

Rewarding Learning

General Certificate of Secondary Education January 2014

Candidate Number

Mathematics

Unit T4

(With calculator)
Higher Tier

[GMT41]

GMT41

FRIDAY 10 JANUARY 9.15 am-11.15 am

TIME

2 hours.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. You must answer the questions in the spaces provided. Do not write outside the box, around each page, on blank pages or tracing paper.
Complete in blue or black ink only. Do not write with a gel pen.
Answer all twenty questions.
Any working should be clearly shown in the spaces provided since marks may be awarded for partially correct solutions.
You may use a calculator for this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
Functional Elements will be assessed in this paper.
Quality of written communication will be assessed in questions 3(b) and 10.
You should have a calculator, ruler, compasses and a protractor.
The Formula Sheet is on page 2.

Formula Sheet

Volume of prism $=$ area of cross section \times length

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$
Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$, are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

1 On every swing, a pendulum reaches 60% of the previous distance.
The pendulum swings 1.8 metres on its first swing.
After how many swings will the distance first fall below 20 cm ?

Answer \qquad swings [2]

2 During a very cold winter a glacier increased its volume by 32%.
At the end of the winter its volume was found to be $6864 \mathrm{~km}^{3}$.
What was its original volume at the start of that winter?
\qquad km^{3} [3]

Quality of written communication will be assessed in part (b) of this question.

3 The information given below relates to the ages (in years) of members of a badminton club.

Lower Quartile $=28$
Median = 32
Upper Quartile = 54
Youngest $=12$
Range $=58$
(a) Draw a box plot to show this information.

[3]
(b) The box plot below shows the age distribution of members of a bowls club.

Compare the age distributions of the members of the badminton club and the bowls club.
\qquad
\qquad
\qquad
\qquad

4 The cumulative frequency curve represents the times taken to run 1500 m by each of the members of a running club.

(a) Use the graph to estimate the interquartile range.

Answer \qquad minutes
(b) Any member taking more than $5 \frac{1}{2}$ minutes has to do extra training. Use the graph to estimate the percentage of runners who have to undertake extra training.

Answer \qquad \% [2]

Total Question 4
\square
[Turn over

5 PQRS represents a rectangular gate. $\mathrm{PS}=200 \mathrm{~cm}$ and $\mathrm{SR}=300 \mathrm{~cm}$.

diagram not drawn accurately
(a) Calculate the size of angle PRS

Answer \qquad ${ }^{\circ}$ [3]
(b) The measurements of the gate are all to the nearest centimetre. What is the smallest possible perimeter of the gate?

Examiner Only	
Marks	Remark

Answer \qquad cm [2]

BLANK PAGE (Questions continue overleaf) DO NOT WRITE ON THIS PAGE

6 (a) R, S, T and U are points on the circumference of a circle, centre O . The angle RUS is 46° and the angle URT is 36°

Calculate
(i) the angle RTS,
\qquad。
(ii) the angle ROS,

Answer \qquad - [1]
(iii) the angle SUT.
\qquad ${ }^{\circ}$ [1]

Exam	er Only
Marks	Remark

(b) D, E, F and G are points on the circumference of the circle below.

The angle $\mathrm{FDG}=62^{\circ}$ and the angle $\mathrm{DFG}=31^{\circ}$ HG is a tangent to the circle.

diagram not drawn accurately
(ii) Calculate the size of angle DEF.

Answer \qquad - [1]
(i) Write down the size of angle FGH.

Answer \qquad \circ

7 The straight line, L, passes through the points $(0,-2)$ and $(3,2)$.
(a) Work out the gradient of L.

Answer \qquad
(b) Show that the equation of L is $4 x-3 y=6$
(c) Write down the equation of another line that is parallel to L .

Answer \qquad
(d) Write down the gradient of a line perpendicular to L .

Answer \qquad

Answer

$$
\begin{array}{lll}
8 \text { (a) } & \begin{array}{l}
\text { Solve the simultaneous equations }
\end{array} & 3 x+2 y=10 \\
\text { Show your working. } & 2 x-6 y=3 \\
& \text { A solution by trial and improvement } & \\
& \text { will not be accepted. }
\end{array}
$$

Answer $x=$ \qquad $y=$ \qquad
(b) Hence write down the coordinates of the point of intersection of the two lines whose equations are

$$
3 x+2 y=10 \text { and } 2 x-6 y=3
$$

Answer (\qquad , \quad)) [1]

9 The breadth of a cuboid is 1 cm less than the length $y \mathrm{~cm}$.
The height is 6 cm .
The volume of the cuboid is $72 \mathrm{~cm}^{3}$.
(a) Show that $y^{2}-y-12=0$

Quality of written communication will be assessed in this question.
10 (a) The test results for a class are recorded as

$$
\begin{array}{lllllllll}
26 & 26 & 29 & 32 & 37 & 38 & 40 & 41 & 99
\end{array}
$$

Why would the mean not be the most suitable average to use when commenting on these results?
(b) In another test the results are recorded as

$$
\begin{array}{llllllllllll}
18 & 18 & 18 & 18 & 19 & 27 & 29 & 36 & 39 & 47 & 59 & 62
\end{array}
$$

Which average would be least suitable to use when commenting on these results? Give a reason for your answer.
because \qquad
Total Question 10
\qquad [1]

11 A park keeper wishes to estimate the number of frogs in a large pond. He catches 180 frogs, tags them and returns them to the pond. Later he catches 80 frogs and records that 24 of them are tagged. Estimate the number of frogs in the pond.

Answer \qquad [2]

12 The electrical resistance, R ohms, of a wire varies inversely as the square of its diameter, $d \mathrm{~mm}$.
A wire, 6 mm in diameter, made from a certain alloy has a resistance of 36 ohms.
(a) Express R in terms of d.

$$
\text { Answer } R=
$$

\qquad [3]
(b) (i) Work out the electrical resistance of a wire made from the same alloy whose diameter is 9 mm .

Answer \qquad ohms [
(ii) Another wire made from the same alloy has an electrical resistance of 20 ohms.
Work out the diameter of this wire.

Answer \qquad mm [2]

Total Question 12	

[Turn over

13 A rectangular piece of card has a length of $(2 x+3) \mathrm{cm}$ and a width of $(3 x+1) \mathrm{cm}$.
A rectangle of length $2 x \mathrm{~cm}$ and width $x \mathrm{~cm}$ is cut from it as shown in the diagram.
The remaining piece of card, shown shaded in the diagram, has an area of $25 \mathrm{~cm}^{2}$.

(a) Show that $4 x^{2}+11 x-22=0$
(b) Solve the equation $4 x^{2}+11 x-22=0$ to find the value of x. Give your answer to 3 significant figures.
\qquad

14 Without using a calculator and showing every step clearly in your working, find the value of

$$
\left(2 \frac{1}{4}\right)^{-1.5}
$$

\qquad [4]

Total Question 14

15 Town B is 73 km from Town A on a bearing of 069°
Town C is 64 km from A on a bearing of 112°

Calculate
(a) the distance between B and C ,

Answer \qquad km [3]
(b) the area of triangle ABC ,

Answer \qquad km^{2} [2]

Exami	er Only
Marks	Remark

(c) the bearing of B from C .
\qquad - [4]

16 ABCDEF is a ramp which is in the shape of a triangular prism.
$\mathrm{AB}=120 \mathrm{~cm}, \mathrm{FC}=90 \mathrm{~cm}$ and $\mathrm{BC}=30 \mathrm{~cm}$. Angle $\mathrm{FCB}=90^{\circ}$
Calculate the angle between EB and the base DCFE.

Answer \qquad - [3]

Total Question 16

17 (a) The weights of packages passing through a Post Office in one day are recorded below.

Weight (g)	Frequency
$0<w \leqslant 100$	80
$100<w \leqslant 150$	200
$150<w \leqslant 250$	160
$250<w \leqslant 400$	540
$400<w \leqslant 550$	360
$550<w \leqslant 600$	130

On the axes below draw a clearly labelled histogram to illustrate this information.

[3]

8693
(b) The histogram illustrates how much time cars spent in a car park.

(i) Calculate an estimate for the mean time.

Answer \qquad minutes [4]
(ii) Half the cars using the car park were there for more than M minutes.
Calculate an estimate for the value of M.

[Turn over

18 Solve the simultaneous equations

$$
\begin{aligned}
& y-2 x=6 \\
& x^{2}+y^{2}=20
\end{aligned}
$$

Answer \qquad [7]

Examiner Only	
Marks	Remark

19 Simplify fully $\frac{3}{x+3}+\frac{2 x+21}{x^{2}+x-6} \quad$ Answer

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
Total	
Marks	

Examiner Number

Permission to reproduce all copyright material has been applied for.
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

