| Write your name here                                                     |               |                          |  |  |  |  |
|--------------------------------------------------------------------------|---------------|--------------------------|--|--|--|--|
| Surname                                                                  | Other nan     | nes                      |  |  |  |  |
| Edexcel GCSE                                                             | Centre Number | Candidate Number         |  |  |  |  |
| Methods in Mathematics Unit 1: Methods 1 For Approved Pilot Centres ONLY |               |                          |  |  |  |  |
|                                                                          |               | Higher Tier              |  |  |  |  |
| Wednesday 16 November Time: 1 hour 45 minutes                            | 3             | Paper Reference 5MM1H/01 |  |  |  |  |
|                                                                          |               |                          |  |  |  |  |
| You must have: Ruler graduat                                             |               | imetres. Total Marks     |  |  |  |  |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
   there may be more space than you need.
- Calculators must not be used.

### Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
   use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (\*) are ones where the quality of your written communication will be assessed.

#### **Advice**

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.







## **GCSE Mathematics 2MM01**

Formulae – Higher Tier

You must not write on this formulae page.

Anything you write on this formulae page will gain NO credit.

**Volume of prism** = area of cross section  $\times$  length



Area of trapezium =  $\frac{1}{2}(a+b)h$ 



Volume of sphere =  $\frac{4}{3}\pi r^3$ Surface area of sphere =  $4\pi r^2$ 



**Volume of cone** =  $\frac{1}{3} \pi r^2 h$ 

Curved surface area of cone =  $\pi rl$ 



In any triangle ABC



The Quadratic Equation

The solutions of  $ax^2 + bx + c = 0$ where  $a \ne 0$ , are given by

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

Sine Rule  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 

Cosine Rule  $a^2 = b^2 + c^2 - 2bc \cos A$ 

Area of triangle =  $\frac{1}{2}ab \sin C$ 

# Answer ALL questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

You must NOT use a calculator.

1



Diagram **NOT** accurately drawn

Work out the perimeter of this shape.

cr

(Total for Question 1 is 2 marks)

2 Given that  $103.7 \times 17.5 = 1814.75$ 

write down the value of

(i)  $10.37 \times 1.75$ 

(ii)  $1.037 \times 17500$ 

(iii) 181.475 ÷ 175

.....

(Total for Question 2 is 3 marks)

| (2)  |
|------|
|      |
|      |
|      |
|      |
|      |
| (2)  |
|      |
|      |
|      |
|      |
| (2)  |
| rks) |
|      |

| 4 | A bag contains only red counters and blue counters. There are 4 red counters in the bag.                                                  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|
|   | The probability of taking a blue counter is the same as the probability of taking a red counter.                                          |
|   | (a) How many blue counters are there in the bag?                                                                                          |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   | (1)                                                                                                                                       |
|   | In another bag there are 14 counters.  The bag contains only red counters, blue counters and yellow counters.  4 of the counters are red. |
|   | The probability of taking a blue counter is twice the probability of taking a red counter.                                                |
|   | (b) How many yellow counters are there in the bag?                                                                                        |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   | (3)                                                                                                                                       |
|   | (Total for Question 4 is 4 marks)                                                                                                         |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |
|   |                                                                                                                                           |



5



(a) Enlarge triangle A, with scale factor 2, centre (2, 2).

(2)



| 4 | 1_\      | Dagarilaa | £-114       | 1 1         | transformation                    | 414          | tui au ala D      |               | ~1~ ~  |
|---|----------|-----------|-------------|-------------|-----------------------------------|--------------|-------------------|---------------|--------|
| ( | n)       | Describe  | HIIIIV I    | ne single   | iransiormation                    | inai mans    | iriangie <b>B</b> | onio iriang   | gie t. |
| ۸ | $\sim$ , | Describe  | I CHII 7 C. | 110 0111510 | ti diliti o i i i i di ci i i i i | tilde lilaps | uriani,           | Olico diladi, | 5. · · |

(3)



(c) Translate triangle **D** by  $\begin{pmatrix} -4 \\ 5 \end{pmatrix}$ .

(2)

(Total for Question 5 is 7 marks)

6 Savio has two fair dice.

He throws the two dice and adds the scores together.

(i) What is the probability of getting a total of exactly 11?

Savio says,

- "The probability of getting a total of 5 or more is  $\frac{3}{4}$ "
- \*(ii) Is Savio correct?

You must show your working.

(Total for Question 6 is 6 marks)

7 Here is a triangle.



Diagram **NOT** accurately drawn

The height of the triangle is 4 cm. The base of the triangle is 7 cm.

(a) Work out the area of the triangle.

.....cm<sup>2</sup>

(b) Work out the length and the width of a rectangle that has the same area as this triangle.

length ......cm

width ......cm

(-)

(Total for Question 7 is 4 marks)

8 A pizza shop sells eight types of pizzas.

This table gives information about the first 40 pizzas sold one evening.

| Type of Pizza | Total |
|---------------|-------|
| Margherita    | 8     |
| Hawaiian      | 9     |
| 4 cheeses     | 4     |
| Chicken       | 7     |
| Vegetarian    | 8     |
| Pepperoni     | 3     |
| Farmhouse     | 0     |
| Seafood       | 1     |

Using this information

- (i) find an estimate for the probability that the next pizza sold will be a Margherita pizza,
- (ii) find an estimate for the probability that the next pizza sold will be either a Hawaiian or a Seafood pizza.

(Total for Question 8 is 4 marks)

9 (a) On the grid, draw the graph of y - 2x = 5 for values of x from x = -2 to x = 4



| (h) Has your amount to E. 1                         |                                    |
|-----------------------------------------------------|------------------------------------|
| b) Use your graph to find                           |                                    |
| (i) the value of y when $x = -0.5$                  |                                    |
|                                                     |                                    |
|                                                     |                                    |
|                                                     | <i>y</i> =                         |
| (ii) the value of x when $y = 8.2$                  |                                    |
|                                                     |                                    |
|                                                     |                                    |
|                                                     | <i>x</i> =                         |
|                                                     | (2)                                |
|                                                     | (Total for Question 9 is 5 marks)  |
| The equation of a straight line is $y = 4x + 7$     |                                    |
| (a) Write down the gradient of the line.            |                                    |
|                                                     |                                    |
|                                                     |                                    |
|                                                     |                                    |
|                                                     | (1)                                |
| (b) Write down the <i>y</i> -intercept of the line. |                                    |
|                                                     |                                    |
|                                                     |                                    |
|                                                     |                                    |
|                                                     | (1)                                |
|                                                     | (Total for Question 10 is 2 marks) |

| 11 | The  | size | of the | obtuse | anole | in an  | isoscele | s triangle | is | $\chi^{\circ}$ |
|----|------|------|--------|--------|-------|--------|----------|------------|----|----------------|
| 11 | 1110 | SIZC | or the | ootuse | angic | III an | 13030010 | s mangic   | 13 | $\lambda$      |

Write an expression, in terms of x, for the size, in degrees, of one of the other two angles.

(Total for Question 11 is 2 marks)

12 (a) Factorise fully 
$$3x^2 - 6x$$

(2)

(b) Expand and simplify 
$$3(2y + 7) + 4(y - 5)$$

(2)

(c) Solve 
$$12 = 5(x-2)$$

(3)

(Total for Question 12 is 7 marks)

# 13 Here are some shapes.

Some of the shapes are quadrilaterals and some of the shapes have at least one right angle.

 $Q = \{\text{quadrilaterals}\}.$ 

 $R = \{\text{shapes which have at least one right angle}\}.$ 

Write the number for each shape in the correct place in the Venn diagram.





(Total for Question 13 is 4 marks)

| 4 Here is a sequence of patter         | rns made from         | centim  | etre squ | ares.     |                 |                |
|----------------------------------------|-----------------------|---------|----------|-----------|-----------------|----------------|
|                                        |                       | Τ       |          |           |                 |                |
|                                        |                       | _       |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
| Pattern Number 1                       | Pattern 1             | Numbe   | er 2     |           |                 |                |
|                                        |                       |         |          |           |                 |                |
| -                                      |                       |         |          | _         |                 |                |
| -                                      |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        | Pattern 1             | Numbe   | er 3     |           |                 |                |
| (a) Write down the number              | of centimetre s       | allarec | used in  | Patter    | n Number 4      |                |
| (a) Write down the number              | of continuence s      | quares  | useu III | i i attei | ii ivaiiioci 4  |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 | (1)            |
| (b) Find an expression, in to          | erms of $n$ , for the | ne num  | ber of c | entime    | etre squares us | sed in         |
| Pattern Number <i>n</i> .              |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 | (2)            |
| ( ) A1                                 | 1.                    |         | 1 . 1 .  | 1         | c 200           | (2)            |
| (c) Alex says there is a patt squares. | ern in this sequ      | ence w  | nich is  | made      | from 200 cent   | imetre         |
| Is Alex correct?                       |                       |         |          |           |                 |                |
| Explain your answer.                   |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           |                 |                |
|                                        |                       |         |          |           | _               | (2)            |
|                                        |                       |         | (        | Total :   | for Question    | 14 is 5 marks) |

15 (a) Here are two triangles.





Are these triangles similar? You must give your reasons.

**(2)** 



Diagram **NOT** accurately drawn

(b) Calculate the length AE.

.....cm (2)

(Total for Question 15 is 4 marks)

**16** Put the following numbers in order. Start with the smallest number.

$$4.7\times 10^{4} \qquad 4700 \qquad 407\times 10^{-3} \qquad 0.47\times 10^{2}$$

(Total for Question 16 is 2 marks)

17 Simplify 
$$\frac{x^2-9}{x^2+x-12}$$

(Total for Question 17 is 3 marks)



Diagram **NOT** accurately drawn

A, B and C are points on the circumference of a circle, centre O. PAT is a tangent to the circle. The angle ABC is  $34^{\circ}$ .

(a) Find the size of the angle *TAC*. Give a reason for each stage in your working.

(2)



Diagram **NOT** accurately drawn

P, Q, R and S are points on the circumference of a circle, centre O. POR is a diameter of the circle. The angle POS is  $130^{\circ}$ .

\*(b) Find the size of angle *SQR*. Give reasons for your answer.

**(4)** 

(Total for Question 18 is 6 marks)



| <b>19</b> (a) Write down the value of 8 <sup>0</sup>   |                                                    |
|--------------------------------------------------------|----------------------------------------------------|
| (b) Write down the value of 14 <sup>-1</sup>           | (1)                                                |
| (c) Work out the value of $27^{\frac{2}{3}}$           | (1)                                                |
|                                                        | (2) (Total for Question 10 is 4 marks)             |
| 20 Prove algebraically that the sum of any two odd nur | (Total for Question 19 is 4 marks)  mbers is even. |
|                                                        |                                                    |
|                                                        |                                                    |
|                                                        |                                                    |
|                                                        | (Total for Question 20 is 3 marks)                 |

| 21 | S is the event 'picking a red counter' and $P(S) = \frac{2}{9}$                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (a) Write down the value of $P(S')$                                                                                                                                                      |
|    |                                                                                                                                                                                          |
|    | (1)                                                                                                                                                                                      |
|    | Miles puts 3 green blocks, 5 white blocks and 1 pink block in a bag. He takes at random a block from the bag. He writes down the colour of the block. He puts the block back in the bag. |
|    | He then takes at random a second block from the bag and writes down its colour.                                                                                                          |
|    | (b) Work out the probability that                                                                                                                                                        |
|    | (i) he takes one white block and one pink block,                                                                                                                                         |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    | (ii) at least one of the blocks he takes is white.                                                                                                                                       |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    |                                                                                                                                                                                          |
|    | (5)                                                                                                                                                                                      |
|    | (Total for Question 21 is 6 marks)                                                                                                                                                       |
|    |                                                                                                                                                                                          |

| <b>22</b> (a) Rationalise | e the denominator of $\frac{6}{\sqrt{5}}$          |                          |            |
|---------------------------|----------------------------------------------------|--------------------------|------------|
|                           |                                                    |                          | (2)        |
| (b) Expand and            | d simplify $(2 + \sqrt{10})(\sqrt{5} + \sqrt{20})$ |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    | (Total for Question 22 i | (4)        |
| 23 (a) Solve              | $x^2 - 6x - 16 = 0$                                | (Total for Question 22 f | S O Harks) |
| · · ·                     |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          | (3)        |
| Hence or other            | rwise                                              |                          |            |
| (b) solve                 | $(x+2)^2 - 6(x+2) - 16 = 0$                        |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          |            |
|                           |                                                    |                          | (2)        |
|                           |                                                    | (Total for Question 23 i | s 5 marks) |

**TOTAL FOR PAPER IS 100 MARKS** 

