Questions	Working	Answer	Mark	Notes
1		14	3	M1 for 5 \times 4 (= 20) or 3 \times 2 or attempt to
				divide diagram into rectangles
				M1 "20" – "6" or addition of parts
				A1 cao
2 (a)	$3 \times 4 + 4 \times -5 = 12 - 20$	-8	2	M1 substitution eg. 3×4 and 4×-5 or 12
				and -20
				A1 cao
(b)	$3 \times 2^2 - 5$	7	3	M1 substitution eg 3 \times 2 ² – 5; do not accept
	$3 \times 4 - 5$			$32^2 - 5$
				M1 $3 \times 4 - 5$ or $3 \times 2 \times 2 - 5$ or $12 - 5$
				A1 cao
3 (a)	679 or 28	190.12	3	M1 for an attempt to multiply the units and
	<u>8</u> <u>679</u>			tens, or correct partitioning
	5432 252			M1 for completely correct method (condone
	<u>13580</u> 1960			one computational error)
	<u>19012</u> <u>16800</u>			A1 cao
	19012			
(b)	$570 \div 50$	12	2	M1 570 \div 50 or 11.4 or 11 seen
				A1 cao
(c)	$570 \times \frac{110}{100}$	627	3	M1 for $\frac{110}{100} \times 570$ or $570 \div 10$ or 57 seen
				M1 (dep) 570 + "57"
				(or M2 for 570×1.10)
				A1 cao

Questions		Working	Answer	Mark	Notes
4	(a)		Correct drawing	2	B2 Condone hidden detail shown with solid lines, or missing lines on front face (B1 for correct plan and side elevation, cross-
					section correct with depth > 1 cube, or one added cube)
	(b)		Correct drawing	2	B2 Ignore relative proportion, do not accept a rectangle when one side $> 1.5x$ other side
					(B1 one shape only)
5	(a)		Points plotted	1	B1 \pm 1 full mark (2 mm square)
	(b)		Positive	1	BI cao
	(c)		35 <answer<40< th=""><th>2</th><th>B2 ft from a single line segment with positive</th></answer<40<>	2	B2 ft from a single line segment with positive
					gradient \pm 1 full (2 mm) square
					B1 lob must pass through $(5, 5)$ $(5, 15)$ and
					(55, 35) and (55, 45)
6			C = 1000(n+3)	3	B3 for C=1000(n + 3) oe such as
					$(n+3) \times 1000$
					(B2 for correct RHS or $C = n + 3 \times 1000$,
					C = 1000n + 3 etc)
					(B1 for C = some other linear expression in n
					or $n + 3 \times 1000$, $1000n + 3$ etc)
					NB $C = n$ scores no marks

	Questions	Working	Answer	Mark	Notes
7	(a)		$p^{3}-3p^{2}$	2	B2 cao
	(b)		y(y+5)	2	(B1 for $p^3 or 3p^2$ seen in working, ignore signs) B2 for $y(y + 5)$ or $y \times (y + 5)$, (B1 for $y(ay + b)$ where $a, b, b \neq 0$ are
	(c)		2x(x+3y)	2	numbers or $y + 5$ seen on its own, or part of an expression) B2 cao (B1 for $2(x^2 + 3xy)$ or $x(2x + 6y)$ or $2x(-)$)
	(d)	$x^2 - 2x - 15 = (x - 5) (x + 3)$	5, -3	2	(B) for $2(x + 5xy)$ or $x(2x + 6y)$ or $2x()$ B2 cao (B1 for $x - 5$) or $(x + 3)$ seen in working)
8			question + response boxes oe	2	1 st aspect: one question with time period (eg each day); ignore other questions 2 nd aspect: response list (at least two), no overlapping 3 rd aspect: some mention of units (eg hours or number of pieces) in either question or responses Award B2 for all these aspects, or B1 for just two aspects

Q	uestions	Working	Answer	Mark	Notes
9		$(4 \times 3) \times 11 \div 2$	66cm ³	4	M2 for $4 \times 3 \times 11 \div 2$
					(M1 for any three of these)
					A1 cao numerical answer of 66
					B1 (indep) cm^3 with or without any
					numerical answer
10	(a)		Correct reflection	2	B2 cao
					(B1 for reflection in a line other than $y = 2$)
	(b)		Reflection in	2	B2 cao
			y = x		(B1 for "reflection" or $y = x$)
					NB: inclusion with other transformations get
					B0
11	(a)	9 - 2x = 3x + 6	3	3	B1 for $3r + 6$ seen OR $3 - \frac{2}{r}r - r + 2$
			5		$\begin{array}{c} 3 \end{array}$
		9-6=3x+2x			M1 for correct rearrangement of 4 terms or
		3 = 5x			3 = 5x
					A1 for $\frac{3}{2}$ or
					5
	(b)		-3,-2,-1,0,1	2	B2 (B1 for 4 correct integers and not more
					than one incorrect integers or omissions)

Questions	Working	Answer	Mark	Notes
12 (a)	$1 + 2 + \frac{14}{35} + \frac{15}{35}$	$3\frac{29}{35}$	3	M1 for attempt to convert to fractions with common denominator eg two fractions, denominator of 35 A1 for correct conversion: $\frac{14}{35}$ and $\frac{15}{35}$ seen (oe) A1 cao OR Attempt to convert decimals: must use at least 2dp M1 0.4+0.42 (or 1.4+2.42) or 0.4+0.43 etc A1 3.82, 3.83, etc A1 3.8257 (ie at least 5 dp)
(b)	$\frac{2}{5} \times \frac{3}{7} = \frac{6}{35}$	$\frac{6}{35}$	2	M1 For 6 or multiplication of top or bottom eg $\frac{6}{35}$, $\frac{840}{4900}$ A1 cao
13	$\frac{10}{6} \times 4.8$	8	2	M1 for $4.8 \div 6 \times 10$ A1 cao
14	0	$1^{\text{st, }} 3^{\text{rd}}, 4^{\text{th}}$	3	B3 (B1 for each, –1 each extra)
15	$ x + 0.35 + 0.15 + x = 1 0.25 \times 400 $	100	4	M1 for $x+0.35+0.15+x=1$ oe, or $0.5 \div 2$ M1 0.25 seen M1 0.25 × 400 A1 cao accept 100 out of 400 (in words) SC B1 for $\frac{100}{400}$

Questions		ons	Working	Answer	Mark	Notes
16	(a)	(i) (ii)		40 Identifies angle between radius and tangent as 90°	2	B1 cao B1 reason in words, linking radius and tangent (edge insufficient)
	(b)	(i) (ii)	$2 \times 50^{\circ} \div 2 =$	50° Angle at the centre is twice the angle at the circumference.	3	May be in working or on diagram M1 $2 \times 50^{\circ} \div 2$ A1 50° B1 reason in words
17	(a)			$\frac{1}{4}$ on LH branch $\frac{2}{4}$ $\frac{1}{2}$ on RH	2	B1
	(b)		$\frac{3}{4} \times \frac{2}{3} + \frac{1}{4} \times \frac{1}{3} = \frac{6}{12} + \frac{1}{12}$	$\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ on KIT branches $\frac{7}{12}$	3	M1 for $\frac{3}{4} \times \frac{2}{3}$ or $\frac{1}{4} \times \frac{1}{3}$ from their tree diagram
	(c)			14	3	M1(dep) for sum of two correct products A1 for $\frac{7}{12}$ oe M1 for $\frac{3}{4} \times \frac{1}{3} \left(= \frac{3}{12} \right)$ or $1 - \frac{9}{12}$ M1 for $21 \times \frac{"12"}{3} \times \frac{1}{4} \times \frac{2}{3}$; ft from their tree diagram; must be from a product

Q	uestions	Working	Answer	Mark	Notes
18	(a)		0.8333	1	B1 for 0.8333 oe or 0.83
	(b)	eg $x = 0.3636$ so $100x = 36.3636$ 99x = 36 $x = \frac{36}{99} = \frac{4}{11}$		3	M1 for $100x = 36.36$ M1 dep for subtraction of both sides A1 for $\frac{4}{11}$ from correct proof [SC: B1 for $\frac{36}{11}$ or $4 \div = 0.3636$ showing
19	(a)		28	4	B1 ft from (a) using " k ", dep on at least M1
	(b)	$24 = \frac{84}{r}$	3.5	2	M1 ft from (a) dep on at least M1 for putting p = 24 into their equation A1 oe eg $\frac{84}{24}$
20	(a) (i)		1	1	B1 cao
	(ii)		9	1	B1 cao

C	Juestions	Working	Answer	Mark	Notes
21	(a)		5	2	M1 for $\frac{76}{800} \times 50$
					A1 for 4.75 or 5
	(b)		Correct response	2	M1 for Yr 7 boys = Year 11 girls $\times 2$
			and correct reason		A1 for 6.875 and 3.43745
22		$\frac{4}{3}\pi(3x)^3$ 4 3 ³	9x	2	M1 for substitution in a correct formula,
		$\frac{1}{\pi(4x)^2} = \frac{1}{3} \times \frac{1}{4^2} x$	4	3	condone missing brackets
					M1 for a correct equation to find the depth
					including h and brackets
					A1 for $\frac{9x}{4}$ oe
23	(a)	$PR = -2\mathbf{a} + 2\mathbf{b}$	-a+b	2	4 B1 PR= -2 a + 2 b or a + b oe
-0	()				Bloe
	(b)	$OQ = 2\mathbf{a} + 2\mathbf{b}$		2	B1 $OX = OP + PX$
		$OX = OP + PX = 2\mathbf{a} - \mathbf{a} + \mathbf{b} = \mathbf{a} + \mathbf{b} = \frac{1}{2}OQ$			B1 equates $OX = \mathbf{a} + \mathbf{b}$ with $\frac{1}{2}OQ$