times 40p$ $+ 20 \times \pounds 2.50 + 25 \times \pounds 1$ $= \pounds 16 + \pounds 50 + \pounds 25$			OR M1 for 200 × 425 = 85000 (g) M1 for converting g to kg (eg 425 ÷ 1000 or 85000 ÷ 1000) M1 for 85 ÷ '8 + 4 + 5' M1 for two of 8 × '5' (= 40) $4 × '5'$ (= 20) $5 × '5'$ (= 25) M1 for '40' × 40p + '20' × £2.50 + '25' × £1 (= £16 + £50 + £25) A1 for 91 or 91.00			

5AM2H_01				
Question	Working	Answer	Mark	Notes
13	$\frac{\frac{1}{6} \times \frac{1}{6} = \frac{1}{36}}{1 - \frac{1}{36}}$ OR $\frac{\frac{1}{5} \times \frac{5}{6} + \frac{5}{6} \times \frac{1}{6} + \frac{5}{6} \times \frac{5}{6}}{\frac{5}{6} + \frac{5}{6} \times \frac{5}{6}}{\frac{5}{6} + \frac{5}{6} \times \frac{5}{6}}{\frac{5}{6} + \frac{5}{6} \times \frac{5}{6}}$ $= \frac{5 + 5 + 25}{36}$ OR $\frac{1}{1} \frac{1}{1,1} \frac{1}{1,2} \frac{1}{1,3} \frac{1}{1,4} \frac{1}{1,5} \frac{1}{1,6}}{\frac{2}{2} 2,1 2,2 2,3 2,4 2,5 2,6}{\frac{3}{3} 3,1 3,2 3,3 3,4 3,5 3,6}{\frac{4}{4} 4,1 4,2 4,3 4,4 4,5 4,6}{\frac{5}{5} 5,1 5,2 5,3 5,4 5,5 5,6}{\frac{6}{6} 6,1 6,2 6,3 6,4 6,5 6,6}$	35 36	3	M1 for $\frac{1}{6} \times \frac{1}{6}$ oe M1 for $1 - \frac{1}{6} \times \frac{1}{6}$, oe A1 for $\frac{35}{36}$ or $0.97(2222)$ oe OR M1 for $\frac{1}{6} \times \frac{5}{6}$ or $\frac{5}{6} \times \frac{1}{6}$ or $\frac{5}{6} \times \frac{5}{6}$ oe M1 for $\frac{1}{6} \times \frac{5}{6}$, $\frac{1}{6} \times \frac{1}{6}$, $\frac{1}{6} \times \frac{5}{6} \times \frac{5}{6}$, oe A1 for $\frac{35}{36}$ or $0.97(2222)$ oe OR M1 for probability space oe that can lead to the answer M1 for $1 - \frac{\text{number of } 6,6^{\text{i}}}{36}$ or $\frac{\text{number of non } 6,6^{\text{i}}}{36}$ A1 for $\frac{35}{36}$ or $0.97(2222)$ oe
14	$200 \div 7.6$ = 26.31578	26.3	3	M1 for $200 \div 7.6$ A1 for 26.3 or better
		cm ³		B1 (indep) for cm ³

5AM2H	5AM2H 01						
Ques	tion	Working	Answer	Mark	Notes		
15	(a)		32 - 33	1	B1 for 32 – 33		
	(b)		0.7 - 0.9 4.1 - 4.4	2	B2 for $0.7 - 0.9$ and $4.1 - 4.4$ (B1 for $0.7 - 0.9$ or $4.1 - 4.4$) OR $0.7 - 0.9$ and $4.1 - 4.4$ seen)		
	(c)		4.9	3	M1 for tangent drawn at $t = 2$ M1 for $\frac{y'}{x'}$ A1 for 4.5 to 5.3 or f.t. from 'tangent' (dep on 1 st M1)		
16	(a)	$\sin 16^\circ = BC \div 12$ BC = 12 sin 16° = 3.307648	3.31	3	M1 for $\sin 16 = BC \div 12$ oe M1 for $12 \sin 16$ oe A1 for $3.30 - 3.31$ SC: Award B2 for an answer of ± 3.45 or 2.98		
	(b)	RQ = 27 - 3.307648 = 23.6923 tan RBQ = 23.6923 ÷ 18 = 1.31623 < QBR = inv tan 1.31623 = 52.7746	52.8	3	M1 for tan $RBQ = (27 - `3.307648') \div 18$ or tan $BRQ = 18 \div (27 - `3.307648')$ M1 for inv tan $`27 - 3.307648' \div 18'$ or inv tan $BRQ = 18 \div (27 - `3.307648')$ A1 for 52.7 - 52.8 SC: Award B2 for angle $BRQ = 37.2 - 37.3$ SC: Award B2 for an answer of 0.918 or 59.05 or 59.1		

5AM2H_01							
Question		Working	Answer	Mark	Notes		
17	(a)	R 2 4 6 8 10 12 I 6 3 2 1.5 1.2 1	3, 1.5, 1	2	B2 for all 3 correct (B1 for 1 or 2 correct)		
	(b)		graph $I = \frac{12}{R}$	2	 B2 for fully correct graph (B1ft for 6 'points' plotted correctly ± 1 square B1 for smooth curve plotted through all '5 or 6' plotted points provided B1 awarded in (a)) 		

5AM2H_01							
Question	Working	Answer	Mark	Notes			
18	PP + YY + BB	582	5	M1 for use of 29 as denominator for 2 nd probability			
	$= \frac{7}{30} \times \frac{6}{29} + \frac{13}{30} \times \frac{12}{29} + \frac{10}{30} \times \frac{9}{29}$	870		M1 for $\frac{7}{30} \times \frac{6}{29}$ or $\frac{13}{30} \times \frac{12}{29}$ or $\frac{'30-13-7'}{30} \times \frac{'30-13-7-1'}{29}$ oe			
	$=\frac{42+156+90}{870}$			M1 for $\frac{7}{30} \times \frac{6}{29} + \frac{13}{30} \times \frac{12}{29} + \frac{10'}{30} \times \frac{'9'}{29} (=\frac{288}{870})$			
	OR			M1 for $1 - \frac{'288'}{870}$			
	PY + PB + YP + YB + BP + BY			A1 for $\frac{582}{870}$ oe			
	$= \frac{7}{30} \times \frac{13}{29} + \frac{7}{30} \times \frac{10}{29} + \frac{13}{30} \times \frac{7}{29} + \frac{13}{30} \times \frac{10}{29} + \frac{10}{30} \times \frac{7}{29} + \frac{10}{30} \times \frac{13}{29}$			(eg $\frac{97}{145}$, 0.66896, 0.669 with method identified) OR M1 for use of 29 as denominator for 2 nd probability			
	$= \frac{91+70+91+130+70+130}{870}$			M1 for $\frac{7}{30} \times \frac{13}{29}$ or $\frac{7}{30} \times \frac{10}{29}$ or $\frac{13}{30} \times \frac{7}{29}$ or $\frac{13}{30} \times \frac{10}{29}$ or $\frac{10}{30} \times \frac{7}{29}$ or $\frac{10}{30} \times \frac{10}{29}$ oe			
				M2 for $\frac{7}{30} \times \frac{13}{29} + \frac{7}{30} \times \frac{10}{29} + \frac{13}{30} \times \frac{7}{29} + \frac{13}{30} \times \frac{10}{29} + \frac{10}{30} \times \frac{7}{29} + \frac{10}{30} \times \frac{13}{29}$			
				(M1 for at least 3 of these pairs added)			
				A1 for $\frac{582}{870}$ or $(\text{eg } \frac{97}{145}, 0.6689 \text{ to } 0.669 \text{ with method identified})$			
				SC: B2 for $\frac{582}{900}$ oe or for $\frac{582}{840}$			
				(B1 for $\frac{7}{30} \times \frac{6}{30} + \frac{13}{30} \times \frac{12}{30} + \frac{10'}{30} \times \frac{9'}{30}$ oe or $\frac{7}{30} \times \frac{6}{28} + \frac{13}{30} \times \frac{12}{28} + \frac{10'}{30} \times \frac{9'}{28}$ oe)			

5AM2H_01						
Question		Working	Answer	Mark	Notes	
19		$\pi 76^{2} - \pi 24^{2}$ $= 18145.839 1809.557$ $80 \div 360 \times 16336.282$ $= 3630.1284$ OR $\frac{80}{360} \times \pi 76^{2} - \frac{80}{360} \times \pi 24^{2}$ $= 4032.40 402.12$ $= 3630.1284$	3630	4	M1 for $\pi 76^2$ or $\pi 24^2$ or $\frac{80}{360}$ oe seen M1 dep for ' $\pi 76^2$ ' – ' $\pi 24^2$ ' M1 dep on M1 for $\frac{80}{360} \times (\pi 76^2 - \pi 24^2)$ A1 for $3630 - 3631$	
20 QWC		$\sqrt{45^{2} + 20^{2}} = \sqrt{2425} = 49.24$ $\sqrt{30^{2} + 20^{2}} = \sqrt{1300} = 36.05$ $\sqrt{45^{2} + 30^{2}} = \sqrt{2925} = 54.08$ $\sqrt{45^{2} + 20^{2} + 30^{2}} = \sqrt{3325}$ = 57.66281297 OR $30^{2} + 20^{2} + 45^{2}$ = 900 + 400 + 2025 = 3325 $\sqrt{'3325'} = 57.66281297$	No with working	4	M1 for $45^2 + 20^2$ or $20^2 + 30^2$ or $45^2 + 30^2$ M1 for $\sqrt{45^2 + 20^2}$ or $\sqrt{20^2 + 30^2}$ or $\sqrt{45^2 + 30^2}$ M1 for $\sqrt{45^2 + 20^2 + 30^2}$ (= $\sqrt{3325}$) C1 for No AND 57.6 - 57.7 < 60 oe OR M2 for $30^2 + 20^2 + 45^2$ (= 900 + 400 + 2025 = 3325) M1 for $\sqrt{3325}$ C1 for No AND 57.6 - 57.7 < 60 oe	

5AM2E	5AM2H_01					
Ques	tion	Working	Answer	Mark	Notes	
21		$T = k \sqrt{L} 2 = k \sqrt{100}$	1.6	4	M1 for $T = k \sqrt{L}$	
		$k = 2 \div 10 = 0.2$			M1 for $2 = k \sqrt{100}$ oe	
		$0.2 \times \sqrt{64}$			M1 for $(k=)$ 2 ÷ $\sqrt{100}$ (=0.2)	
		0.2 ~ \04			Al for 1.6 cao	
					OR	
					M2 for $2 \times \frac{\sqrt{64}}{\sqrt{100}}$ or $2 \div \frac{\sqrt{100}}{\sqrt{64}}$ oe	
					(M1 for scale factor $\frac{\sqrt{64}}{\sqrt{100}}$ or $\frac{\sqrt{100}}{\sqrt{64}}$ oe)	
					A1 for 1.6 cao	
22	(a)	$5.95 \times 14.5 \times 60$	5.1765	3	B1 for 5.95 or 14.5 seen	
		$= 86.275 \times 60 = 5176.5$			M1 dep on B1 for 'LB' speed \times 'LB' time	
		5176.5 ÷ 1000			eg 5.95 × 14.5 (× 60)	
					A1 for cao	
	(b)	4.65 km = 4650 m		3	B1 for 4.65 or 4650 or 16.5 or 990 seen	
		$16.5 \text{ min} = 16.5 \times 60 = 990 \text{ sec}$	4.69		M1 dep on B1 for 'UB' distance ÷ 'LB' time	
		$4650 \div 990 = 4.69696969$			eg 4650 ÷ 990 eg 4.65 ÷ 16.5	
					A1 for 4.6^{4} or $\frac{155}{33}$ oe (condone 4.6969)	

5AM2H_01						
Question	Working	Answer	Mark	Notes		
23	2010: 8400 2011: 8988 2012: 9617 (.16) 2013: 10290 (.36) 2014: 11010 (.686) 2015: 11781 (.43) 2016: 12606 (.134) 2017: 13488 (.564) 2018: 14432 (.76) 2019: 15443 (.057)	2019	5	M1 for $\left(1+\frac{7}{100}\right)$ oe (eg 1.07 seen) or 8988 seen M1 for $8400 \times \left(1+\frac{7}{100}\right)^n$ seen or $8400 \times \left(1+\frac{7}{100}\right)^n$ where $n \ge 2$ eg 9617 seen M1 for $8400 \times \left(1+\frac{7}{100}\right)^n$ where $n \ge 5$ M1 $n = 9$ evaluated and bees = 15 443 (.067) (or bees > 15 000) A1 for 2019		

2 cm

4 cm

Q3.

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UG033658 November 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

