

Edexcel GCSE

Mathematics 2381

March 2009

advancing learning, changing lives

Mark Scheme (Results)

Edexcel GCSE Mathematics 2381 Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information please call our Customer Services on + 44 1204 770 696, or visit our website at www.edexcel-international.org.

Publication Code: UG021048 March 2009 All the material in this publication is copyright © Edexcel Ltd 2009

Table Of Contents

1.	5381F/05	 	 	 4
2.	5381H/06	 	 	 7
3.	5382F/07	 	 	 11
4.	5382H/08	 	 	 11
5.	5383F/09	 	 	 12
6.	5383H/10	 	 	 14

5381F	7/05 - Se	ection A			
Que	stion	Working	Answer	Mark	Notes
1	(a)		7	1	B1 cao
	(b)		Monday	1	B1 cao accept abbreviations
	(c)		Tuesday and Wednesday	1	B1 cao accept abbreviations (not T)
2	(a)		10 centime	1	B1 for 10 centime or centime
	(b)		1 dollar	1	B1 for 1 dollar or dollar
3	(a)		$\frac{1}{4}$	1	B1 for $\frac{1}{4}$ or equivalent fraction
	(b)	20 × 3	60	2	 M1 for 360 ÷ 120 or 3 seen or 360 ÷ (120 ÷ 20) or three of 20,10,10,15,5 seen either on the diagram or seen in a sum of 4 or 5 numbers A1 ca
4	(a)		23 14 37 19 24 43 42 38 80	3	 B3 for all correct (B2 for 5, 6, 7 or 8 correct) (B1 for any 2 of the 4 given correctly placed)
	(b)		$\frac{42}{80}$	1	B1 for $\frac{"42"}{"80"}$ oe
5	(a)		Positive	1	B1 cao (Accept +ve)
	(b)		Line of best fit	1	B1 for a straight line passing between (65, 160) and (65, 166) and between (80, 178) and (80, 184)
	(c)		173 – 176	1	B1 for $173 - 176$ or ft from a single line segment with positive gradient ± 1 full (2mm) square

5381F	7/05-Sec	tion B			
Que	stion	Working	Answer	Mark	Notes
1	(a)(i)		8	1	B1 cao
	(ii)		10	1	B1 cao
	(b)			2	B1 cao B1 cao
			⊞⊞ □		
2	(a)	(1,H), (2,H), (3,H), (4,H), (5,H),		2	B2 for listing 10 outcomes with no extras
		(1,T), (2,T), (3,T), (4,T), (5,T)			(B1 for listing 4 additional outcomes, ignore repeats or extras)
	(b)		$\frac{1}{10}$	1	B1ft for $\frac{1}{10}$ o.e. or 1/their total Accept decimals or percentages
3	(a)		5	1	B1 cao
	(b)	87 - 46	41	2	M1 for 87 – 46, (accept 46 to 87 and 46 – 87) A1 cao

5381	F/05 - Se	ction B			
Que	estion	Working	Answer	Mark	Notes
4	(a)		No time period No response box for 0 Need smaller class intervals	2	B2 for 2 of the 3 reasons (B1 for 1 reason)
	(b)		Comment on sample	1	B1 for sample too small or all same age group or same gender
5			Points plotted at (105,5), (115,9), (125,14), (135,24), (145,8) and joined with line segments	2	 B2 cao for plotting correct points ± 1 sq and joining with line segments (B1 for points plotted correctly at midpoints of intervals or joining points with line segments at the correct heights and consistent within the class interval (including end values) or correct frequency polygon with one point incorrect) or correct frequency polygon with first and last point joined NB Ignore any histogram drawn and any part of frequency polygon outside range of first and last points plotted

5381H	1/06 - Se	ection A				
Que	estion	Working	Answer	Mark		Notes
1			4 6 8 5 1 2 8 6 0 3 4 6 8 7 4 7 8 9	3	M1 A1	for unordered leaves (condone two errors or omissions) for a fully correct ordered stem and leaf diagram
			8 7		B1	for key, eg 4 6 means 46
2	(a)		Positive	1	B1	cao
	(b)		Line of best fit	1	B1	for a straight line passing between (65, 160) and (65, 166) and between (80, 178) and (80, 184)
	(c)		173 – 176	1	B1	for 173 – 176 or ft from a single line segment with positive gradient ±1 full (2mm) square
3	(a)		82	2	M1 A1	for (99 + 63 + 92 + 74) ÷ 4 or 328 ÷ 4 cao
	(b)		Decreasing	1	B1	for decreasing oe
	(c)	Heights = 5, 20, 40, 75, 100	Correct cumulative frequency graph	2	B2	for fully correct cumulative frequency graph (Ignore any part of graph outside range of points)
					(B1	for 4 or 5 points plotted correctly ±1 full (2mm) square at the end of interval
						or for 4 or 5 points plotted not at end but consistent within each interval and joined)
	(d)		640 – 680	1	B1	for $640-680$ or $$ ft $$ (dep on graph being cf) for reading from graph at 50 \pm 1 full (2mm) square

5381	i381H/06 - Section A											
Que	stion	Work	ing		Answer	Mark		Notes				
4		$40 \le t < 50$ $50 \le t < 55$ $55 \le t < 65$ $65 \le t < 80$ $80 \le t < 100$	fd 1. fd 3. fd 3. fd 2 fd 1.			3	B3 (B2 (B1	for 5 correct histogram bars $\pm \frac{1}{2}$ square AND frequency density numbered appropriately or key and consistent scaling for 5 correct histogram bars $\pm \frac{1}{2}$ square or all heights correct with frequency density numbered appropriately with one error in numbering or 3 or 4 histogram bars correct AND frequency density numbered appropriately or key and consistent scaling) for 4 histogram bars in correct proportion, no numbering or 2 or more frequency densities correctly or 2 or more histogram bars in correct proportion with appropriate numbering on the f.d. axis)				

5381	H/06 - S	Section B			
Que	stion	Working	Answer	Mark	Notes
1	(a) (b)	0.3 × 50	0.2	2	M1 for 1- (0.5 + 0.3) A1 for 0.2 oe SC Award M1A0 for an answer of 0.92 M1 for 0.3×50 oe A1cao SC Award B1 for $\frac{15}{50}$ on the answer line if M0 scored
2	(a) (b)		No time period No response box for 0 Need smaller class intervals Comment on sample	2	 B2 for 2 of the 3 reasons (B1 for 1 reason) B1 for sample too small or all same age group or same gender
3	(a)	0 10 20 30 40 50 60 Time in minutes	Box plot	2	 B1 for ends of whiskers at 0 and 41 (with an appropriate box) B1 for ends of box at 2 and 18 with median at 8
	(b)		2 comparisons	2	 B2 for two comparisons with at least one on spread (B1 for one comparison of spread or one comparison of values)

5381H/06-S	ection B			
Question	Working	Answer	Mark	Notes
4	$(\frac{5}{10} \times \frac{7}{10}) + (\frac{5}{10} \times \frac{1}{10}) + (\frac{3}{10} \times \frac{1}{10}) + (\frac{3}{10} \times \frac{1}{10}) + (\frac{2}{10} \times \frac{2}{10}) + (\frac{2}{10} \times \frac{7}{10}) + (\frac{2}{10} \times \frac{7}{10}) = \frac{35 + 5 + 6 + 3 + 4 + 14}{100}$ OR $1 - [(\frac{5}{10} \times \frac{2}{10}) + (\frac{3}{10} \times \frac{7}{10}) + (\frac{3}{10} $	$\frac{67}{100}$	4	M1 for a tree diagram with at most 2 errors or one of $\left(\frac{5}{10} \times \frac{7}{10}\right)$ or $\left(\frac{5}{10} \times \frac{1}{10}\right)$ etc M1 for 5 out of 6 correct pairings of different colours or 2 out of 3 correct pairings of same colours or 8 out of 9 correct pairings of all colours M1 (dep on M2) for adding 5 or 6 correct pairings of different colours or 1 - (2 or 3 correct pairings of same colours) A1 for $\frac{67}{100}$ oe
	$\left(\frac{2}{10} \times \frac{1}{10}\right)$ = $1 - \frac{10 + 21 + 2}{100} = 1 - \frac{33}{100}$			SC All correctly done but 2^{nd} spinner all $\frac{x}{9}$ Award M1 for a "correct tree" M1 for adding 5 or 6 "correct pairings" of different colours or 1 – (2 or 3 "correct pairings" of same colours) M0 A0 (answer = 67/90)

UNIT 2 STAGE 1 5382F 07

Question	1	2	3	4	5	6	7	8	9	10
Answer	D	В	D	С	D	В	С	Е	Α	D
Question	11	12	13	14	15	16	17	18	19	20
Answer	С	В	В	Α	С	Е	Α	С	Е	D
Question	21	22	23	24	25					
Answer	Α	В	С	В	E					

UNIT 2 STAGE 1 5382H 08

Question	1	2	3	4	5	6	7	8	9	10
Answer	Α	Е	В	C	C	В	Е	С	D	В
Question	11	12	13	14	15	16	17	18	19	20
Answer	С	Ε	D	C	Ε	Α	Ε	В	D	Α
Question	21	22	23	24	25					
Answer	D	Α	В	D	C					

5383	F/09				
Que	stion	Working	Answer	Mark	Notes
1	(a)		36	1	B1 cao accept answer in words, ignore spelling
	(b)		15	1	B1 cao accept answer in words, ignore spelling
	(c)		1000	1	B1 cao accept answer in words, ignore spelling
2		34 -15 + 17	36	2	M1 34 -15 + 17 or 34 + 2 or 34 + 17 - 15 oe or sight of 19 or 51 A1 cao (accept if 36p seen) B1 SC for 2 seen as their answer
3	(a)		0.25	1	B1 cao
	(b)		5	1	B1 cao
4	(a)		Radius	1	B1 ignore spelling
	(b)		Tangent	1	B1 ignore spelling
5	(a)	180 - 56 - 56	68	2	M1 for use of two base angles in an isosceles triangle or sight of 56 marked on diagram for angle <i>C</i> . This may be given for 112° seen A1 cao
	(b)	Base angles of isosceles triangle are equal Sum of angles in a triangle is 180° (oe)	Full reasons	1	B1 for Two(base) angles or B and C (in an isosceles triangle are) equal or two equal sides so two equal angles or equal angles are opposite equal sides and (Angles) in a triangle (add to) 180°

5383	F/09				
Que	estion	Working	Answer	Mark	Notes
6	(a)		1.5 - 2.0	1	B1 1.5 - 2.0m inclusive (accept imperial equivalent, where units have been changed in the range 5'6" to 6'6")
	(b)		4.5 - 6.0	2	M1 ft from their evidence of use of man as a scale in the range 2.5 to 3 (With or Without Working) A1 ft from (a) or 4.5 - 6.0 inclusive
7	(a)		20	1	B1 cao
	(b)		25	1	B1 accept answer in range $24 \le t \le 26$
	(c)	90-40	50	2	M1 picks 10th and 35th seconds ft \pm 1 square, can be implied by sight of 90 \pm 2 or 40 \pm 2, or marks on the graph at (10, 40) and (35, 90) A1 (48 to 52 inclusive)
8	(a)	4(2x+5)+2(3x-2) 8x+20+6x-4	14 <i>x</i> + 16	2	M1 for either $8x + 20$ or $6x - 4$ or $4 \times 2x + 4 \times 5$ or $2 \times 3x - 2 \times 2$ or $14x$ or $+ 16$ A1 for $14x + 16$
	(b)		y(y-4)	1	B1
9	(a)	$\frac{26.4 + 8.2}{\sqrt{5.76}} = \frac{34.6}{2.4}$	14.4166(6667)	2	B2 14.4166(6667) accept $\frac{173}{12}$ or $14\frac{5}{12}$ or 14.416 (B1 for 34.6 or 2.4 seen)
	(b)		14.42	1	B1 ft from "14.4166" assuming original is to 3 d.p. or more

5383H/10							
Question		Working	Answer	Mark	Notes		
1	(a)	x -2 -1 0 1 2 3 y -7 -5 -3 -1 1 3	Table	2	B2 for 2 correct entries (B1 for1 correct entry)		
	(b)		Graph	2	B2 for straight line from (-2, -7) to (3, 3) (B1 for 5 of their points correctly plotted or single straight line passing through (0, -3) from $x = -2$ to +3 or for a straight line with gradient 2 from $x = -2$ to +3 or correct straight line that passes through 3 correct points)		
2		$\frac{15}{100} \times 200 \text{ or } 20 + 10$	30	1	B1 cao		
3	(a)	$\frac{26.4 + 8.2}{\sqrt{5.76}} = \frac{34.6}{2.4}$	14.4166(666)	2	B2 14.4166(6667) accept $\frac{173}{12}$ or $14\frac{5}{12}$ or 14.416 (B1 for 34.6 or 2.4 seen)		
	(b)		14.42	1	B1 ft from "14.4166" assuming original is to 3 d.p. or more		
4	(a)	4(2x+5) + 2(3x-2) 8x + 20 + 6x - 4	14x+16	2	M1 for either $8x + 20$ or $6x - 4$ or $4 \times 2x + 4 \times 5$ or $2 \times 3x - 2 \times 2$ or $14x$ or $+ 16$ A1 for $14x + 16$		
	(b)	$x^2 + 5x + 8x + 40$	$x^2 + 13x + 40$	2	B2 cao (B1 for 3 or 4 of the 4 terms correct, can be implied by $x^2 + 13x + n$ or $nx^2 + 13x + 40$)		
5			3.2×10 ¹⁰	2	B2 cao (B1 3.2×10^{n} , <i>n</i> an integer $\neq 10$, or 32×10^{9} or 32 000 000 000 or 3.2 exp10 or $3.2^{\times 10^{10}}$ seen)		

5383	5383H/10							
Que	stion	Working	Answer	Mark	Notes			
6	(a)	$5^{3} - 5 \times 3 \times 3$ 125 - 45 $(5 \times 5 - 3 \times 3) \times 5$ $(25 - 9) \times 5$ 16 \times 5	80	2	M1 for attempt to find volume of cube (e.g. $5 \times 5 \times n$ where $n \neq 6$) and subtract volume of the hole (e.g. $3 \times 3 \times n$ where $n \neq 6$) (needs to be dimensionally correct) A1 cao Alternative method M1 for attempt to find area of the cross section and multiply by the depth of the prism (depth $\neq 6$) A1 cao			
	(b)	64 ÷ 80	0.8	2	M1 ft 64 ÷ "80" A1 ft (to 2 sf or better)			
7		<i>SOT</i> = 360 - (90+90+44) = 136°	46°	4	Using triangle SOP B1 recognition of tangent/radius property (can be awarded for a right angle marked on the diagram) M1 180 - 90 - 22 or sight of 68° M1 SOP - 22 A1 cao			
		<i>SOT</i> = 360 - (90+90+44) = 136° 136 - 90 <i>SOT</i> = 360 - (90+90+44) = 136° 136 ÷ 2 - 22			Using quadrilateral SPTO B1 recognition of tangent/radius property (can be awarded for a right angle marked on the diagram) M1 360 - (2× 90 + 44) or sight of 136° M1 <i>SOT</i> - 90 A1 cao Alternative method for quadrilateral <i>SPTO</i> B1 recognition of tangent/radius property (can be awarded for a right angle marked on the diagram) M1 360 - (2× 90 + 44) or sight of 136° M1for 136 ÷ 2 - 22			
					A1 cao			

5383H/10							
Question		Working	Answer	Mark	Notes		
Que 8	(a) (b)	Working $((x+1) - (y+1)) \times ((x+1) + (y+1))$ $x^{2} + 2x + 1 - (y^{2} + 2y + 1)$ $= x^{2} - y^{2} + 2x - 2y$ $=$	Answer (x + y)(x - y) (x-y)(x+y+2)	Mark 1 2	B1 cao M1 for attempt to replace x by $(x + 1)$ and y by $(y + 1)$ A1 cao Alternative M1 for expanding both brackets to get $x^2 + 2x + 1$ and $y^2 + 2y + 1$		
		(x-y)(x+y) + 2(x-y)			Al cao		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UG021048 March 2009

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH