

GCSE

Edexcel GCSE Mathematics A 1387 Paper 5525/05

Summer 2005

Mark Scheme (Results)

advancing learning, changing lives

Edexcel GCSE Mathematics A 1387 Paper 5525/05

NOTES ON MARKING PRINCIPLES

1 Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

2 Abbreviations

cao - correct answer only ft - follow through isw - ignore subsequent working SC: special case oe - or equivalent (and appropriate) dep - dependent indep - independent

3 No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

4 With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks. Discuss each of these situations with your Team Leader. If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work. If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

5 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.

Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

6 Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. incorrect cancelling of a fraction that would otherwise be correct It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

7 Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).

Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.

If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.

If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

8 Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded.

9 Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in anoth

Paper 5525/05	5			
No	Working	Answer	Mark	Notes
1 (a)	$x^2 - 4x + 7x - 28$	$x^{2} + 3x - 28$	2	M1 for 4 terms correct ignoring signs (e.g x^2 , 4 x , 7 x , 28) or 3
				terms with correct signs (e.g. x^2 , $-4x$, $7x$, -28)
				A1 cao
(b)		$y^4 + 2y^2$	2	B2 cao
				B1 for y^4 or $2y^2$
(c)		<i>p</i> (<i>p</i> +6)	2	B2 for $p(p+6)$ or $p \times (p+6)$ (D1 for $p(q+b)$ where q, b are numbers or $p+6$ seen on it?
				(B1 for $p(ap+b)$ where a,b are numbers or $p+6$ seen on it's own, or part of an expression)
(d)		3x(2x-3y)	2	B2 (B1 for $3(2x^2 - 3xy)$ or $x(6x - 9y)$ or $3x()$)
2		question + response	2	1 st aspect: One question with time period (eg each night);
		boxes oe		ignore other questions.
				2 nd aspect: Response list (at least two), not overlapping.* 3 rd aspect: Some mention of units (eg hours) in either
				question or responses
				Award B2 for all three aspects, or B1 for just two aspects.
3		reflection in $y = x$	2	* 0-1, 2-3, 4-5 is OK, but 0-1, 1-2, 2-3 is not OK. B2 cao accept the word "reflected"
5		Tenection in $y - x$	2	(B1 any statement including the word "reflection")
4 (a)	5 - 3x = 2x + 2	$\frac{3}{5}$	3	B1 for $2x + 2$ seen OR $2.5 - 1.5x = x + 1$
	5 - 2 = 2x + 3x	5		M1 for correct rearrangement of 4 terms
				A1 for $\frac{3}{5}$ oe
(b)		-3,-2,-1,0,1,2	2	B2 (B1 for 5 correct and not more than one incorrect
				integers)

Pape	er 5525/05				
	No	Working	Answer	Mark	Notes
5	(a)	$\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}$	$\frac{1}{2}$	2	M1 for $\frac{6}{12}$ or $\frac{3}{6}$ or $\frac{2 \times 3}{3 \times 4}$ A1 accept 0.5
	(b)	$1+2+\frac{8}{12}+\frac{9}{12}$	$4\frac{5}{12}$	2	M1 for attempt to convert to fractions with common denominator e.g two fractions, denominator of 12 A1 correct conversion : $\frac{8}{12}$ and $\frac{9}{12}$, or $\frac{20}{12}$ and $\frac{33}{12}$ seen (oe) A1 cao for $4\frac{5}{12}$ OR attempts to convert to decimals: must use at least 2dp M1 0.66+0.75 (or 1.66+2.75) or 0.67+0.75 etc A1 4.41, 4.417, 4.416 or 0.41, 0.417, 0.416 or 0.42, 4.42 A1 4.416 (<i>recurring</i>)
6	(a)(i)		56	1	B1 accept 15625, 5 ⁴⁺²
	(ii)		5 ³	1	B1 accept 125, 5 ⁹⁻⁶
	(b)	x + y = 10 and $x - y = 4$	$\begin{array}{l} x = 7\\ y = 3 \end{array}$	3	M1 for either $x + y = 10$ or $x - y = 4$ A2 for both values correct [(A1 for one value correct) If M0, award B3 for both values correct or B2 for one value correct, otherwise B0] SC B2 for $x = 3$ or $y = 7$

Paper 5525	Paper 5525/05				
No	Working	Answer	Mark	Notes	
7	$2 \times \frac{1}{2} \times 6 \times 8 \text{ or } 48$ 8 \times 9 + 6 \times 9 + 10 \times 9 or 72 + 54 + 90	264 cm ²	4	M1 attempt to find the area of one face; $\frac{1}{2} \times 6 \times 8$ or (8×9) or (6×9) or (10×9) or 72 or 54 or 90 or 24 or 48 M1 all five faces with an intention to add A1 cao numerical answer of 264 B1 (indep) cm ² with or without numerical answer	
8		$\frac{\pi a b^3}{3d} 3(c+d)^3 3\pi b c^2$	3	B3 (B1 for each one correct) Nb –B1 for each of the 4 th ,5 th ,6 th tick	
9 (a) (b)	x + 0.3 + 0.2 + x = 1 0.3 × 200	0.25 60	2 2	M1 for $x + 0.3 + 0.2 + x = 1$ oe, or $0.5 \div 2$ A1 oe M1 0.3×200 A1 cao Accept 60 out of 200 (in words) SC B1 for $\frac{60}{200}$	
10 (a) (b)		(-12)-4 -2 (0)8 5 points plotted accurately points joined with smooth curve	3 2	B3 for all correct [(B1 for each one correct) B1 ± 1 full (2mm) square ft table if at least B1 awarded (all 5 points plotted) B1 ft for any smooth curve if previous B1 gained NB: curve must pass within 1 full square of the points	
11		m=3 n=5	2	B1 for 3 B1 for 5 (B2 for $2^3 \times 5$ or $2 \times 2 \times 2 \times 5$) SC: award B1 only if $m=3$, $n=3$, for 8×5 seen	

Paper	Paper 5525/05				
I	No	Working	Answer	Mark	Notes
12		$\frac{51}{-1 - 2} = -2$	y = -2x + 5	4	M1 for clear attempt to find gradient eg fraction with -1,5 in numerator, 2,-1 in denominator A1 for -2 cao B2 ft for $y = "-2"x + 5$ oe (eg $y = \frac{-6}{3}x + 5$) (B1 for $y = mx + 5$ or , $-2x+5$ or $y = "-2"x + c$)
13	(a)		$\frac{1}{4} \text{ on LH branch}$ $\frac{2}{3} \& \frac{1}{3} \& \frac{2}{3} \text{ on RH}$ branches	2	B1 cao B1
	(b)	$\frac{3}{4} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3} = \frac{6}{12} + \frac{1}{12}$	$\frac{7}{12}$	3	M1 for $\frac{3}{4} \times \frac{2}{3}$ or $\frac{1}{4} \times \frac{1}{3}$ from their tree diagram M1 for sum of two products A1 for $\frac{7}{12}$ oe
	(c)	$n = 21 \times 4 \text{ or } \frac{1}{6} : \frac{1}{4} \text{ oe}$ $\frac{1}{6} \times 84 \text{ or } 21 \times \frac{2}{3}$	14	3	M1 for either $\frac{1}{3} \times \frac{3}{4} \left(=\frac{1}{4}\right)$ or $\frac{2}{3} \times \frac{1}{4} \left(=\frac{1}{6}\right)$ from their tree diagram M1 for 21×4 (=84) or $\frac{21}{3} \times 2$ A1 for 14 cao SC: B2 for 63 seen in fraction or ratio

Pape	er 5525/05				
	No	Working	Answer	Mark	Notes
14	(a)(i)		150	2	B1 accept 150 or 210
	(ii) (b)	360 – 90 – 90–"150" or 180 – "150"	30	3	B1 for angle at the centre is twice the angle at the circumference B1 identifies angle between radius and tangent as 90° (may be in working or on diagram) M1 360° - 90 - 90-"150" A1 ft from (a)(i) excluding a negative answer Or B1 for 90 M1 for $2 \times (180 - 90 - "\frac{150}{2}")$ A1 ft from (a)(i) excluding a negative answer Or
					B3 for 180 – (a) SC: 180 – "210" can get B1 for 90° and/or B1 for "cyclic quadrilateral"
15	(a) (b)	eg $x = 0.3939$ so $100x = 39.3939$ 99x = 39 so $x = \frac{39}{99} = \frac{13}{33}$	0.2727	1 3	B1 for 2.27 recurring or 0.2727 oe or 0.273 M1 for $100x = 39.39$ M1 dep for subtraction of both sides A1 for $\frac{13}{33}$ from correct proof Alternative method M1 for 13.000 ÷ 33 M1 for remainders 31 and 13 A1 for 0.39 recurring SC:B1 for $\frac{39}{99}$

Paper	5525/05				
N	No	Working	Answer	Mark	Notes
16	(a)	$d = kt^2$ 80 = k × 4 ²	$d = 5t^2$	3	M1 for $d = kt^2$ or $d \propto t^2$ M1 sub $d=80$ and $t=4$ into their equation
	(b)		245	1	A1 for $d = 5t^2$ oe (cao) B1 ft from (a) using "k"
	(c)	$45 = 5t^2$	3	2	M1 ft from (a) for substituting $d=45$ into their equation A1 for 3 cao (condone inclusion of -3)
17	(a)(i) (ii) (b)	LHS = $\left(\frac{100 - (x^2 - 16x + 64)}{4}\right)$ = $\left(\frac{36 + 16x - x^2}{4}\right)$ RHS = $\left(\frac{36 - 2x + 18x - x^2}{4}\right)$ = LHS	(0, 9) (8, 25)	3	B1 cao B1 for $x = 8$ cao B1 for $y = 25$ cao SC: B1 for (25, 8) M1 for expansion of either set of brackets with at least 3 of 4 terms correct M1 for common denominator of 4 or multiplying through by 4 or reducing each numerator to a single term A1 for fully correct solution Alternative method M1 for $(5 - \frac{(x-8)}{2})(5 + \frac{(x-8)}{2})$ M1 for $(\frac{2 \times 5 - (x-8)}{2})(\frac{2 \times 5 + (x-8)}{2})$ A1 for $\frac{(18-x)(x+2)}{4}$

Paper	r 5525/05				
	No	Working	Answer	Mark	Notes
18	(a)	$\frac{810\pi}{90\pi} \text{ or } 9$ $\sqrt{9} \text{ or } 3$	12	3	M1 for $\frac{810\pi}{90\pi}$ or 9 or $\frac{1}{9}$ or 1:9 oe M1 for $\sqrt{\frac{810\pi}{90\pi}}$ or $\sqrt{9}$ or 3 or $\frac{1}{3}$ or $\sqrt{9}$: $\sqrt{1}$ oe A1 cao
	(b)	3 ³ or 27 or 2700	2700π	2	A1 cao SC:B1 for answer of 36 M1 for "3" ³ or 27 or $(\sqrt{9})^3$: $(\sqrt{81})^3$ oe or 9 ³ or 2700– A1 cao
19	(a)(i) (ii) (iii)	$64^{-\frac{2}{3}} = \frac{1}{64^{\frac{2}{3}}}$ or $64^{-\frac{2}{3}} = (4^2)^{-1}$	$ \begin{array}{c} 1\\ 8\\ \underline{1}\\ 16 \end{array} $	1 1 2	B1 cao B1 cao M1 for knowing negative power is a reciprocal or power of $\frac{1}{3}$ root is a cube root A1 cao for $\frac{1}{16}$
	(b)	$\sqrt{27} = \sqrt{9 \times 3}$ or $\sqrt{27} = 3\sqrt{3}$ or $\sqrt{27} = 3^{3/2}$	$\frac{5}{2}$ oe	2	M1 for $\sqrt{27} = \sqrt{9 \times 3}$ or $\sqrt{27} = 3^{3/2}$ A1 for $\frac{5}{2}$ oe (cao) Alternative method M1 for $9 \times 27 = 3^{2n}$ A1 for $\frac{5}{2}$ oe (cao)

$ \begin{array}{c c} $	Working	Answer (90, 1) (180, 0) (45, 0) (90, -3)	Mark 2 2	NotesB1 cao could be indicated on diagramB1 cao could be indicated on diagramB1 cao could be indicated on diagram
i) p)(i) i)	1 4	(180, 0) (45, 0) (90, -3)		B1 cao could be indicated on diagram B1 cao could be indicated on diagram
$\frac{1}{2}$		22.	2	B1 cao could be indicated on diagram
3 x	$\frac{1}{3}\pi x^{2}h = \frac{4}{3}\pi (2x)^{3}$ $x^{2}h = 4 \times 8x^{3}$	32 <i>x</i>	3	M1 for substitution in correct formulae M1 (dep.) for correct unsimplified expression eg $h = \frac{\frac{4}{3}\pi(2x)^{3}}{\frac{1}{3}\pi x^{2}}$ oe or $h = 8x$ oe A1 for 32x cao
ı) (? (?	$\left(\overline{OM} = \right) a + 2b \left(\overline{ON} = \right) 3 a \text{ or } \frac{6}{2} a$ $\left(\overline{MN} = \right) -a - 2b + 3a$	2a-2b	2	B2 (B1 for either \overline{OM} or \overline{ON} or $-a - 2b + 3a$ SC: B1 for $2b - 2a$
) (i	$\left(\overline{OX} = \right) 2a + b \left(\overline{OY} = \right)b + 4a$	$\overline{XY} = 2a$	2	B1 for either \overline{OX} or \overline{OY} or $(\frac{1}{2} \overline{QR})$ B1 for $\overline{XY} = 2a$ or $\overline{YX} = -2a$
	($(OM =) a + 2b$ $(ON =) 3 a$ or $\frac{-a}{2}a$ $(\overline{MN} =) -a - 2b + 3a$	(OM =) a + 2b $(ON =) 3a$ or $-a$	$\left(\overline{OM} = \right) a + 2b \left(\overline{ON} = \right) 3 a \text{ or } \frac{6}{2}a$ $2a - 2b$ 2